mirror of
https://github.com/ROCm/jax.git
synced 2025-04-15 19:36:06 +00:00

Change flags to use the newer definition style where the flag is read via a typed FlagHolder object returned by the DEFINE_... function. The advantage of doing this is that `flag.value` has a type known to the type checker, rather than reading it as an attr out of a gigantic config dictionary. For jax.config flags, define a typed FlagHolder object that is returned when defining a flag, matching the ABSL API. Move a number of flags into the file that consumes them. There's no reason we're defining every flag in `config.py`. This PR does not change the similar "state" objects in `jax.config`. Changing those is for a future PR. PiperOrigin-RevId: 551604974
700 lines
26 KiB
Python
700 lines
26 KiB
Python
# Copyright 2018 The JAX Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
# Primitive dispatch and jit dispatch.
|
|
from __future__ import annotations
|
|
|
|
import atexit
|
|
from collections.abc import Iterator, Sequence
|
|
import contextlib
|
|
import dataclasses
|
|
from functools import partial
|
|
import itertools
|
|
import time
|
|
from typing import (Any, Callable, Optional, NamedTuple)
|
|
import logging
|
|
import os
|
|
import re
|
|
import threading
|
|
import warnings
|
|
|
|
import numpy as np
|
|
|
|
from jax._src import compilation_cache
|
|
from jax._src import config as jax_config
|
|
from jax._src import core
|
|
from jax._src import dtypes
|
|
from jax._src import linear_util as lu
|
|
from jax._src import api_util
|
|
from jax._src import path
|
|
from jax._src import profiler
|
|
from jax._src import source_info_util
|
|
from jax._src import traceback_util
|
|
from jax._src import util
|
|
from jax._src import op_shardings
|
|
from jax._src import xla_bridge as xb
|
|
from jax._src.config import config
|
|
from jax._src.interpreters import ad
|
|
from jax._src.interpreters import batching
|
|
from jax._src.interpreters import mlir
|
|
from jax._src.interpreters import partial_eval as pe
|
|
from jax._src.interpreters import xla
|
|
from jax._src.interpreters import pxla
|
|
from jax._src.lib.mlir import ir
|
|
from jax._src.lib import xla_client as xc
|
|
from jax._src.monitoring import record_event_duration_secs
|
|
from jax._src.partition_spec import PartitionSpec
|
|
from jax._src.sharding import Sharding
|
|
from jax._src.sharding_impls import (
|
|
PmapSharding, SingleDeviceSharding, NamedSharding, XLACompatibleSharding,
|
|
UNSPECIFIED, GSPMDSharding)
|
|
|
|
|
|
JAXPR_TRACE_EVENT = "/jax/core/compile/jaxpr_trace_duration"
|
|
JAXPR_TO_MLIR_MODULE_EVENT = "/jax/core/compile/jaxpr_to_mlir_module_duration"
|
|
BACKEND_COMPILE_EVENT = "/jax/core/compile/backend_compile_duration"
|
|
|
|
_DUMP_IR_TO = jax_config.DEFINE_string(
|
|
'jax_dump_ir_to', os.getenv('JAX_DUMP_IR_TO', ''),
|
|
help="Path to which the IR that is emitted by JAX as input to the "
|
|
"compiler should be dumped as text files. Optional. If omitted, JAX "
|
|
"will not dump IR.")
|
|
|
|
|
|
traceback_util.register_exclusion(__file__)
|
|
|
|
MYPY = False # Are we currently type checking with mypy?
