rocm_jax/jax/numpy/lax_numpy.py
2018-12-11 11:52:31 -05:00

1129 lines
37 KiB
Python

# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six.moves import builtins
import six
import math
import numpy as onp
from .. import core
from ..abstract_arrays import UnshapedArray, ShapedArray, ConcreteArray
from ..interpreters.xla import DeviceArray
from .. import lax
from ..util import memoize
from ..util import get_module_functions
from ..lib import xla_bridge
# To provide the same module-level names as Numpy, we need to redefine builtins
# and also use some common names (like 'shape' and 'dtype') at the top-level.
# pylint: disable=redefined-builtin,redefined-outer-name
# There might be a pylint bug with tuple unpacking.
# pylint: disable=unbalanced-tuple-unpacking
# We get docstrings from the underlying numpy functions.
# pylint: disable=missing-docstring
# We replace some builtin names to follow Numpy's API, so we capture here.
_all = builtins.all
_any = builtins.any
_max = builtins.max
_min = builtins.min
_sum = builtins.sum
# We need some numpy scalars
# TODO(mattjj): handle constants in an indirected, less explicit way?
pi = onp.pi
e = onp.e
inf = onp.inf
nan = onp.nan
# We want isinstance(x, np.ndarray) checks in user code to work with the our
# array-like types, including DeviceArray and UnshapedArray (i.e. the abstract
# array base class). We can override the isinstance behavior directly, without
# having the complexity of multiple inheritance on those classes, by defining
# the ndarray class to have a metaclass with special __instancecheck__ behavior.
_arraylike_types = (onp.ndarray, UnshapedArray, DeviceArray)
class _ArrayMeta(type(onp.ndarray)):
"""Metaclass for overriding ndarray isinstance checks."""
def __instancecheck__(self, instance):
try:
return isinstance(instance.aval, _arraylike_types)
except AttributeError:
return isinstance(instance, _arraylike_types)
# pylint: disable=invalid-name
class ndarray(six.with_metaclass(_ArrayMeta, onp.ndarray)):
pass
# pylint: enable=invalid-name
isscalar = onp.isscalar
iscomplexobj = onp.iscomplexobj
result_type = onp.result_type
shape = _shape = onp.shape
ndim = _ndim = onp.ndim
size = onp.size
_dtype = lax._dtype
uint32 = onp.uint32
int32 = onp.int32
uint64 = onp.uint64
int64 = onp.int64
float32 = onp.float32
float64 = onp.float64
complex64 = onp.complex64
### utility functions
def _promote_shapes(*args):
"""Prepend implicit leading singleton dimensions for Numpy broadcasting."""
if len(args) < 2:
return args
else:
shapes = [shape(arg) for arg in args]
nd = len(_broadcast_shapes(*shapes))
return [lax.reshape(arg, (1,) * (nd - len(shp)) + shp)
if len(shp) != nd else arg for arg, shp in zip(args, shapes)]
@memoize
def _broadcast_shapes(*shapes):
"""Apply Numpy broadcasting rules to the given shapes."""
if len(shapes) == 1:
return shapes[0]
ndim = _max(len(shape) for shape in shapes)
shapes = onp.array([(1,) * (ndim - len(shape)) + shape for shape in shapes])
min_shape = onp.min(shapes, axis=0)
max_shape = onp.max(shapes, axis=0)
result_shape = onp.where(min_shape == 0, 0, max_shape)
if not onp.all((shapes == result_shape) | (shapes == 1)):
raise ValueError("Incompatible shapes for broadcasting: {}"
.format(tuple(map(tuple, shapes))))
return tuple(result_shape)
def _promote_dtypes(*args):
"""Convenience function to apply Numpy argument dtype promotion."""
# TODO(dougalm,mattjj): This is a performance bottleneck. Consider memoizing.
if len(args) < 2:
return args
else:
from_dtypes = (_dtype(x) for x in args)
to_dtype = xla_bridge.canonicalize_dtype(result_type(*from_dtypes))
return [lax.convert_element_type(x, to_dtype)
if _dtype(x) != to_dtype else x for x in args]
def _promote_to_result_dtype(op, *args):
"""Convenience function to promote args directly to the op's result dtype."""
to_dtype = _result_dtype(op, *args)
return [lax.convert_element_type(arg, to_dtype) for arg in args]
def _result_dtype(op, *args):
"""Compute result dtype of applying op to arguments with given dtypes."""
args = (onp.ones((0,) * ndim(arg), _dtype(arg)) for arg in args)
return _dtype(op(*args))
def _check_arraylike(fun_name, *args):
"""Check if all args fit JAX's definition of arraylike (ndarray or scalar)."""
not_array = lambda x: not isinstance(x, ndarray) and not onp.isscalar(x)
if _any(not_array(arg) for arg in args):
pos, arg = next((i, arg) for i, arg in enumerate(args) if not_array(arg))
msg = "{} requires ndarray or scalar arguments, got {} at position {}."
raise TypeError(msg.format(fun_name, type(arg), pos))
def _promote_args(fun_name, *args):
"""Convenience function to apply Numpy argument shape and dtype promotion."""
