mirror of
https://github.com/ROCm/jax.git
synced 2025-04-16 03:46:06 +00:00
97 lines
3.8 KiB
Python
97 lines
3.8 KiB
Python
# Copyright 2018 The JAX Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import annotations
|
|
|
|
from typing import overload, Literal
|
|
|
|
import jax
|
|
from jax import lax
|
|
from jax import numpy as jnp
|
|
from jax._src.numpy.reductions import _reduction_dims, Axis
|
|
from jax._src.numpy.util import promote_args_inexact
|
|
from jax._src.typing import Array, ArrayLike
|
|
import numpy as np
|
|
|
|
# The definition of logsumexp is shared between jax.nn and jax.scipy, and
|
|
# although it matches scipy's definition, we put it here to avoid having
|
|
# unnecessary scipy dependencies.
|
|
|
|
@overload
|
|
def logsumexp(a: ArrayLike, axis: Axis = None, b: ArrayLike | None = None,
|
|
keepdims: bool = False, return_sign: Literal[False] = False) -> Array: ...
|
|
|
|
@overload
|
|
def logsumexp(a: ArrayLike, axis: Axis = None, b: ArrayLike | None = None,
|
|
keepdims: bool = False, *, return_sign: Literal[True]) -> tuple[Array, Array]: ...
|
|
|
|
@overload
|
|
def logsumexp(a: ArrayLike, axis: Axis = None, b: ArrayLike | None = None,
|
|
keepdims: bool = False, return_sign: bool = False) -> Array | tuple[Array, Array]: ...
|
|
|
|
def logsumexp(a: ArrayLike, axis: Axis = None, b: ArrayLike | None = None,
|
|
keepdims: bool = False, return_sign: bool = False) -> Array | tuple[Array, Array]:
|
|
r"""Log-sum-exp reduction.
|
|
|
|
Computes
|
|
|
|
.. math::
|
|
\mathrm{logsumexp}(a) = \mathrm{log} \sum_j b \cdot \mathrm{exp}(a_{ij})
|
|
|
|
where the :math:`j` indices range over one or more dimensions to be reduced.
|
|
|
|
Args:
|
|
a: the input array
|
|
axis: the axis or axes over which to reduce. May be either ``None``, an
|
|
int, or a tuple of ints.
|
|
b: scaling factors for :math:`\mathrm{exp}(a)`. Must be broadcastable to the
|
|
shape of `a`.
|
|
keepdims: If ``True``, the axes that are reduced are left in the output as
|
|
dimensions of size 1.
|
|
return_sign: If ``True``, the output will be a ``(result, sign)`` pair,
|
|
where ``sign`` is the sign of the sums and ``result`` contains the
|
|
logarithms of their absolute values. If ``False`` only ``result`` is
|
|
returned and it will contain NaN values if the sums are negative.
|
|
|
|
Returns:
|
|
Either an array ``result`` or a pair of arrays ``(result, sign)``, depending
|
|
on the value of the ``return_sign`` argument.
|
|
"""
|
|
if b is not None:
|
|
a_arr, b_arr = promote_args_inexact("logsumexp", a, b)
|
|
a_arr = jnp.where(b_arr != 0, a_arr, -jnp.inf)
|
|
else:
|
|
a_arr, = promote_args_inexact("logsumexp", a)
|
|
b_arr = a_arr # for type checking
|
|
pos_dims, dims = _reduction_dims(a_arr, axis)
|
|
amax = jnp.max(a_arr.real, axis=dims, keepdims=keepdims)
|
|
amax = lax.stop_gradient(lax.select(jnp.isfinite(amax), amax, lax.full_like(amax, 0)))
|
|
amax_with_dims = amax if keepdims else lax.expand_dims(amax, pos_dims)
|
|
|
|
exp_a = lax.exp(lax.sub(a_arr, amax_with_dims.astype(a_arr.dtype)))
|
|
if b is not None:
|
|
exp_a = lax.mul(exp_a, b_arr)
|
|
sumexp = exp_a.sum(axis=dims, keepdims=keepdims)
|
|
sign = lax.sign(sumexp)
|
|
if return_sign or not np.issubdtype(a_arr.dtype, np.complexfloating):
|
|
sumexp = abs(sumexp)
|
|
out = lax.add(lax.log(sumexp), amax.astype(sumexp.dtype))
|
|
|
|
if return_sign:
|
|
return (out, sign)
|
|
if b is not None and not np.issubdtype(out.dtype, np.complexfloating):
|
|
with jax.debug_nans(False):
|
|
out = jnp.where(sign < 0, jnp.array(np.nan, dtype=out.dtype), out)
|
|
return out
|