|
|
|
|
xe = xc._xla
|
|
|
|
Backend = xe.Client
|
|
Device = xc.Device
|
|
|
|
CompileOptions = xc.CompileOptions
|
|
|
|
map, unsafe_map = util.safe_map, map
|
|
zip, unsafe_zip = util.safe_zip, zip
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# This flag is set on exit; no logging should be attempted
|
|
_on_exit = False
|
|
|
|
### op-by-op execution
|
|
|
|
ArgSpec = tuple[core.AbstractValue, Optional[Device]]
|
|
|
|
def arg_spec(x: Any) -> ArgSpec:
|
|
from jax._src import pjit
|
|
|
|
aval = xla.abstractify(x)
|
|
try:
|
|
if isinstance(x.sharding, PmapSharding):
|
|
return aval, None
|
|
return aval, (pjit.to_gspmd_sharding(x.sharding, x.ndim) # type: ignore
|
|
if x._committed else None)
|
|
except:
|
|
return aval, None
|
|
|
|
|
|
@dataclasses.dataclass(frozen=True)
|
|
class OrigShardings:
|
|
shardings: Sequence[GSPMDSharding | None]
|
|
|
|
def __hash__(self):
|
|
return hash(tuple(s for s in self.shardings))
|
|
|
|
def __eq__(self, other):
|
|
if not isinstance(other, OrigShardings):
|
|
return False
|
|
return all(getattr(s, "_original_sharding", s) == getattr(o, "_original_sharding", o)
|
|
for s, o in zip(self.shardings, other.shardings))
|
|
|
|
|
|
def apply_primitive(prim, *args, **params):
|
|
"""Impl rule that compiles and runs a single primitive 'prim' using XLA."""
|
|
from jax._src import pjit
|
|
|
|
try:
|
|
in_avals, in_shardings = util.unzip2([arg_spec(a) for a in args])
|
|
compiled_fun = xla_primitive_callable(
|
|
prim, in_avals, OrigShardings(in_shardings), **params)
|
|
except pxla.DeviceAssignmentMismatchError as e:
|
|
fails, = e.args
|
|
# TODO(yashkatariya): Thread through a signature_fun via every primitive
|
|
# using apply_primitive so that the error message has the right argument
|
|
# name instead of `args[0]`, etc.
|
|
arg_names = api_util._arg_names(prim.impl, args, {}, (), ())
|
|
msg = pjit._device_assignment_mismatch_error(
|
|
prim.name, fails, args, 'jit', arg_names)
|
|
raise ValueError(msg) from None
|
|
|
|
return compiled_fun(*args)
|
|
|
|
|
|
def simple_impl(prim):
|
|
prim.def_impl(partial(apply_primitive, prim))
|
|
|
|
RuntimeToken = Any
|
|
|
|
class RuntimeTokenSet(threading.local):
|
|
tokens: dict[core.Effect, tuple[RuntimeToken, Device]]
|
|
output_tokens: dict[Device, RuntimeToken]
|
|
output_runtime_tokens: dict[Device, RuntimeToken]
|
|
|
|
def __init__(self):
|
|
self.tokens = {}
|
|
# TODO(sharadmv): remove redundant output token dictionary when minimum
|
|
# jaxlib version is bumped to 0.3.16.
|
|
self.output_tokens = {}
|
|
self.output_runtime_tokens = {}
|
|
|
|
def get_token(self, eff: core.Effect, device: Device) -> RuntimeToken:
|
|
s = SingleDeviceSharding(device)
|
|
if eff not in self.tokens:
|
|
inp = np.zeros(0, np.bool_)
|
|
indices = tuple(
|
|
s.addressable_devices_indices_map(inp.shape).values())
|
|
out = pxla.shard_args([device], [indices], [s], [inp])
|
|
self.tokens[eff] = out, device
|
|
elif self.tokens[eff][1] != device:
|
|
(old_token,), _ = self.tokens[eff]
|
|
indices = tuple(
|
|
s.addressable_devices_indices_map((0,)).values())
|
|
out = pxla.shard_args([device], [indices], [s], [old_token])
|
|
self.tokens[eff] = out, device
|
|
return self.tokens[eff][0]
|
|
|
|
def update_token(self, eff: core.Effect, token: RuntimeToken):
|
|
self.tokens[eff] = token, self.tokens[eff][1]
|
|
|
|
def set_output_token(self, device: Device, token: RuntimeToken):