_check_arraylike(fun_name, *args)
return _promote_shapes(*_promote_dtypes(*args))
def _promote_args_like(op, *args):
"""Convenience function to apply shape and dtype promotion to result type."""
_check_arraylike(op.__name__, *args)
return _promote_shapes(*_promote_to_result_dtype(op, *args))
def _constant_like(x, const):
return onp.array(const, dtype=_dtype(x))
# A dictionary mapping implemented funcs to their lax equivalent.
IMPLEMENTED_FUNCS = {}
def _wraps(fun):
"""Like functools.wraps but works with numpy.ufuncs."""
docstr = """
LAX-backed implementation of {fun}. Original docstring below.
{np_doc}
""".format(fun=fun.__name__, np_doc=fun.__doc__)
def wrap(op):
try:
op.__name__ = fun.__name__
op.__doc__ = docstr
finally:
IMPLEMENTED_FUNCS[fun] = op
return op
return wrap
### implementations of numpy functions in terms of lax
def _one_to_one_op(numpy_fn, lax_fn, promote_to_result_dtype=False):
if promote_to_result_dtype:
promoted_lax_fn = lambda *args: lax_fn(*_promote_args_like(numpy_fn, *args))
else:
name = numpy_fn.__name__
promoted_lax_fn = lambda *args: lax_fn(*_promote_args(name, *args))
return _wraps(numpy_fn)(promoted_lax_fn)
absolute = abs = _one_to_one_op(onp.absolute, lax.abs)
add = _one_to_one_op(onp.add, lax.add)
bitwise_and = _one_to_one_op(onp.bitwise_and, lax.bitwise_and)
bitwise_not = _one_to_one_op(onp.bitwise_not, lax.bitwise_not)
bitwise_or = _one_to_one_op(onp.bitwise_or, lax.bitwise_or)
bitwise_xor = _one_to_one_op(onp.bitwise_xor, lax.bitwise_xor)
right_shift = _one_to_one_op(onp.right_shift, lax.shift_right_arithmetic)
left_shift = _one_to_one_op(onp.left_shift, lax.shift_left)
ceil = _one_to_one_op(onp.ceil, lax.ceil)
equal = _one_to_one_op(onp.equal, lax.eq)
expm1 = _one_to_one_op(onp.expm1, lax.expm1, True)
exp = _one_to_one_op(onp.exp, lax.exp, True)
floor = _one_to_one_op(onp.floor, lax.floor)
greater_equal = _one_to_one_op(onp.greater_equal, lax.ge)
greater = _one_to_one_op(onp.greater, lax.gt)
isfinite = _one_to_one_op(onp.isfinite, lax.is_finite)
less_equal = _one_to_one_op(onp.less_equal, lax.le)
less = _one_to_one_op(onp.less, lax.lt)
log1p = _one_to_one_op(onp.log1p, lax.log1p, True)
log = _one_to_one_op(onp.log, lax.log, True)
maximum = _one_to_one_op(onp.maximum, lax.max)
minimum = _one_to_one_op(onp.minimum, lax.min)
multiply = _one_to_one_op(onp.multiply, lax.mul)
negative = _one_to_one_op(onp.negative, lax.neg)
not_equal = _one_to_one_op(onp.not_equal, lax.ne)
power = _one_to_one_op(onp.power, lax.pow, True)
sign = _one_to_one_op(onp.sign, lax.sign)
subtract = _one_to_one_op(onp.subtract, lax.sub)
tanh = _one_to_one_op(onp.tanh, lax.tanh, True)
sort = _one_to_one_op(onp.sort, lax.sort)
def _logical_op(np_op, bitwise_op):
@_wraps(np_op)
def op(*args):
zero = lambda x: lax.full_like(x, shape=(), fill_value=0)
args = (x if onp.issubdtype(_dtype(x), onp.bool_) else lax.ne(x, zero(x))
for x in args)
return bitwise_op(*_promote_args(np_op.__name__, *args))
return op
logical_and = _logical_op(onp.logical_and, lax.bitwise_and)
logical_not = _logical_op(onp.logical_not, lax.bitwise_not)
logical_or = _logical_op(onp.logical_or, lax.bitwise_or)
logical_xor = _logical_op(onp.logical_xor, lax.bitwise_xor)
@_wraps(onp.true_divide)
def true_divide(x1, x2):
x1, x2 = _promote_shapes(x1, x2)
result_dtype = _result_dtype(onp.true_divide, x1, x2)
return lax.div(lax.convert_element_type(x1, result_dtype),
lax.convert_element_type(x2, result_dtype))
@_wraps(onp.divide)
def divide(x1, x2):
# decide whether to perform integer division based on Numpy result dtype, as a
# way to check whether Python 3 style division is active in Numpy
result_dtype = _result_dtype(onp.divide, x1, x2)
if onp.issubdtype(result_dtype, onp.integer):
return floor_divide(x1, x2)
else:
return true_divide(x1, x2)
@_wraps(onp.floor_divide)
def floor_divide(x1, x2):
x1, x2 = _promote_args("floor_divide", x1, x2)
if onp.issubdtype(_dtype(x1), onp.integer):
quotient = lax.div(x1, x2)
select = logical_and(lax.sign(x1) != lax.sign(x2), lax.rem(x1, x2) != 0)
# TODO(mattjj): investigate why subtracting a scalar was causing promotion
return where(select, quotient - onp.array(1, _dtype(quotient)), quotient)
else:
return _float_divmod(x1, x2)[0]
@_wraps(onp.divmod)
