rocm_jax/jax/_src/compiler.py
2024-06-04 13:30:42 -07:00

691 lines
25 KiB
Python

# Copyright 2018 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Interface to the compiler
from __future__ import annotations
from collections.abc import Sequence
import logging
import os
import tempfile
import time
from typing import Any, Optional
import warnings
from jax._src import compilation_cache
from jax._src import config as config
from jax._src import distributed
from jax._src import lib
from jax._src import monitoring
from jax._src import profiler
from jax._src import traceback_util
from jax._src.interpreters import mlir
from jax._src.lib import xla_client as xc
from jax._src.lib.mlir import ir
import numpy as np
_DISABLE_MOST_OPTIMIZATIONS = config.DEFINE_bool(
'jax_disable_most_optimizations',
config.bool_env('JAX_DISABLE_MOST_OPTIMIZATIONS', False),
'Try not to do much optimization work. This can be useful if the cost of '
'optimization is greater than that of running a less-optimized program.')
_COMPILER_DETAILED_LOGGING_MIN_OPS = config.DEFINE_integer(
"jax_compiler_detailed_logging_min_ops",
config.int_env("JAX_COMPILER_DETAILED_LOGGING_MIN_OPS", 10),
help=(
'How big should a module be in MLIR operations before JAX enables '
'detailed compiler logging? The intent of this flag is to suppress '
'detailed logging for small/uninteresting computations.'
),
)
# The special XLA-AutoFDO profile version that indicates that a profile is not
# available and retrieval should not be attempted.
_NO_PROFILE_DONT_RETRIEVE = -1
traceback_util.register_exclusion(__file__)
CompileOptions = xc.CompileOptions
logger = logging.getLogger(__name__)
# Will be monkeypatched with the function that gets the XLA-AutoFDO profile
# version. The default (-1) takes care of errors.
# TODO(b/289098047): consider refactoring this interface.
def get_latest_profile_version(backend: xc.Client) -> int:
del backend
return -1
def _walk_operations(op, k):
k -= 1
if k < 0:
return k
for region in op.regions:
for block in region:
for child_op in block:
k = _walk_operations(child_op, k)
if k < 0:
return k
return k
def use_detailed_logging(module: ir.Module) -> bool:
"""Returns 'true' if detailed logging should be enabled for 'module'."""
bound = _COMPILER_DETAILED_LOGGING_MIN_OPS.value
return _walk_operations(module.operation, bound) < 0
def get_compile_options(
num_replicas: int,
num_partitions: int,
device_assignment=None,
use_spmd_partitioning: bool = True,
use_auto_spmd_partitioning: bool = False,
auto_spmd_partitioning_mesh_shape: list[int] | None = None,
auto_spmd_partitioning_mesh_ids: list[int] | None = None,
env_options_overrides: dict[str, str] | None = None,
fdo_profile: bytes | None = None,
detailed_logging: bool = True,
backend: xc.Client | None = None,
) -> xc.CompileOptions:
"""Returns the compile options to use, as derived from flag values.
Args:
num_replicas: Number of replicas for which to compile.
num_partitions: Number of partitions for which to compile.
device_assignment: Optional ndarray of jax devices indicating the assignment
of logical replicas to physical devices (default inherited from
xla_client.CompileOptions). Must be consistent with `num_replicas` and
`num_partitions`.
use_spmd_partitioning: boolean indicating whether to enable SPMD or MPMD
partitioning in XLA.
use_auto_spmd_partitioning: boolean indicating whether to automatically
generate XLA shardings for SPMD partitioner.
auto_spmd_partitioning_mesh_shape: device mesh shape used to create
auto_spmd_partitioning search space.
auto_spmd_partitioning_mesh_ids: device ids used to create
auto_spmd_partitioning search space.
env_options_overrides: dict of additional options parsed by the compiler
fdo_profile: Optional profile for feedback-directed optimization passed to
XLA.
detailed_logging: Is this an "interesting" computation about which XLA
would be wise to log compilation information?
backend: the client, if available.