|
|
# We're free to clobber the previous output token because on each
|
|
# device we have a total ordering of computations. Only the token
|
|
# from the latest computation matters. If this weren't the case
|
|
# we'd need to store a set of output tokens.
|
|
self.output_tokens[device] = token
|
|
|
|
def set_output_runtime_token(self, device: Device, token: RuntimeToken):
|
|
# TODO(sharadmv): remove this method when minimum jaxlib version is bumped
|
|
self.output_runtime_tokens[device] = token
|
|
|
|
def clear(self):
|
|
self.tokens = {}
|
|
self.output_tokens = {}
|
|
self.output_runtime_tokens = {}
|
|
|
|
def block_until_ready(self):
|
|
for token, _ in self.tokens.values():
|
|
token[0].block_until_ready()
|
|
for token in self.output_tokens.values():
|
|
token[0].block_until_ready()
|
|
for token in self.output_runtime_tokens.values():
|
|
token.block_until_ready()
|
|
self.clear()
|
|
|
|
runtime_tokens: RuntimeTokenSet = RuntimeTokenSet()
|
|
|
|
@atexit.register
|
|
def wait_for_tokens():
|
|
runtime_tokens.block_until_ready()
|
|
|
|
@util.cache()
|
|
def xla_primitive_callable(prim, in_avals, orig_in_shardings, **params):
|
|
def prim_fun(*args):
|
|
out = prim.bind(*args, **params)
|
|
if prim.multiple_results:
|
|
return out
|
|
else:
|
|
return out,
|
|
donated_invars = (False,) * len(in_avals)
|
|
compiled = _xla_callable_uncached(
|
|
lu.wrap_init(prim_fun), prim.name, donated_invars, False, in_avals,
|
|
orig_in_shardings)
|
|
if not prim.multiple_results:
|
|
return lambda *args, **kw: compiled(*args, **kw)[0]
|
|
else:
|
|
return compiled
|
|
|
|
|
|
def sharded_lowering(fun, name, donated_invars, keep_unused, inline,
|
|
in_avals, in_shardings, lowering_platform: str | None):
|
|
if isinstance(in_shardings, OrigShardings):
|
|
in_shardings = in_shardings.shardings
|
|
|
|
in_shardings = [UNSPECIFIED if i is None else i for i in in_shardings] # type: ignore
|
|
|
|
# Pass in a singleton `UNSPECIFIED` for out_shardings because we don't know
|
|
# the number of output avals at this stage. lower_sharding_computation will
|
|
# apply it to all out_avals.
|
|
return pxla.lower_sharding_computation(
|
|
fun, 'jit', name, in_shardings, UNSPECIFIED, donated_invars,
|
|
tuple(in_avals), keep_unused=keep_unused, inline=inline, always_lower=False,
|
|
devices_from_context=None, lowering_platform=lowering_platform)
|
|
|
|
|
|
def _xla_callable_uncached(fun: lu.WrappedFun, name, donated_invars,
|
|
keep_unused, in_avals, orig_in_shardings):
|
|
computation = sharded_lowering(
|
|
fun, name, donated_invars, keep_unused, True, in_avals, orig_in_shardings,
|
|
lowering_platform=None)
|
|
return computation.compile().unsafe_call
|
|
|
|
|
|
def is_single_device_sharding(sharding) -> bool:
|
|
# Special case PmapSharding here because PmapSharding maps away an axis
|
|
# and needs to be handled separately.test_pjit_single_device_sharding_add
|
|
return len(sharding.device_set) == 1 and not isinstance(sharding, PmapSharding)
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def log_elapsed_time(fmt: str, fun_name: str, event: str | None = None):
|
|
if _on_exit:
|
|
yield
|
|
else:
|
|
log_priority = logging.WARNING if config.jax_log_compiles else logging.DEBUG
|
|
start_time = time.time()
|
|
yield
|
|
elapsed_time = time.time() - start_time
|
|
if logger.isEnabledFor(log_priority):
|
|
logger.log(logging.WARNING, fmt.format(
|
|
fun_name=fun_name, elapsed_time=elapsed_time))
|
|
if event is not None:
|
|
record_event_duration_secs(event, elapsed_time)
|
|
|
|
|
|
def should_tuple_args(num_args: int, platform: str):