def divmod(x1, x2):
x1, x2 = _promote_args("divmod", x1, x2)
if onp.issubdtype(_dtype(x1), onp.integer):
return floor_divide(x1, x2), remainder(x1, x2)
else:
return _float_divmod(x1, x2)
def _float_divmod(x1, x2):
# see float_divmod in floatobject.c of CPython
mod = lax.rem(x1, x2)
div = lax.div(lax.sub(x1, mod), x2)
ind = lax.bitwise_and(mod != 0, lax.sign(x2) != lax.sign(mod))
mod = lax.select(ind, mod + x1, mod)
div = lax.select(ind, div - _constant_like(div, 1), div)
return lax.round(div), mod
def logaddexp(x1, x2):
x1, x2 = _promote_to_result_dtype(onp.logaddexp, *_promote_shapes(x1, x2))
amax = lax.max(x1, x2)
return lax.add(amax, lax.log(lax.add(lax.exp(lax.sub(x1, amax)),
lax.exp(lax.sub(x2, amax)))))
@_wraps(onp.remainder)
def remainder(x1, x2):
x1, x2 = _promote_args("remainder", x1, x2)
return lax.rem(lax.add(lax.rem(x1, x2), x2), x2)
mod = remainder
fmod = lax.rem
def sqrt(x):
x, = _promote_to_result_dtype(onp.sqrt, x)
return power(x, _constant_like(x, 0.5))
@_wraps(onp.transpose)
def transpose(x, axis=None):
axis = onp.arange(ndim(x))[::-1] if axis is None else axis
return lax.transpose(x, axis)
@_wraps(onp.sinh)
def sinh(x):
x, = _promote_to_result_dtype(onp.sinh, x)
return lax.div(lax.sub(lax.exp(x), lax.exp(lax.neg(x))), _constant_like(x, 2))
@_wraps(onp.cosh)
def cosh(x):
x, = _promote_to_result_dtype(onp.cosh, x)
return lax.div(lax.add(lax.exp(x), lax.exp(lax.neg(x))), _constant_like(x, 2))
@_wraps(onp.sin)
def sin(x):
x, = _promote_to_result_dtype(onp.sin, x)
return lax.sin(x)
@_wraps(onp.cos)
def cos(x):
x, = _promote_to_result_dtype(onp.sin, x)
return lax.cos(x)
@_wraps(onp.conjugate)
def conjugate(x):
return lax.conj(x) if iscomplexobj(x) else x
conj = conjugate
@_wraps(onp.imag)
def imag(x):
return lax.imag(x) if iscomplexobj(x) else x
@_wraps(onp.real)
def real(x):
return lax.real(x) if iscomplexobj(x) else x
@_wraps(onp.angle)
def angle(x):
if iscomplexobj(x):
return lax.atan2(lax.imag(x), lax.real(x))
else:
return zeros_like(x)
@_wraps(onp.reshape)
def reshape(a, newshape, order="C"): # pylint: disable=missing-docstring
if order == "C" or order is None:
dims = None
elif order == "F":
dims = onp.arange(ndim(a))[::-1]
elif order == "A":
dims = onp.arange(ndim(a))[::-1] if isfortran(a) else onp.arange(ndim(a))
else:
raise ValueError("Unexpected value for 'order' argument: {}.".format(order))
dummy_val = onp.broadcast_to(0, shape(a)) # zero strides
computed_newshape = onp.reshape(dummy_val, newshape).shape
return lax.reshape(a, computed_newshape, dims)
@_wraps(onp.ravel)
def ravel(a, order="C"):
if order == "K":
raise NotImplementedError("Ravel not implemented for order='K'.")
return reshape(a, (size(a),), order)
@_wraps(onp.squeeze)
def squeeze(a, axis=None):
if 1 not in shape(a):
return a
if axis is None:
newshape = [d for d in shape(a) if d != 1]
else:
axis = frozenset(onp.mod(axis, ndim(a)).reshape(-1))
newshape = [d for i, d in enumerate(shape(a))
if d != 1 or i not in axis]
return lax.reshape(a, newshape)
@_wraps(onp.expand_dims)
def expand_dims(a, axis):
shape = _shape(a)
axis = axis % (ndim(a) + 1) # pylint: disable=g-no-augmented-assignment
return lax.reshape(a, shape[:axis] + (1,) + shape[axis:])
@_wraps(onp.swapaxes)
def swapaxes(a, axis1, axis2):
perm = onp.arange(ndim(a))
perm[axis1], perm[axis2] = perm[axis2], perm[axis1]
return lax.transpose(a, perm)
@_wraps(onp.moveaxis)
def moveaxis(a, source, destination):
source = onp.mod(source, ndim(a)).reshape(-1)
destination = onp.mod(destination, ndim(a)).reshape(-1)
if len(source) != len(destination):
raise ValueError("Inconsistent number of elements: {} vs {}"
.format(len(source), len(destination)))
perm = [i for i in range(ndim(a)) if i not in source]
for dest, src in sorted(zip(destination, source)):
perm.insert(dest, src)
return lax.transpose(a, perm)
@_wraps(onp.isclose)
def isclose(a, b, rtol=1e-05, atol=1e-08):
a, b = _promote_args("isclose", a, b)
rtol = lax.convert_element_type(rtol, _dtype(a))
atol = lax.convert_element_type(atol, _dtype(a))
return lax.le(lax.abs(lax.sub(a, b)),
lax.add(atol, lax.mul(rtol, lax.abs(b))))
@_wraps(onp.where)
def where(condition, x=None, y=None):
if x is None or y is None:
raise ValueError("Must use the three-argument form of where().")
