rocm_jax/jax/_src/lax/svd.py

338 lines
11 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright 2022 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
"""A JIT-compatible library for QDWH-based singular value decomposition.
QDWH is short for QR-based dynamically weighted Halley iteration. The Halley
iteration implemented through QR decmopositions is numerically stable and does
not require solving a linear system involving the iteration matrix or
computing its inversion. This is desirable for multicore and heterogeneous
computing systems.
References:
Nakatsukasa, Yuji, and Nicholas J. Higham.
"Stable and efficient spectral divide and conquer algorithms for the symmetric
eigenvalue decomposition and the SVD." SIAM Journal on Scientific Computing 35,
no. 3 (2013): A1325-A1349.
https://epubs.siam.org/doi/abs/10.1137/120876605
Nakatsukasa, Yuji, Zhaojun Bai, and François Gygi.
"Optimizing Halley's iteration for computing the matrix polar decomposition."
SIAM Journal on Matrix Analysis and Applications 31, no. 5 (2010): 2700-2720.
https://epubs.siam.org/doi/abs/10.1137/090774999
"""
from __future__ import annotations
from collections.abc import Sequence
import functools
import operator
from typing import Any
import jax
from jax import lax
from jax._src import core
import jax.numpy as jnp
@functools.partial(jax.jit, static_argnums=(2, 3, 4))
def _constant_svd(
a: Any,
return_nan: bool,
full_matrices: bool,
compute_uv: bool = True,
subset_by_index: tuple[int, int] | None = None,
) -> Any | Sequence[Any]:
"""SVD on matrix of all zeros."""
m, n = a.shape
k = min(m, n)
if subset_by_index is not None:
k = min(k, subset_by_index[1] - subset_by_index[0])
s = jnp.where(
return_nan,
jnp.full(shape=(k,), fill_value=jnp.nan, dtype=a.real.dtype),
jnp.zeros(shape=(k,), dtype=a.real.dtype),
)
if compute_uv:
fill_value = (
jnp.nan + 1j * jnp.nan
if jnp.issubdtype(a.dtype, jnp.complexfloating)
else jnp.nan
)
if full_matrices:
u = jnp.where(
return_nan,
jnp.full((m, m), fill_value, dtype=a.dtype),
jnp.eye(m, m, dtype=a.dtype),
)
vh = jnp.where(
return_nan,
jnp.full((n, n), fill_value, dtype=a.dtype),
jnp.eye(n, n, dtype=a.dtype),
)
else:
u = jnp.where(
return_nan,
jnp.full((m, k), fill_value, dtype=a.dtype),
jnp.eye(m, k, dtype=a.dtype),
)
vh = jnp.where(
return_nan,
jnp.full((k, n), fill_value, dtype=a.dtype),
jnp.eye(k, n, dtype=a.dtype),
)
return (u, s, vh)
else:
return s
@functools.partial(jax.jit, static_argnums=(1, 2, 3, 4))
def _svd_tall_and_square_input(
a: Any,
hermitian: bool,
compute_uv: bool,
max_iterations: int,
subset_by_index: tuple[int, int] | None = None,
) -> Any | Sequence[Any]:
"""Singular value decomposition for m x n matrix and m >= n.
Args:
a: A matrix of shape `m x n` with `m >= n`.
hermitian: True if `a` is Hermitian.
compute_uv: Whether to compute also `u` and `v` in addition to `s`.
max_iterations: The predefined maximum number of iterations of QDWH.
Returns:
A 3-tuple (`u`, `s`, `v`), where `u` is a unitary matrix of shape `m x n`,
`s` is vector of length `n` containing the singular values in the descending
order, `v` is a unitary matrix of shape `n x n`, and
`a = (u * s) @ v.T.conj()`. For `compute_uv=False`, only `s` is returned.