|
|
# CPU and GPU do not need tuples as they use host-side data structures that
|
|
# do not have small bounds.
|
|
# TPU only needs a tuple for very long lists
|
|
if platform == "tpu":
|
|
return num_args > 2000
|
|
else:
|
|
return False
|
|
|
|
|
|
def raise_warnings_or_errors_for_jit_of_pmap(nreps, backend, name, jaxpr):
|
|
if nreps > 1:
|
|
warnings.warn(
|
|
f"The jitted function {name} includes a pmap. Using "
|
|
"jit-of-pmap can lead to inefficient data movement, as the outer jit "
|
|
"does not preserve sharded data representations and instead collects "
|
|
"input and output arrays onto a single device. "
|
|
"Consider removing the outer jit unless you know what you're doing. "
|
|
"See https://github.com/google/jax/issues/2926.")
|
|
|
|
if nreps > xb.device_count(backend):
|
|
raise ValueError(
|
|
f"compiling computation `{name}` that requires {nreps} replicas, but "
|
|
f"only {xb.device_count(backend)} XLA devices are available.")
|
|
|
|
if xb.process_count() > 1 and (nreps > 1 or
|
|
jaxpr_has_primitive(jaxpr, "xla_pmap")):
|
|
raise NotImplementedError(
|
|
"jit of multi-host pmap not implemented (and jit-of-pmap can cause "
|
|
"extra data movement anyway, so maybe you don't want it after all).")
|
|
|
|
|
|
def jaxpr_has_primitive(jaxpr, prim_name: str):
|
|
"""Whether there is a primitive given by user anywhere inside a Jaxpr."""
|
|
for eqn in jaxpr.eqns:
|
|
if prim_name in eqn.primitive.name:
|
|
return True
|
|
for subjaxpr in core.subjaxprs(jaxpr):
|
|
if jaxpr_has_primitive(subjaxpr, prim_name):
|
|
return True
|
|
return False
|
|
|
|
|
|
class SourceInfo(NamedTuple):
|
|
source_info: str
|
|
eqn_name: str
|
|
|
|
|
|
def jaxpr_shardings(
|
|
jaxpr) -> Iterator[tuple[XLACompatibleSharding, SourceInfo]]:
|
|
from jax._src import pjit
|
|
from jax.experimental import shard_map
|
|
|
|
for eqn in jaxpr.eqns:
|
|
if eqn.primitive is pjit.sharding_constraint_p:
|
|
source_info = SourceInfo(source_info_util.summarize(eqn.source_info),
|
|
eqn.primitive.name)
|
|
yield (eqn.params['sharding'], source_info)
|
|
elif eqn.primitive is pjit.pjit_p:
|
|
source_info = SourceInfo(source_info_util.summarize(eqn.source_info),
|
|
eqn.primitive.name)
|
|
yield from ((i, source_info) for i in eqn.params['in_shardings'])
|
|
yield from ((o, source_info) for o in eqn.params['out_shardings'])
|
|
elif eqn.primitive is shard_map.shard_map_p:
|
|
source_info = SourceInfo(source_info_util.summarize(eqn.source_info),
|
|
eqn.primitive.name)
|
|
def _names_to_pspec(names):
|
|
ndmin = max(names) + 1 if names else 0
|
|
return PartitionSpec(*(names.get(i) for i in range(ndmin)))
|
|
yield from ((NamedSharding(eqn.params['mesh'], _names_to_pspec(names)), source_info)
|
|
for names in [*eqn.params['in_names'], *eqn.params['out_names']])
|
|
for subjaxpr in core.subjaxprs(jaxpr):
|
|
yield from jaxpr_shardings(subjaxpr)
|
|
|
|
|
|
def jaxpr_has_bints(jaxpr: core.Jaxpr) -> bool:
|
|
return (any(type(v.aval.dtype) is core.bint for v in jaxpr.invars
|
|
if isinstance(v.aval, core.UnshapedArray)) or
|
|
any(_is_bint_axis_size(d)
|
|
for j in itertools.chain([jaxpr], core.subjaxprs(jaxpr))
|
|
for e in j.eqns for v in e.outvars
|
|
if isinstance(v.aval, core.DShapedArray) for d in v.aval.shape))
|
|
|
|
def _is_bint_axis_size(d: core.AxisSize) -> bool:
|
|
if isinstance(d, core.DArray):
|
|
assert not d.shape
|
|
return type(d.dtype) is core.bint
|
|
elif isinstance(d, core.Var):
|
|
return (isinstance(d.aval, core.DShapedArray) and
|
|
type(d.aval.dtype) is core.bint)
|
|
return False
|
|
|
|
def _prune_unused_inputs(
|
|
jaxpr: core.Jaxpr) -> tuple[core.Jaxpr, set[int], set[int]]:
|
|
used_outputs = [True] * len(jaxpr.outvars)
|
|
new_jaxpr, used_consts, used_inputs = pe.dce_jaxpr_consts(jaxpr, used_outputs)