if not onp.issubdtype(_dtype(condition), onp.bool_):
condition = lax.ne(condition, zeros_like(condition))
condition, x, y = broadcast_arrays(condition, x, y)
return lax.select(condition, *_promote_dtypes(x, y))
def broadcast_arrays(*args):
"""Like Numpy's broadcast_arrays but doesn't return views."""
shapes = [shape(arg) for arg in args]
if len(set(shapes)) == 1:
return [arg if isinstance(arg, ndarray) or isscalar(arg) else array(arg)
for arg in args]
result_shape = _broadcast_shapes(*shapes)
return [broadcast_to(arg, result_shape) for arg in args]
def broadcast_to(arr, shape):
"""Like Numpy's broadcast_to but doesn't necessarily return views."""
arr = arr if isinstance(arr, ndarray) or isscalar(arr) else array(arr)
if _shape(arr) != shape:
# TODO(mattjj): revise this to call lax.broadcast_in_dim rather than
# lax.broadcast and lax.transpose
_broadcast_shapes(shape, _shape(arr)) # error checking
nlead = len(shape) - len(_shape(arr))
diff, = onp.where(onp.not_equal(shape[nlead:], _shape(arr)))
new_dims = tuple(range(nlead)) + tuple(nlead + diff)
kept_dims = tuple(onp.delete(onp.arange(len(shape)), new_dims))
perm = onp.argsort(new_dims + kept_dims)
broadcast_dims = onp.take(shape, new_dims)
squeezed_array = squeeze(arr, diff)
return lax.transpose(lax.broadcast(squeezed_array, broadcast_dims), perm)
else:
return arr
@_wraps(onp.split)
def split(ary, indices_or_sections, axis=0):
dummy_val = onp.broadcast_to(0, ary.shape) # zero strides
subarrays = onp.split(dummy_val, indices_or_sections, axis) # shapes
split_indices = onp.cumsum([0] + [onp.shape(sub)[axis] for sub in subarrays])
starts, ends = [0] * ndim(ary), shape(ary)
_subval = lambda x, i, v: lax.subvals(x, [(i, v)])
return [lax.slice(ary, _subval(starts, axis, start), _subval(ends, axis, end))
for start, end in zip(split_indices[:-1], split_indices[1:])]
@_wraps(onp.clip)
def clip(a, a_min=None, a_max=None):
a_min = _dtype_info(_dtype(a)).min if a_min is None else a_min
a_max = _dtype_info(_dtype(a)).max if a_max is None else a_max
if _dtype(a_min) != _dtype(a):
a_min = lax.convert_element_type(a_min, _dtype(a))
if _dtype(a_max) != _dtype(a):
a_max = lax.convert_element_type(a_max, _dtype(a))
return lax.clamp(a_min, a, a_max)
def _dtype_info(dtype):
"""Helper function for to get dtype info needed for clipping."""
if onp.issubdtype(dtype, onp.integer):
return onp.iinfo(dtype)
return onp.finfo(dtype)
@_wraps(onp.round)
def round(a, decimals=0):
if onp.issubdtype(_dtype(a), onp.integer):
return a # no-op on integer types
if decimals == 0:
return lax.round(a)
factor = _constant_like(a, 10 ** decimals)
return lax.div(lax.round(lax.mul(a, factor)), factor)
around = round
### Reducers
def _make_reduction(np_fun, op, init_val):
"""Creates reduction function given a binary operation and monoid identity."""
@_wraps(op)
def reduction(a, axis=None, dtype=None, out=None, keepdims=False):
if out is not None:
raise ValueError("reduction does not support `out` argument.")
