rocm_jax/jax/_src/abstract_arrays.py
2024-12-18 19:14:46 -08:00

103 lines
3.6 KiB
Python

# Copyright 2018 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from functools import partial
import numpy as np
from jax._src import core
from jax._src import dtypes
from jax._src import traceback_util
traceback_util.register_exclusion(__file__)
ShapedArray = core.ShapedArray
AbstractToken = core.AbstractToken
abstract_token = core.abstract_token
canonicalize_shape = core.canonicalize_shape
numpy_scalar_types: set[type] = { # pylint: disable=g-bare-generic
dtypes.int4, np.int8, np.int16, np.int32, np.int64,
dtypes.uint4, np.uint8, np.uint16, np.uint32, np.uint64,
np.complex64, np.complex128,
np.bool_, np.longlong, np.intc,
} | {np.dtype(dt).type for dt in dtypes._float_types}
if dtypes.int2 is not None:
assert dtypes.uint2 is not None
numpy_scalar_types.add(dtypes.int2)
numpy_scalar_types.add(dtypes.uint2)
array_types: set[type] = {np.ndarray} | numpy_scalar_types # pylint: disable=g-bare-generic
def masked_array_error(*args, **kwargs):
raise ValueError("numpy masked arrays are not supported as direct inputs to JAX functions. "
"Use arr.filled() to convert the value to a standard numpy array.")
core.pytype_aval_mappings[np.ma.MaskedArray] = masked_array_error
def _make_shaped_array_for_numpy_array(x: np.ndarray) -> ShapedArray:
dtype = x.dtype
dtypes.check_valid_dtype(dtype)
return ShapedArray(x.shape, dtypes.canonicalize_dtype(dtype))
def _numpy_array_abstractify(x: np.ndarray) -> ShapedArray:
dtype = x.dtype
dtypes.check_valid_dtype(dtype)
return ShapedArray(x.shape,
dtypes.canonicalize_dtype(dtype, allow_extended_dtype=True))
core.pytype_aval_mappings[np.ndarray] = _make_shaped_array_for_numpy_array
core.shaped_abstractify_handlers[np.ndarray] = _numpy_array_abstractify
def _make_shaped_array_for_numpy_scalar(x: np.generic) -> ShapedArray:
dtype = np.dtype(x)
dtypes.check_valid_dtype(dtype)
return ShapedArray(np.shape(x), dtypes.canonicalize_dtype(dtype))
def _np_scalar_abstractify(x: np.generic) -> ShapedArray:
dtype = np.dtype(x)
dtypes.check_valid_dtype(dtype)
return ShapedArray(np.shape(x),
dtypes.canonicalize_dtype(dtype, allow_extended_dtype=True))
for t in numpy_scalar_types:
core.pytype_aval_mappings[t] = _make_shaped_array_for_numpy_scalar
core.shaped_abstractify_handlers[t] = _np_scalar_abstractify
core.literalable_types.update(array_types)
def _make_abstract_python_scalar(typ, val):
# Note: all python scalar types are weak except bool, because bool only
# comes in a single width.
return ShapedArray((), dtypes._scalar_type_to_dtype(typ, val),
weak_type=typ is not bool)
def _python_scalar_abstractify(x: int | float | complex | bool) -> ShapedArray:
typ = type(x)
dtype = dtypes._scalar_type_to_dtype(typ, x)
return ShapedArray((), dtype, weak_type=typ in dtypes._weak_types)
for t in dtypes.python_scalar_dtypes:
core.pytype_aval_mappings[t] = partial(_make_abstract_python_scalar, t)
core.shaped_abstractify_handlers[t] = _python_scalar_abstractify
core.literalable_types.update(dtypes.python_scalar_dtypes.keys())