|
|
kept_const_idx = {i for i, b in enumerate(used_consts) if b}
|
|
kept_var_idx = {i for i, b in enumerate(used_inputs) if b}
|
|
return new_jaxpr, kept_const_idx, kept_var_idx
|
|
|
|
|
|
# We can optionally set a Jaxpr rewriter that can be applied just before
|
|
# compilation. This mechanism is used for compiling id_tap, we can
|
|
# remove it once we bring the id_tap implementation into the core.
|
|
outfeed_rewriter: Callable[[core.Jaxpr], core.Jaxpr] | None = None
|
|
def apply_outfeed_rewriter(jaxpr: core.Jaxpr) -> core.Jaxpr:
|
|
if outfeed_rewriter is not None:
|
|
return outfeed_rewriter(jaxpr)
|
|
else:
|
|
return jaxpr
|
|
|
|
|
|
# TODO(mattjj,necula): this duplicates code in core.valid_jaxtype, but one
|
|
# internal user relies on it for duck-typing. must fix downstream user!
|
|
def _valid_jaxtype(arg):
|
|
try:
|
|
xla.abstractify(arg) # faster than core.get_aval
|
|
except TypeError:
|
|
return core.valid_jaxtype(arg)
|
|
else:
|
|
return True
|
|
|
|
def check_arg(arg):
|
|
if not (isinstance(arg, core.Tracer) or _valid_jaxtype(arg)):
|
|
raise TypeError(f"Argument '{arg}' of type {type(arg)} is not a valid "
|
|
"JAX type.")
|
|
|
|
|
|
def jaxpr_replicas(jaxpr) -> int:
|
|
"""The number of replicas needed for a jaxpr.
|
|
|
|
For a eqn, multiply the `axis_size` with the `jaxpr_replicas` of the
|
|
subjaxprs. For a list of eqns, take the maximum number of replicas.
|
|
"""
|
|
if isinstance(jaxpr, core.ClosedJaxpr):
|
|
jaxpr = jaxpr.jaxpr
|
|
return max(unsafe_map(eqn_replicas, jaxpr.eqns), default=1)
|
|
|
|
# TODO(mattjj): this function assumes that only pmap has a parameter named
|
|
# axis_size, and that it corresponds to cross-replica mapping
|
|
def eqn_replicas(eqn):
|
|
call_jaxpr = eqn.params.get("call_jaxpr")
|
|
if call_jaxpr:
|
|
return eqn.params.get('axis_size', 1) * jaxpr_replicas(call_jaxpr)
|
|
elif eqn.primitive in xla.initial_style_primitives:
|
|
return initial_style_primitive_replicas(eqn.params)
|
|
else:
|
|
return 1
|
|
|
|
def initial_style_primitive_replicas(params):
|
|
return max(core.traverse_jaxpr_params(jaxpr_replicas, params).values(), default=1)
|
|
|
|
|
|
def needs_check_special():
|
|
return config.jax_debug_infs or config.jax_debug_nans
|
|
|
|
def check_special(name, bufs):
|
|
if needs_check_special():
|
|
for buf in bufs:
|
|
_check_special(name, buf.dtype, buf)
|
|
|
|
def _check_special(name, dtype, buf):
|
|
if dtypes.issubdtype(dtype, np.inexact):
|
|
if config.jax_debug_nans and np.any(np.isnan(np.asarray(buf))):
|
|
raise FloatingPointError(f"invalid value (nan) encountered in {name}")
|
|
if config.jax_debug_infs and np.any(np.isinf(np.asarray(buf))):
|
|
raise FloatingPointError(f"invalid value (inf) encountered in {name}")
|
|
|
|
|
|
@profiler.annotate_function
|
|
def backend_compile(backend, module: ir.Module, options, host_callbacks):
|
|
# Convert ir.Module to a string representation, unless the
|
|
# back-end expliclity flags the ability to handle a module directly
|
|