a = a if isinstance(a, ndarray) else asarray(a)
dims = _reduction_dims(a, axis)
result_dtype = _dtype(np_fun(onp.ones((), dtype=_dtype(a))))
if _dtype(a) != result_dtype:
a = lax.convert_element_type(a, result_dtype)
result = lax.reduce(a, _reduction_init_val(a, init_val), op, dims)
if keepdims:
shape_with_singletons = lax.subvals(shape(a), zip(dims, (1,) * len(dims)))
result = lax.reshape(result, shape_with_singletons)
if dtype and onp.dtype(dtype) != onp.dtype(result_dtype):
result = lax.convert_element_type(result, dtype)
return result
return reduction
def _reduction_dims(a, axis):
if axis is None:
return onp.arange(ndim(a))
elif isinstance(axis, (onp.ndarray, tuple, list)):
return onp.mod(onp.asarray(axis), ndim(a))
elif isinstance(axis, int):
return onp.mod([axis], ndim(a))
else:
raise TypeError("Unexpected type of axis argument: {}".format(type(axis)))
def _reduction_init_val(a, init_val):
a_dtype = xla_bridge.canonicalize_dtype(_dtype(a))
try:
return onp.array(init_val, dtype=a_dtype)
except OverflowError:
assert onp.issubdtype(a_dtype, onp.integer)
sign, iinfo = onp.sign(init_val), onp.iinfo(a_dtype)
return onp.array(iinfo.min if sign < 0 else iinfo.max, dtype=a_dtype)
sum = _make_reduction(onp.sum, lax.add, 0)
prod = _make_reduction(onp.prod, lax.mul, 1)
max = _make_reduction(onp.max, lax.max, -onp.inf)
min = _make_reduction(onp.min, lax.min, onp.inf)
all = _make_reduction(onp.all, logical_and, True)
any = _make_reduction(onp.any, logical_or, False)
@_wraps(onp.mean)
def mean(a, axis=None, keepdims=False):
if axis is None:
normalizer = size(a)
else:
normalizer = onp.prod(onp.take(shape(a), axis))
if onp.issubdtype(_dtype(a), onp.bool_):
a = lax.convert_element_type(a, onp.int32)
return true_divide(sum(a, axis, keepdims=keepdims),
_constant_like(a, normalizer))
@_wraps(onp.var)
def var(a, axis=None, keepdims=False, ddof=0):
if ddof != 0:
raise NotImplementedError("Only implemented for ddof=0.")
centered = subtract(a, mean(a, axis, keepdims=True))
if iscomplexobj(centered):
centered = lax.abs(centered)
return mean(lax.mul(centered, centered), axis, keepdims=keepdims)
@_wraps(onp.std)
def std(a, axis=None, keepdims=False, ddof=0):
return sqrt(var(a, axis, keepdims, ddof))
@_wraps(onp.allclose)
def allclose(a, b, rtol=1e-05, atol=1e-08):
return all(isclose(a, b, rtol, atol))
### Array-creation functions
arange = onp.arange
eye = onp.eye
@_wraps(onp.stack)
def stack(arrays):
if not arrays:
raise ValueError("Need at least one array to stack.")
new_arrays = [reshape(x, (-1,) + onp.shape(x)) for x in arrays]
return reshape(concatenate(new_arrays), (len(arrays),) + arrays[0].shape)
@_wraps(onp.concatenate)
def concatenate(arrays, axis=0):
if not arrays:
raise ValueError("Need at least one array to concatenate.")
return lax.concatenate(_promote_dtypes(*arrays), axis % ndim(arrays[0]))
@_wraps(onp.vstack)
def vstack(tup):
return concatenate([atleast_2d(m) for m in tup], axis=0)
row_stack = vstack
@_wraps(onp.hstack)
def hstack(tup):
arrs = [atleast_1d(m) for m in tup]
if arrs[0].ndim == 1:
return concatenate(arrs, 0)
return concatenate(arrs, 1)
@_wraps(onp.column_stack)
def column_stack(tup):
arrays = []
for v in tup:
arr = array(v)
if arr.ndim < 2:
arr = arr.reshape((-1, 1))
arrays.append(arr)
return concatenate(arrays, 1)
@_wraps(onp.atleast_1d)
def atleast_1d(*arys):
if len(arys) == 1:
arr = array(arys[0])
return arr if arr.ndim >= 1 else arr.reshape(-1)
else:
return [atleast_1d(arr) for arr in arys]
@_wraps(onp.atleast_2d)
def atleast_2d(*arys):
if len(arys) == 1:
arr = array(arys[0])
return arr if arr.ndim >= 2 else arr.reshape((1, -1))
else:
return [atleast_2d(arr) for arr in arys]
# TODO(mattjj): can this be simplified?
@_wraps(onp.array)
def array(object, dtype=None, copy=True, order="K", ndmin=0):
del copy # Unused.
if ndmin != 0 or order != "K":
raise NotImplementedError("Only implemented for order='K', ndmin=0.")
if hasattr(object, '__asarray__'):
return object.__asarray__(dtype)
elif isinstance(object, ndarray):
if dtype and _dtype(object) != dtype:
return lax.convert_element_type(object, dtype)
else:
return object
elif isinstance(object, (list, tuple)):
if object:
subarrays = [expand_dims(array(elt, dtype=dtype), 0) for elt in object]
return concatenate(subarrays)
else:
return onp.array([], dtype)
elif isscalar(object):
out = lax.reshape(object, ())
if dtype and _dtype(out) != dtype:
return lax.convert_element_type(out, dtype)
else:
return out
else:
raise TypeError("Unexpected input type for array: {}".format(type(object)))
asarray = array
@_wraps(onp.zeros_like)
def zeros_like(x, dtype=None):
return zeros(_shape(x), dtype or _dtype(x))
@_wraps(onp.ones_like)
def ones_like(x, dtype=None):
return ones(_shape(x), dtype or _dtype(x))
@_wraps(onp.full)
def full(shape, fill_value, dtype=None):
if dtype:
fill_value = lax.convert_element_type(fill_value, dtype)
return lax.broadcast(fill_value, tuple(shape))
@_wraps(onp.zeros)
def zeros(shape, dtype=onp.dtype("float64")):
shape = (shape,) if onp.isscalar(shape) else shape
dtype = xla_bridge.canonicalize_dtype(dtype)
return onp.broadcast_to(onp.zeros((), dtype), tuple(shape))
@_wraps(onp.ones)
def ones(shape, dtype=onp.dtype("float64")):
shape = (shape,) if onp.isscalar(shape) else shape
dtype = xla_bridge.canonicalize_dtype(dtype)
return onp.broadcast_to(onp.ones((), dtype), tuple(shape))
@_wraps(onp.repeat)
def repeat(a, repeats, axis=None):
if not isscalar(repeats):
raise NotImplementedError(
"np.repeat implementation only supports scalar repeats")
if axis is None or isscalar(a):
a = ravel(a)
axis = 0
a_shape = list(shape(a))
num_dims = len(a_shape)
if axis < 0:
axis = axis + num_dims
if axis < 0 or axis >= num_dims:
raise ValueError(
"axis {} is out of bounds for array of dimension {}".format(
axis, num_dims))
