mirror of
https://github.com/ROCm/jax.git
synced 2025-04-17 20:36:05 +00:00

These are the methods that are only valid for actual materialized arrays (i.e. not Tracers) In order to simplify the experience for users, we want to maintain only a single jax.Array type, so we define all methods here and raise explicit errors on Tracer instances.
211 lines
8.6 KiB
Python
211 lines
8.6 KiB
Python
# Copyright 2022 The JAX Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import abc
|
|
from typing import Any, List, Optional, Sequence, Tuple, Union
|
|
import numpy as np
|
|
|
|
from jax._src.sharding import Sharding
|
|
from jax._src.array import Device, Shard
|
|
from jax._src.typing import ArrayLike
|
|
|
|
# TODO: alias this to xla_client.Traceback
|
|
Traceback = Any
|
|
|
|
|
|
class Array(abc.ABC):
|
|
dtype: np.dtype
|
|
ndim: int
|
|
size: int
|
|
itemsize: int
|
|
aval: Any
|
|
|
|
@property
|
|
def shape(self) -> Tuple[int, ...]: ...
|
|
|
|
@property
|
|
def sharding(self) -> Sharding: ...
|
|
|
|
@property
|
|
def addressable_shards(self) -> Sequence[Shard]: ...
|
|
|
|
def __init__(self, shape, dtype=None, buffer=None, offset=0, strides=None,
|
|
order=None):
|
|
raise TypeError("jax.numpy.ndarray() should not be instantiated explicitly."
|
|
" Use jax.numpy.array, or jax.numpy.zeros instead.")
|
|
|
|
def __getitem__(self, key, indices_are_sorted=False,
|
|
unique_indices=False) -> Array: ...
|
|
def __setitem__(self, key, value) -> None: ...
|
|
def __len__(self) -> int: ...
|
|
def __iter__(self) -> Any: ...
|
|
def __reversed__(self) -> Any: ...
|
|
def __round__(self, ndigits=None) -> Array: ...
|
|
|
|
# Comparisons
|
|
|
|
# these return bool for object, so ignore override errors.
|
|
def __lt__(self, other) -> Array: ... # type: ignore[override]
|
|
def __le__(self, other) -> Array: ... # type: ignore[override]
|
|
def __eq__(self, other) -> Array: ... # type: ignore[override]
|
|
def __ne__(self, other) -> Array: ... # type: ignore[override]
|
|
def __gt__(self, other) -> Array: ... # type: ignore[override]
|
|
def __ge__(self, other) -> Array: ... # type: ignore[override]
|
|
|
|
# Unary arithmetic
|
|
|
|
def __neg__(self) -> Array: ...
|
|
def __pos__(self) -> Array: ...
|
|
def __abs__(self) -> Array: ...
|
|
def __invert__(self) -> Array: ...
|
|
|
|
# Binary arithmetic
|
|
|
|
def __add__(self, other) -> Array: ...
|
|
def __sub__(self, other) -> Array: ...
|
|
def __mul__(self, other) -> Array: ...
|
|
def __matmul__(self, other) -> Array: ...
|
|
def __truediv__(self, other) -> Array: ...
|
|
def __floordiv__(self, other) -> Array: ...
|
|
def __mod__(self, other) -> Array: ...
|
|
def __divmod__(self, other) -> Array: ...
|
|
def __pow__(self, other) -> Array: ...
|
|
def __lshift__(self, other) -> Array: ...
|
|
def __rshift__(self, other) -> Array: ...
|
|
def __and__(self, other) -> Array: ...
|
|
def __xor__(self, other) -> Array: ...
|
|
def __or__(self, other) -> Array: ...
|
|
|
|
def __radd__(self, other) -> Array: ...
|
|
def __rsub__(self, other) -> Array: ...
|
|
def __rmul__(self, other) -> Array: ...
|
|
def __rmatmul__(self, other) -> Array: ...
|
|
def __rtruediv__(self, other) -> Array: ...
|
|
def __rfloordiv__(self, other) -> Array: ...
|
|
def __rmod__(self, other) -> Array: ...
|
|
def __rdivmod__(self, other) -> Array: ...
|
|
def __rpow__(self, other) -> Array: ...
|
|
def __rlshift__(self, other) -> Array: ...
|
|
def __rrshift__(self, other) -> Array: ...
|
|
def __rand__(self, other) -> Array: ...
|
|
def __rxor__(self, other) -> Array: ...
|
|
def __ror__(self, other) -> Array: ...
|
|
|
|
def __bool__(self) -> bool: ...
|
|
def __complex__(self) -> complex: ...
|
|
def __int__(self) -> int: ...
|
|
def __float__(self) -> float: ...
|
|
def __index__(self) -> int: ...
|
|
|
|
# np.ndarray methods:
|
|
def all(self, axis: Optional[Union[int, Tuple[int, ...]]] = None, out=None,
|
|
keepdims=None) -> Array: ...
|
|
def any(self, axis: Optional[Union[int, Tuple[int, ...]]] = None, out=None,
|
|
keepdims=None) -> Array: ...
|
|
def argmax(self, axis: Optional[int] = None, out=None, keepdims=None) -> Array: ...
|
|
def argmin(self, axis: Optional[int] = None, out=None, keepdims=None) -> Array: ...
|
|
def argpartition(self, kth, axis=-1, kind='introselect', order=None) -> Array: ...
|
|
def argsort(self, axis: Optional[int] = -1, kind='quicksort', order=None) -> Array: ...