# (avoiding the overhead of back and forth conversions)
|
|
if getattr(backend, "needs_str_ir", True):
|
|
built_c = mlir.module_to_bytecode(module)
|
|
else:
|
|
built_c = module
|
|
|
|
# we use a separate function call to ensure that XLA compilation appears
|
|
# separately in Python profiling results
|
|
if host_callbacks:
|
|
return backend.compile(built_c, compile_options=options,
|
|
host_callbacks=host_callbacks)
|
|
# Some backends don't have `host_callbacks` option yet
|
|
# TODO(sharadmv): remove this fallback when all backends allow `compile`
|
|
# to take in `host_callbacks`
|
|
return backend.compile(built_c, compile_options=options)
|
|
|
|
_ir_dump_counter = itertools.count()
|
|
|
|
def _make_string_safe_for_filename(s: str) -> str:
|
|
return re.sub(r'[^\w.)( -]', '', s)
|
|
|
|
def _dump_ir_to_file(name: str, ir: str):
|
|
id = next(_ir_dump_counter)
|
|
name = f"jax_ir{id}_{_make_string_safe_for_filename(name)}.mlir"
|
|
name = path.Path(_DUMP_IR_TO.value) / name
|
|
name.write_text(ir)
|
|
|
|
|
|
def compile_or_get_cached(backend, computation: ir.Module, devices: np.ndarray,
|
|
compile_options, host_callbacks):
|
|
sym_name = computation.operation.attributes['sym_name']
|
|
module_name = ir.StringAttr(sym_name).value
|
|
|
|
if _DUMP_IR_TO.value:
|
|
_dump_ir_to_file(module_name, mlir.module_to_string(computation))
|
|
|
|
# Persistent compilation cache only implemented on TPU and GPU.
|
|
# TODO(skye): add warning when initializing cache on unsupported default platform
|
|
supported_platforms = ["tpu", "gpu"]
|
|
# (b/233850967) CPU caching can be enabled if XLA Runtime is enabled.
|
|
if "--xla_cpu_use_xla_runtime=true" in os.environ.get("XLA_FLAGS", ""):
|
|
supported_platforms.append("cpu")
|
|
use_compilation_cache = (compilation_cache.is_initialized() and
|
|
backend.platform in supported_platforms)
|
|
|
|
if not use_compilation_cache:
|
|
return backend_compile(backend, computation, compile_options,
|
|
host_callbacks)
|
|
|
|
cache_key = compilation_cache.get_cache_key(
|
|
computation, devices, compile_options, backend)
|
|
|
|
executable, compile_time_retrieved = _cache_read(
|
|
module_name, cache_key, compile_options, backend)
|
|
if executable is not None:
|
|
# TODO(b/289098047): Will instrument a metric which uses the 'compile_time'
|
|
# to measure the savings due to the cache hit.
|
|
logger.info("Persistent compilation cache hit for '%s'", module_name)
|
|
return executable
|
|
else:
|
|
start_time = time.monotonic()
|
|
executable = backend_compile(backend, computation,
|
|
compile_options, host_callbacks)
|
|
compile_time = time.monotonic() - start_time
|
|
_cache_write(cache_key, compile_time, module_name, backend, executable,
|
|
host_callbacks)
|
|
return executable
|
|
|
|
|
|
def _cache_read(
|
|
module_name: str, cache_key: str, compile_options, backend
|
|
) -> tuple[xc.LoadedExecutable | None, int | None]:
|
|
"""Looks up the `computation` and it's compilation time in the persistent
|
|
compilation cache repository.