# Broadcasts to [..., X, repeats, ...] and reshapes to [..., X * repeats, ...]
broadcast_shape = list(a_shape)
broadcast_shape.insert(axis + 1, repeats)
broadcast_dims = onp.concatenate((onp.arange(0, axis + 1),
onp.arange(axis + 2, num_dims + 1)))
a_shape[axis] *= repeats
return lax.reshape(
lax.broadcast_in_dim(a, broadcast_shape, broadcast_dims),
a_shape)
### Tensor contraction operations
@_wraps(onp.dot)
def dot(a, b): # pylint: disable=missing-docstring
_check_arraylike("dot", a, b)
a, b = _promote_dtypes(a, b)
a_ndim, b_ndim = ndim(a), ndim(b)
if a_ndim == 0 or b_ndim == 0:
return lax.mul(a, b)
if _max(a_ndim, b_ndim) <= 2:
return lax.dot(a, b)
a_reshaped = reshape(a, (-1, shape(a)[-1]))
if _ndim(b) in {1, 2}:
out = lax.dot(a_reshaped, b)
else:
b_reshaped = reshape(moveaxis(b, -2, 0), (shape(b)[-2], -1))
out = lax.dot(a_reshaped, b_reshaped)
return lax.reshape(out, a.shape[:-1] + b.shape[:-2] + b.shape[-2:][1:])
@_wraps(onp.matmul)
def matmul(a, b): # pylint: disable=missing-docstring
_check_arraylike("matmul", a, b)
a_is_vec, b_is_vec = (ndim(a) == 1), (ndim(b) == 1)
a = lax.reshape(a, (1,) + shape(a)) if a_is_vec else a
b = lax.reshape(b, shape(b) + (1,)) if b_is_vec else b
a, b = _promote_dtypes(a, b)
batch_shape = _broadcast_shapes(shape(a)[:-2], shape(b)[:-2])
a = broadcast_to(a, batch_shape + shape(a)[-2:])
b = broadcast_to(b, batch_shape + shape(b)[-2:])
batch_dims = tuple(range(len(batch_shape)))
result = lax.dot_general(a, b, (((ndim(a) - 1,), (ndim(b) - 2,)),
(batch_dims, batch_dims)))
if a_is_vec or b_is_vec:
m, n = shape(result)[-2:]
new_m = () if a_is_vec else (m,)
new_n = () if b_is_vec else (n,)
return lax.reshape(result, batch_shape + new_m + new_n)
else:
return result
@_wraps(onp.vdot)
def vdot(a, b):
if onp.issubdtype(_dtype(a), onp.complexfloating):
a = conj(a)
return dot(a.ravel(), b.ravel())
### Misc
@_wraps(onp.argmax)
def argmax(a, axis=None):
if axis is None:
a = ravel(a)
axis = 0
return _argminmax(max, a, axis)
@_wraps(onp.argmin)
def argmin(a, axis=None):
if axis is None:
a = ravel(a)
axis = 0
return _argminmax(min, a, axis)
# TODO(mattjj): redo this lowering with a call to variadic lax.reduce
def _argminmax(op, a, axis):
shape = [1] * a.ndim
shape[axis] = a.shape[axis]
idxs = onp.arange(a.shape[axis]).reshape(shape)
maxval = onp.iinfo(xla_bridge.canonicalize_dtype(idxs.dtype)).max
mask_idxs = where(lax._eq_meet(a, op(a, axis, keepdims=True)), idxs, maxval)
return min(mask_idxs, axis)
def _not_implemented(fun):
def wrapped(*args, **kwargs):
raise Exception("Numpy function {} not yet implemented".format(fun))
return wrapped
# Build a set of all unimplemented NumPy functions.
# TODO(alexbw): deal with numpy.random
UNIMPLEMENTED_FUNCS = get_module_functions(onp) - set(IMPLEMENTED_FUNCS)
for func in UNIMPLEMENTED_FUNCS:
if func.__name__ not in globals():
globals()[func.__name__] = _not_implemented(func)
### Indexing
def _rewriting_take(arr, idx, axis=0):
"""A function like numpy.take that handles boxes and rewrites to LAX."""