"""
u, h, _, _ = lax.linalg.qdwh(a, is_hermitian=hermitian,
max_iterations=max_iterations)
# TODO: Uses `eigvals_only=True` if `compute_uv=False`.
v, s = lax.linalg.eigh(h, subset_by_index=subset_by_index)
# Singular values are non-negative by definition. But eigh could return small
# negative values, so we clamp them to zero.
s = jnp.maximum(s, 0.0)
# Flips the singular values in descending order.
s_out = jnp.flip(s)
if not compute_uv:
return s_out
# Reorders eigenvectors.
v_out = jnp.fliplr(v)
u_out = u @ v_out
# Makes correction if computed `u` from qdwh is not unitary.
# Section 5.5 of Nakatsukasa, Yuji, and Nicholas J. Higham. "Stable and
# efficient spectral divide and conquer algorithms for the symmetric
# eigenvalue decomposition and the SVD." SIAM Journal on Scientific Computing
# 35, no. 3 (2013): A1325-A1349.
def correct_rank_deficiency(u_out):
u_out, r = lax.linalg.qr(u_out, full_matrices=False)
u_out = u_out @ jnp.diag(lax.sign(jnp.diag(r)))
return u_out
eps = float(jnp.finfo(a.dtype).eps)
u_out = lax.cond(s[0] < a.shape[1] * eps * s_out[0],
correct_rank_deficiency,
lambda u_out: u_out,
operand=(u_out))
return (u_out, s_out, v_out)
@functools.partial(jax.jit, static_argnums=(1, 2, 3, 4, 5))
def _qdwh_svd(
a: Any,
full_matrices: bool,
compute_uv: bool = True,
hermitian: bool = False,
max_iterations: int = 10,
subset_by_index: tuple[int, int] | None = None,
) -> Any | Sequence[Any]:
"""Singular value decomposition.
Args:
a: A matrix of shape `m x n`.
full_matrices: If True, `u` and `vh` have the shapes `m x m` and `n x n`,
respectively. If False, the shapes are `m x k` and `k x n`, respectively,
where `k = min(m, n)`.
compute_uv: Whether to compute also `u` and `v` in addition to `s`.
hermitian: True if `a` is Hermitian.
max_iterations: The predefined maximum number of iterations of QDWH.
Returns:
A 3-tuple (`u`, `s`, `vh`), where `u` and `vh` are unitary matrices,
`s` is vector of length `k` containing the singular values in the
non-increasing order, and `k = min(m, n)`. The shapes of `u` and `vh`
depend on the value of `full_matrices`. For `compute_uv=False`,
only `s` is returned.
"""
m, n = a.shape
is_flip = False
if m < n:
a = a.T.conj()
m, n = a.shape
is_flip = True
reduce_to_square = False
if full_matrices:
q_full, a_full = lax.linalg.qr(a, full_matrices=True)
q = q_full[:, :n]
u_out_null = q_full[:, n:]
a = a_full[:n, :]
reduce_to_square = True
else:
# The constant `1.15` comes from Yuji Nakatsukasa's implementation
# https://www.mathworks.com/matlabcentral/fileexchange/36830-symmetric-eigenvalue-decomposition-and-the-svd?s_tid=FX_rc3_behav
if m > 1.15 * n:
q, a = lax.linalg.qr(a, full_matrices=False)
reduce_to_square = True
if not compute_uv:
with jax.default_matmul_precision('float32'):
return _svd_tall_and_square_input(
a, hermitian, compute_uv, max_iterations, subset_by_index
)
with jax.default_matmul_precision('float32'):
u_out, s_out, v_out = _svd_tall_and_square_input(
a, hermitian, compute_uv, max_iterations, subset_by_index
)
if reduce_to_square:
u_out = q @ u_out
if full_matrices:
u_out = jnp.hstack((u_out, u_out_null))
if is_flip:
return(v_out, s_out, u_out.T.conj())
return (u_out, s_out, v_out.T.conj())
@functools.partial(jax.jit, static_argnums=(1, 2, 3, 4, 5))
def svd(
a: Any,
full_matrices: bool,
compute_uv: bool = True,
hermitian: bool = False,
max_iterations: int = 10,
subset_by_index: tuple[int, int] | None = None,
) -> Any | Sequence[Any]:
"""Singular value decomposition.