|
|
"""
|
|
try:
|
|
return compilation_cache.get_executable_and_time(
|
|
cache_key, compile_options, backend)
|
|
except Exception as ex:
|
|
if config.jax_raise_persistent_cache_errors:
|
|
raise
|
|
warnings.warn(
|
|
f"Error reading persistent compilation cache entry for "
|
|
f"'{module_name}': {type(ex).__name__}: {ex}")
|
|
return None, None
|
|
|
|
|
|
def _cache_write(cache_key: str,
|
|
compile_time_secs: float,
|
|
module_name: str,
|
|
backend: Backend, executable: xc.LoadedExecutable,
|
|
host_callbacks: list[Any]):
|
|
"""Writes the `serialized_computation` and its compilation time to the
|
|
persistent compilation cache repository.
|
|
"""
|
|
if host_callbacks:
|
|
logger.info(
|
|
"Not writing persistent cache entry for '%s' because it uses host "
|
|
"callbacks (e.g. from jax.debug.print or breakpoint)", module_name)
|
|
return
|
|
|
|
min_compile_time = config.jax_persistent_cache_min_compile_time_secs
|
|
if min_compile_time:
|
|
if compile_time_secs < min_compile_time:
|
|
logger.info(
|
|
"Not writing persistent cache entry for '%s' because it took < %.2f "
|
|
"seconds to compile (%.2fs)", module_name, min_compile_time,
|
|
compile_time_secs)
|
|
return
|
|
else:
|
|
logger.info(
|
|
"'%s' took at least %.2f seconds to compile (%.2fs), writing "
|
|
"persistent cache entry", module_name, min_compile_time,
|
|
compile_time_secs)
|
|
|
|
try:
|
|
compilation_cache.put_executable_and_time(
|
|
cache_key, module_name, executable, backend, int(compile_time_secs))
|
|
except Exception as ex:
|
|
if config.jax_raise_persistent_cache_errors:
|
|
raise
|
|
warnings.warn(
|
|
f"Error writing persistent compilation cache entry for "
|
|
f"'{module_name}': {type(ex).__name__}: {ex}")
|
|
|
|
|
|
# TODO(yashkatariya): Generalize is_compatible_aval (maybe renamed) and use that
|
|
# to check if shardings are compatible with the input.
|
|
def _check_sharding(aval, s):
|
|
from jax._src import pjit
|
|
|
|
if isinstance(s, XLACompatibleSharding) and not isinstance(s, PmapSharding):
|
|
pjit.pjit_check_aval_sharding(
|
|
(s,), (aval,), None, "device_put args", allow_uneven_sharding=False)
|
|
|
|
assert isinstance(aval, core.ShapedArray), aval
|
|
s.shard_shape(aval.shape) # should raise an Error if incompatible
|
|
|
|
|
|
def _put_x(x, s: Sharding, aval: core.AbstractValue, committed: bool):
|
|
result_handler = pxla.global_aval_to_result_handler(aval, s, committed, False)
|
|
map_ = s.devices_indices_map(aval.shape) # type: ignore
|
|
return result_handler(pxla.shard_arg(x, list(map_), list(map_.values()), s))
|
|
|
|
def _override_get_device_assignment(sharding, *args, **kwargs):
|
|
da = sharding._device_assignment
|
|
return xb.get_device_backend(da[0]), da
|
|
|
|
def _identity_fn(x):
|
|
return x
|
|
|
|
def _mcjax_reshard(x, target_sharding):
|
|
from jax._src import api, array
|
|
|
|
inp_sharding = x.sharding
|
|
|
|
if inp_sharding._device_assignment == target_sharding._device_assignment:
|
|
return api.jit(_identity_fn, out_shardings=target_sharding)(x)
|
|
|
|
if inp_sharding.device_set != target_sharding.device_set:
|
|
inp_ids = [d.id for d in inp_sharding._device_assignment]
|
|
inp_plat = inp_sharding._device_assignment[0].platform.upper()
|
|
target_ids = [d.id for d in target_sharding._device_assignment]
|
|
target_plat = target_sharding._device_assignment[0].platform.upper()
|
|