# Handle special indexers: (), Ellipsis, slice(None), and None.
# TODO(mattjj): don't compare empty tuple identity (though works for CPython)
if idx is () or idx is Ellipsis or _is_slice_none(idx): # pylint: disable=literal-comparison
return arr
elif idx is None:
return expand_dims(arr, 0)
# Handle int index
_int = lambda aval: not aval.shape and onp.issubdtype(aval.dtype, onp.integer)
try:
abstract_idx = core.get_aval(idx)
except TypeError:
abstract_idx = None
if isinstance(abstract_idx, ConcreteArray) and _int(abstract_idx):
return lax.index_in_dim(arr, idx, axis, False)
elif isinstance(abstract_idx, ShapedArray) and _int(abstract_idx):
idx = mod(idx, arr.shape[axis])
return lax.dynamic_index_in_dim(arr, idx, axis, False)
# Handle slice index (only static, otherwise an error is raised)
elif isinstance(idx, slice):
if not _all(elt is None or isinstance(core.get_aval(elt), ConcreteArray)
for elt in (idx.start, idx.stop, idx.step)):
msg = ("Array slice indices must have static start/stop/step to be used "
"with Numpy indexing syntax. Try lax.dynamic_slice instead.")
raise IndexError(msg)
else:
start, limit, stride, needs_rev = _static_idx(idx, arr.shape[axis])
result = lax.slice_in_dim(arr, start, limit, stride, axis=axis)
return lax.rev(result, [axis]) if needs_rev else result
# Handle non-advanced tuple indices by recursing once
elif isinstance(idx, tuple) and _all(onp.ndim(elt) == 0 for elt in idx):
canonical_idx = _canonicalize_tuple_index(arr, idx)
result, axis = arr, 0
for elt in (elt for elt in canonical_idx if elt is not None):
result = _rewriting_take(result, elt, axis=axis)
axis += isinstance(elt, slice) # advance axis index if not eliminated
unexpanded_shape_itr = iter(result.shape)
result_shape = tuple(1 if elt is None else next(unexpanded_shape_itr)
for elt in canonical_idx if not isinstance(elt, int))
return lax.reshape(result, result_shape)
# Handle advanced indexing (non-tuple sequence, ndarray of dtype int or bool,
# or a tuple with at least one sequence object).
# https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#advanced-indexing
# https://gist.github.com/seberg/976373b6a2b7c4188591
# Handle integer array indexing *without* ellipsis/slices/nones
# https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#integer-array-indexing
if _is_advanced_int_indexer_without_slices(idx):
if isinstance(idx, list):
if _any(_shape(e) for e in idx):
# At least one sequence element in the index list means broadcasting.
idx = broadcast_arrays(*idx)
else:
# The index list is a flat list of integers.
idx = [lax.concatenate([lax.reshape(e, (1,)) for e in idx], 0)]
else:
# The indexer is just a single integer array.
idx = [idx]
flat_idx = tuple(mod(ravel(x), arr.shape[i]) for i, x in enumerate(idx))
out = lax.index_take(arr, flat_idx, tuple(range(len(idx))))
return lax.reshape(out, idx[0].shape + _shape(arr)[len(idx):])
# Handle integer array indexing *with* ellipsis/slices/nones by recursing once
# https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#combining-advanced-and-basic-indexing
elif _is_advanced_int_indexer(idx):
canonical_idx = _canonicalize_tuple_index(arr, tuple(idx))
idx_noadvanced = [slice(None) if _is_int(e) else e for e in canonical_idx]
arr_sliced = _rewriting_take(arr, tuple(idx_noadvanced))
advanced_pairs = ((e, i) for i, e in enumerate(canonical_idx) if _is_int(e))
idx_advanced, axes = zip(*advanced_pairs)
idx_advanced = broadcast_arrays(*idx_advanced)
flat_idx = tuple(mod(ravel(x), arr_sliced.shape[i])
for i, x in zip(axes, idx_advanced))
out = lax.index_take(arr_sliced, flat_idx, axes)
shape_suffix = tuple(onp.delete(_shape(arr_sliced), axes))
out = lax.reshape(out, idx_advanced[0].shape + shape_suffix)
axes_are_contiguous = onp.all(onp.diff(axes) == 1)
if axes_are_contiguous:
start = axes[0]
naxes = idx_advanced[0].ndim
out = moveaxis(out, list(range(naxes)), list(range(start, start + naxes)))
return out
msg = "Indexing mode not yet supported. Open a feature request!\n{}"
raise IndexError(msg.format(idx))
def _is_slice_none(idx):
"""Return True if idx is equal to slice(None), False otherwise."""
if isinstance(idx, slice):
return idx.start is None and idx.stop is None and idx.step is None
def _is_advanced_int_indexer(idx):
"""Returns True if idx should trigger int array indexing, False otherwise."""
