mirror of
https://github.com/ROCm/jax.git
synced 2025-04-16 20:06:05 +00:00

In presence of dynamic shapes the ThreeFry2x32Descriptor will contain the value n=-1, and the actual desired output length will be passed as an additional operand. If the shape is static then the length will be passed as part of the descriptor. PiperOrigin-RevId: 497945778
88 lines
2.7 KiB
Python
88 lines
2.7 KiB
Python
# Copyright 2019 The JAX Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import functools
|
|
from functools import partial
|
|
import itertools
|
|
import operator
|
|
from typing import Optional, Union
|
|
|
|
import jaxlib.mlir.ir as ir
|
|
|
|
from jaxlib import xla_client
|
|
|
|
from .hlo_helpers import custom_call
|
|
|
|
try:
|
|
from .cuda import _prng as _cuda_prng
|
|
for _name, _value in _cuda_prng.registrations().items():
|
|
xla_client.register_custom_call_target(_name, _value, platform="CUDA")
|
|
except ImportError:
|
|
_cuda_prng = None
|
|
|
|
try:
|
|
from .rocm import _prng as _hip_prng
|
|
for _name, _value in _hip_prng.registrations().items():
|
|
xla_client.register_custom_call_target(_name, _value, platform="ROCM")
|
|
except ImportError:
|
|
_hip_prng = None
|
|
|
|
_prod = lambda xs: functools.reduce(operator.mul, xs, 1)
|
|
|
|
|
|
def _threefry2x32_lowering(prng, platform, keys, data,
|
|
length: Optional[Union[int, ir.Value]] = None):
|
|
"""ThreeFry2x32 kernel for GPU."""
|
|
assert len(keys) == 2, keys
|
|
assert len(data) == 2, data
|
|
assert (ir.RankedTensorType(keys[0].type).element_type ==
|
|
ir.IntegerType.get_unsigned(32)), keys[0].type
|
|
|
|
typ = keys[0].type
|
|
dims = ir.RankedTensorType(typ).shape
|
|
|
|
for x in itertools.chain(keys, data):
|
|
assert x.type == typ, (x.type, typ)
|
|
ndims = len(dims)
|
|
layout = tuple(range(ndims - 1, -1, -1))
|
|
operand_layouts = [layout] * 4
|
|
operands = [keys[0], keys[1], data[0], data[1]]
|
|
|
|
if length is None:
|
|
length = _prod(dims)
|
|
|
|
if isinstance(length, int):
|
|
opaque = prng.threefry2x32_descriptor(length)
|
|
else:
|
|
opaque = prng.threefry2x32_descriptor(-1)
|
|
assert (ir.RankedTensorType(length.type).element_type ==
|
|
ir.IntegerType.get_signless(64)), length
|
|
assert (ir.RankedTensorType(length.type).shape ==
|
|
[1]), (length, ir.RankedTensorType(length.type).shape)
|
|
operands.append(length)
|
|
operand_layouts.append((0,))
|
|
|
|
return custom_call(
|
|
f"{platform}_threefry2x32",
|
|
[typ, typ],
|
|
operands,
|
|
backend_config=opaque,
|
|
operand_layouts=operand_layouts,
|
|
result_layouts=[layout] * 2)
|
|
|
|
|
|
cuda_threefry2x32 = partial(_threefry2x32_lowering, _cuda_prng, "cu")
|
|
rocm_threefry2x32 = partial(_threefry2x32_lowering, _hip_prng, "hip")
|