|
|
def astype(self, dtype) -> Array: ...
|
|
def broadcast(self, sizes: Sequence[int]) -> Array: ...
|
|
def broadcast_in_dim(self, shape: Sequence[Union[int, Any]],
|
|
broadcast_dimensions: Sequence[int]) -> Array: ...
|
|
def choose(self, choices, out=None, mode='raise') -> Array: ...
|
|
def clip(self, min=None, max=None, out=None) -> Array: ...
|
|
def compress(self, condition, axis: Optional[int] = None, out=None) -> Array: ...
|
|
def conj(self) -> Array: ...
|
|
def conjugate(self) -> Array: ...
|
|
def copy(self) -> Array: ...
|
|
def cumprod(self, axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
|
dtype=None, out=None) -> Array: ...
|
|
def cumsum(self, axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
|
dtype=None, out=None) -> Array: ...
|
|
def diagonal(self, offset=0, axis1: int = 0, axis2: int = 1) -> Array: ...
|
|
def dot(self, b, *, precision=None) -> Array: ...
|
|
def flatten(self) -> Array: ...
|
|
@property
|
|
def imag(self) -> Array: ...
|
|
def item(self, *args) -> Any: ...
|
|
def max(self, axis: Optional[Union[int, Tuple[int, ...]]] = None, out=None,
|
|
keepdims=None, initial=None, where=None) -> Array: ...
|
|
def mean(self, axis: Optional[Union[int, Tuple[int, ...]]] = None, dtype=None,
|
|
out=None, keepdims=False, *, where=None,) -> Array: ...
|
|
def min(self, axis: Optional[Union[int, Tuple[int, ...]]] = None, out=None,
|
|
keepdims=None, initial=None, where=None) -> Array: ...
|
|
@property
|
|
def nbytes(self) -> int: ...
|
|
def nonzero(self, *, size=None, fill_value=None) -> Array: ...
|
|
def prod(self, axis: Optional[Union[int, Tuple[int, ...]]] = None, dtype=None,
|
|
out=None, keepdims=None, initial=None, where=None) -> Array: ...
|
|
def ptp(self, axis: Optional[Union[int, Tuple[int, ...]]] = None, out=None,
|
|
keepdims=False,) -> Array: ...
|
|
def ravel(self, order='C') -> Array: ...
|
|
@property
|
|
def real(self) -> Array: ...
|
|
def repeat(self, repeats, axis: Optional[int] = None, *,
|
|
total_repeat_length=None) -> Array: ...
|
|
def reshape(self, *args, order='C') -> Array: ...
|
|
def round(self, decimals=0, out=None) -> Array: ...
|
|
def searchsorted(self, v, side='left', sorter=None) -> Array: ...
|
|
def sort(self, axis: Optional[int] = -1, kind='quicksort', order=None) -> Array: ...
|
|
def split(self, indices_or_sections: ArrayLike, axis: int = 0) -> List[Array]: ...
|
|
def squeeze(self, axis: Optional[Union[int, Tuple[int, ...]]] = None) -> Array: ...
|
|
def std(self, axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
|
dtype=None, out=None, ddof=0, keepdims=False, *, where=None) -> Array: ...
|
|
def sum(self, axis: Optional[Union[int, Tuple[int, ...]]] = None, dtype=None,
|
|
out=None, keepdims=None, initial=None, where=None) -> Array: ...
|
|
def swapaxes(self, axis1: int, axis2: int) -> Array: ...
|
|
def take(self, indices, axis: Optional[int] = None, out=None,
|
|
mode=None) -> Array: ...
|
|
def tobytes(self, order='C') -> bytes: ...
|
|
def tolist(self) -> List[Any]: ...
|
|
def trace(self, offset=0, axis1: int = 0, axis2: int = 1, dtype=None,
|
|
out=None) -> Array: ...
|
|
def transpose(self, *args) -> Array: ...
|
|
@property
|
|
def T(self) -> Array: ...
|
|
def var(self, axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
|
dtype=None, out=None, ddof=0, keepdims=False, *, where=None) -> Array: ...
|
|
def view(self, dtype=None, type=None) -> Array: ...
|
|
|
|
# Even though we don't always support the NumPy array protocol, e.g., for
|
|
# tracer types, for type checking purposes we must declare support so we
|
|
# implement the NumPy ArrayLike protocol.
|
|
def __array__(self) -> np.ndarray: ...
|
|
def __dlpack__(self) -> Any: ...
|
|
|
|
# JAX extensions
|
|
@property
|
|
def at(self) -> Any: ...
|
|
@property
|
|
def weak_type(self) -> bool: ...
|
|
|
|
# Methods defined on ArrayImpl, but not on Tracers
|
|
def addressable_data(self, index: int) -> Array: ...
|
|
def block_until_ready(self) -> Array: ...
|
|
def copy_to_host_async(self) -> None: ...
|
|
def delete(self) -> None: ...
|
|
def device(self) -> Device: ...
|
|
def devices(self) -> List[Device]: ...
|
|
@property
|
|
def global_shards(self) -> Sequence[Shard]: ...
|
|
def is_deleted(self) -> bool: ...
|
|
@property
|
|
def is_fully_addressable(self) -> bool: ...
|
|
@property
|
|
def is_fully_replicated(self) -> bool: ...
|
|
def on_device_size_in_bytes(self) -> int: ...
|
|
@property
|
|
def traceback(self) -> Traceback: ...
|
|
def unsafe_buffer_pointer(self) -> int: ...
|