# https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#advanced-indexing
if isinstance(idx, (tuple, list)):
# We assume this check comes *after* the check for non-advanced tuple index,
# and hence we already know at least one element is a sequence
return _all(e is None or e is Ellipsis or isinstance(e, slice) or _is_int(e)
for e in idx)
else:
return _is_int(idx)
def _is_advanced_int_indexer_without_slices(idx):
"""Returns True iff idx is an advanced int idx without slice/ellipsis/none."""
if _is_advanced_int_indexer(idx):
if isinstance(idx, (tuple, list)):
return not _any(e is None or e is Ellipsis or isinstance(e, slice)
for e in idx)
else:
return True
def _is_int(x):
"""Returns True if x is array-like with integer dtype, False otherwise."""
return (isinstance(x, int) and not isinstance(x, bool)
or onp.issubdtype(getattr(x, "dtype", None), onp.integer)
or isinstance(x, (list, tuple)) and _all(_is_int(e) for e in x))
def _canonicalize_tuple_index(arr, idx):
"""Helper to remove Ellipsis and add in the implicit trailing slice(None)."""
len_without_none = _sum(1 for e in idx if e is not None and e is not Ellipsis)
if len_without_none > arr.ndim:
msg = "Too many indices for array: {} non-None/Ellipsis indices for dim {}."
raise IndexError(msg.format(len_without_none, arr.ndim))
ellipses = (i for i, elt in enumerate(idx) if elt is Ellipsis)
ellipsis_index = next(ellipses, None)
if ellipsis_index is not None:
if next(ellipses, None) is not None:
msg = "Multiple ellipses (...) not supported: {}."
raise IndexError(msg.format(list(map(type, idx))))
colons = (slice(None),) * (arr.ndim - len_without_none)
idx = idx[:ellipsis_index] + colons + idx[ellipsis_index + 1:]
elif len_without_none < arr.ndim:
colons = (slice(None),) * (arr.ndim - len_without_none)
idx = tuple(idx) + colons
return idx
def _static_idx(idx, size):
"""Helper function to compute the static slice start/limit/stride values."""
indices = onp.arange(size)[idx] # get shape statically
if not len(indices): # pylint: disable=g-explicit-length-test
return 0, 0, 1, False # sliced to size zero
start, stop_inclusive = indices[0], indices[-1]
step = 1 if idx.step is None else idx.step
if step > 0:
end = _min(stop_inclusive + step, size)
return start, end, step, False
else:
end = _min(start - step, size)
return stop_inclusive, end, -step, True
### add method and operator overloads to arraylike classes
# We add operator overloads to DeviceArray and ShapedArray. These method and
# operator overloads mainly just forward calls to the corresponding lax_numpy
# functions, which can themselves handle instances from any of these classes.
def _swap_args(f):
return lambda x, y: f(y, x)
_operators = {
"astype": lax.convert_element_type,
"getitem": _rewriting_take,
"neg": negative,
"eq": equal,
"ne": not_equal,
"lt": less,
"le": less_equal,
"gt": greater,
"ge": greater_equal,
"abs": abs,
"add": add,
"radd": add,
"sub": subtract,
"rsub": _swap_args(subtract),
"mul": multiply,
"rmul": multiply,
"div": divide,
"rdiv": _swap_args(divide),
"truediv": true_divide,
"rtruediv": _swap_args(true_divide),
"floordiv": floor_divide,
"rfloordiv": _swap_args(floor_divide),
"divmod": divmod,
"rdivmod": _swap_args(divmod),
"mod": mod,
"rmod": _swap_args(mod),
"pow": power,
"rpow": _swap_args(power),
"matmul": matmul,
"rmatmul": _swap_args(matmul),
"and": bitwise_and,
"rand": bitwise_and,
"or": bitwise_or,
"ror": bitwise_or,
"xor": bitwise_xor,
"rxor": bitwise_xor,
"invert": bitwise_not,
"lshift": left_shift,
"rshift": right_shift,
}
# These numpy.ndarray methods are just refs to an equivalent numpy function
_nondiff_methods = ["all", "any", "argmax", "argmin", "argpartition", "argsort",
"nonzero", "searchsorted", "round"]
_diff_methods = ["clip", "compress", "conj", "conjugate", "cumprod", "cumsum",
"diagonal", "dot", "max", "mean", "min", "prod", "ptp",
"ravel", "repeat", "reshape", "sort", "squeeze", "std", "sum",
"swapaxes", "take", "trace", "transpose", "var"]
# Set up operator, method, and property forwarding on Tracer instances containing
# ShapedArray avals by following the forwarding conventions for Tracer.
# Forward operators using a single-underscore-prefix naming convention:
for operator_name, function in _operators.items():
setattr(ShapedArray, "_{}".format(operator_name), staticmethod(function))
# Forward methods and properties using core.aval_method and core.aval_property:
for method_name in _nondiff_methods + _diff_methods:
setattr(ShapedArray, method_name, core.aval_method(globals()[method_name]))
setattr(ShapedArray, "flatten", core.aval_method(ravel))
setattr(ShapedArray, "T", core.aval_property(transpose))
# Forward operators, methods, and properies on DeviceArray to lax_numpy
# functions (with no Tracers involved; this forwarding is direct)
for operator_name, function in _operators.items():
setattr(DeviceArray, "__{}__".format(operator_name), function)
for method_name in _nondiff_methods + _diff_methods:
setattr(DeviceArray, method_name, globals()[method_name])
setattr(DeviceArray, "flatten", ravel)
setattr(DeviceArray, "T", property(transpose))
# Extra methods that are handy
setattr(DeviceArray, "broadcast", lax.broadcast)