raise ValueError("Input and target sharding should have the same set of "
|
|
f"devices. Got input's device set ids: {inp_ids} on "
|
|
f"platform {inp_plat} and target sharding's device set "
|
|
f"ids: {target_ids} on platform {target_plat}")
|
|
|
|
old_op_sharding = inp_sharding._to_xla_hlo_sharding(x.ndim).to_proto()
|
|
if op_shardings.is_op_sharding_replicated(old_op_sharding):
|
|
new_op_sharding = old_op_sharding
|
|
else:
|
|
permute_order = np.vectorize(target_sharding._device_assignment.index,
|
|
otypes=[int])(inp_sharding._device_assignment)
|
|
new_op_sharding = old_op_sharding.clone()
|
|
new_op_sharding.tile_assignment_devices = np.take(
|
|
old_op_sharding.tile_assignment_devices, permute_order)
|
|
|
|
new_x = array.make_array_from_single_device_arrays(
|
|
x.shape,
|
|
GSPMDSharding(target_sharding._device_assignment, new_op_sharding),
|
|
x._arrays)
|
|
|
|
_orig_get_and_check_device_assignment = pxla._get_and_check_device_assignment
|
|
pxla._get_and_check_device_assignment = partial(
|
|
_override_get_device_assignment, target_sharding)
|
|
try:
|
|
return api.jit(_identity_fn, out_shardings=target_sharding)(new_x)
|
|
finally:
|
|
pxla._get_and_check_device_assignment = _orig_get_and_check_device_assignment
|
|
|
|
|
|
def _device_put_impl(
|
|
x,
|
|
device: Device | Sharding | None = None,
|
|
src: Device | Sharding | None = None):
|
|
from jax._src import array
|
|
try:
|
|
aval = xla.abstractify(x)
|
|
except TypeError as err:
|
|
raise TypeError(
|
|
f"Argument '{x}' of type {type(x)} is not a valid JAX type") from err
|
|
|
|
if isinstance(device, Sharding):
|
|
s = device
|
|
_check_sharding(aval, s)
|
|
if getattr(x, 'sharding', None) == s:
|
|
return x
|
|
if (not s.is_fully_addressable and # type: ignore
|
|
isinstance(x, array.ArrayImpl) and not x.is_fully_addressable):
|
|
# This has to be XLACompatible because _mcjax_reshard will run a
|
|
# XLA computation.
|
|
assert isinstance(s, XLACompatibleSharding)
|
|
return _mcjax_reshard(x, s)
|
|
if not s.is_fully_addressable: # type: ignore
|
|
raise ValueError(
|
|
"device_put's second argument must be a Device or a Sharding which "
|
|
f"represents addressable devices, but got {s}")
|
|
return _put_x(x, s, aval, True)
|
|
|
|
# Only `Device` exists below. `Sharding` instance is handled above.
|
|
if isinstance(x, array.ArrayImpl):
|
|
if not x.is_fully_addressable:
|
|
raise ValueError(
|
|
"device_put's first argument must be a fully addressable array, but "
|
|
f"got value with devices {x.devices()}")
|
|
if device is None:
|
|
return x
|
|
elif is_single_device_sharding(x.sharding):
|
|
return pxla.batched_device_put(aval, SingleDeviceSharding(device), [x],
|
|
[device])
|
|
|
|
sh = SingleDeviceSharding(pxla._get_default_device()
|
|
if device is None else device)
|
|
return _put_x(x, sh, aval, device is not None)
|
|
|
|
|
|
device_put_p = core.Primitive('device_put')
|
|
device_put_p.def_impl(_device_put_impl)
|
|
device_put_p.def_abstract_eval(lambda x, device=None, src=None: x)
|
|
|
|
def device_put_transpose_rule(ct, _, device, src):
|
|
return [device_put_p.bind(ct, device=src, src=device)]
|
|
ad.deflinear2(device_put_p, device_put_transpose_rule)
|
|
batching.defvectorized(device_put_p)
|
|
|
|
def _device_put_lowering(ctx, x, *, device, src):
|
|
return [x]
|
|
mlir.register_lowering(device_put_p, _device_put_lowering)
|