Args:
a: A matrix of shape `m x n`.
full_matrices: If True, `u` and `vh` have the shapes `m x m` and `n x n`,
respectively. If False, the shapes are `m x k` and `k x n`, respectively,
where `k = min(m, n)`.
compute_uv: Whether to compute also `u` and `v` in addition to `s`.
hermitian: True if `a` is Hermitian.
max_iterations: The predefined maximum number of iterations of QDWH.
subset_by_index: Optional 2-tuple [start, end] indicating the range of
indices of singular componenets to compute. For example, if
``subset_by_index`` = [0,2], then ``svd`` computes the two largest
singular values (and their singular vectors if `compute_uv` is true.
Returns:
A 3-tuple (`u`, `s`, `vh`), where `u` and `vh` are unitary matrices,
`s` is vector of length `k` containing the singular values in the
non-increasing order, and `k = min(m, n)`. The shapes of `u` and `vh`
depend on the value of `full_matrices`. For `compute_uv=False`,
only `s` is returned.
"""
full_matrices = core.concrete_or_error(
bool, full_matrices, 'The `full_matrices` argument must be statically '
'specified to use `svd` within JAX transformations.')
compute_uv = core.concrete_or_error(
bool, compute_uv, 'The `compute_uv` argument must be statically '
'specified to use `svd` within JAX transformations.')
hermitian = core.concrete_or_error(
bool,
hermitian,
'The `hermitian` argument must be statically '
'specified to use `svd` within JAX transformations.',
)
max_iterations = core.concrete_or_error(
int,
max_iterations,
'The `max_iterations` argument must be statically '
'specified to use `svd` within JAX transformations.',
)
if subset_by_index is not None:
if len(subset_by_index) != 2:
raise ValueError('subset_by_index must be a tuple of size 2.')
# Make sure subset_by_index is a concrete tuple.
subset_by_index = (
operator.index(subset_by_index[0]),
operator.index(subset_by_index[1]),
)
if subset_by_index[0] >= subset_by_index[1]:
raise ValueError('Got empty index range in subset_by_index.')
if subset_by_index[0] < 0:
raise ValueError('Indices in subset_by_index must be non-negative.')
m, n = a.shape
rank = n if n < m else m
if subset_by_index[1] > rank:
raise ValueError('Index in subset_by_index[1] exceeds matrix size.')
if full_matrices and subset_by_index != (0, rank):
raise ValueError(
'full_matrices and subset_by_index cannot be both be set.'
)
# By convention, eigenvalues are numbered in non-decreasing order, while
# singular values are numbered non-increasing order, so change
# subset_by_index accordingly.
subset_by_index = (rank - subset_by_index[1], rank - subset_by_index[0])
# QDWH algorithm fails at zero-matrix `A` and produces all NaNs, which can
# be seen from a dynamically weighted Halley (DWH) iteration:
# X_{k+1} = X_k(a_k I + b_k {X_k}^H X_k)(I + c_k {X_k}^H X_k)^{1} and
# X_0 = A/alpha, where alpha = ||A||_2, the triplet (a_k, b_k, c_k) are
# weighting parameters, and X_k denotes the k^{th} iterate.
all_zero = jnp.all(a == 0)
non_finite = jnp.logical_not(jnp.all(jnp.isfinite(a)))
return lax.cond(
jnp.logical_or(all_zero, non_finite),
functools.partial(
_constant_svd,
return_nan=non_finite,
full_matrices=full_matrices,
compute_uv=compute_uv,
subset_by_index=subset_by_index,
),
functools.partial(
_qdwh_svd,
full_matrices=full_matrices,
compute_uv=compute_uv,
hermitian=hermitian,
max_iterations=max_iterations,
subset_by_index=subset_by_index,
),
operand=(a),
)