"""
compile_options = xc.CompileOptions()
compile_options.num_replicas = num_replicas
compile_options.num_partitions = num_partitions
build_options = compile_options.executable_build_options
build_options.use_spmd_partitioning = use_spmd_partitioning
build_options.use_auto_spmd_partitioning = use_auto_spmd_partitioning
if fdo_profile is not None:
build_options.fdo_profile = fdo_profile
if use_auto_spmd_partitioning:
build_options.auto_spmd_partitioning_mesh_shape = auto_spmd_partitioning_mesh_shape or []
build_options.auto_spmd_partitioning_mesh_ids = auto_spmd_partitioning_mesh_ids or []
if device_assignment is not None:
logger.debug(
'get_compile_options: num_replicas=%s num_partitions=%s device_assignment=%s',
num_replicas, num_partitions, device_assignment)
device_assignment = np.array(device_assignment)
# Allow 1D device assignment if num_partitions is 1.
if (device_assignment.ndim == 1) and (num_partitions == 1):
device_assignment = device_assignment[:, None]
if num_replicas != device_assignment.shape[0]:
msg = 'device_assignment does not match num_replicas: {} vs {}.'
raise ValueError(msg.format(device_assignment, num_replicas))
if num_partitions != device_assignment.shape[1]:
msg = 'device_assignment does not match num_partitions: {} vs {}.'
raise ValueError(msg.format(device_assignment, num_partitions))
if device_assignment.dtype == object:
device_assignment = np.vectorize(lambda d: d.id, otypes=[int])(
device_assignment)
device_assignment = xc.DeviceAssignment.create(device_assignment)
assert device_assignment.replica_count() == num_replicas
assert device_assignment.computation_count() == num_partitions
compile_options.device_assignment = device_assignment
if env_options_overrides is not None:
compile_options.env_option_overrides = list(env_options_overrides.items())
debug_options = compile_options.executable_build_options.debug_options
if lib.cuda_path is not None:
debug_options.xla_gpu_cuda_data_dir = lib.cuda_path
if _DISABLE_MOST_OPTIMIZATIONS.value:
debug_options.xla_backend_optimization_level = 0
debug_options.xla_llvm_disable_expensive_passes = True
debug_options.xla_test_all_input_layouts = False
# XLA-AutoFDO profile version: precedence order is:
# 1. Whatever --jax_xla_profile_version is set to.
# 2. If --jax_xla_profile_version is not set (i.e., 0), call the function
# set in get_latest_profile_version and use the return value if non-zero.
# If the function returns 0, set -1; this is an error.
# -1 indicates that no attempt should be made to retrieve the latest profile
# later on.
jax_xla_profile_version = config.jax_xla_profile_version.value
if jax_xla_profile_version > 0:
compile_options.profile_version = jax_xla_profile_version
logger.debug("get_compile_options XLA-AutoFDO profile: " +
"using JAX XLA profile version %d from flag",
jax_xla_profile_version)
else:
compile_options.profile_version = _NO_PROFILE_DONT_RETRIEVE
if backend is None:
logging.info("get_compile_options: no backend supplied; "
"disabling XLA-AutoFDO profile")
else:
fdo_profile_version = get_latest_profile_version(backend)
if fdo_profile_version != 0:
compile_options.profile_version = fdo_profile_version
logger.debug("get_compile_options XLA-AutoFDO profile: " +
"using XLA-AutoFDO profile version %d",
fdo_profile_version)
else:
logger.error("get_compile_options XLA-AutoFDO profile: " +
"XLA-AutoFDO profile version is 0; this should not happen")
debug_options.xla_detailed_logging = detailed_logging
return compile_options
@profiler.annotate_function
def backend_compile(
backend: xc.Client,
module: ir.Module,
options: xc.CompileOptions,
host_callbacks: Sequence[Any],
) -> xc.LoadedExecutable:
# Convert ir.Module to a string representation, unless the backend
# explicitly flags the ability to handle a module directly (avoiding the
# overhead of back and forth conversions).
# TODO(slebedev): Change the backend.compile() to accept ir.Module.
built_c: Any
if getattr(backend, "needs_str_ir", True):
built_c = mlir.module_to_bytecode(module)
else:
built_c = module
# we use a separate function call to ensure that XLA compilation appears
# separately in Python profiling results
if host_callbacks:
return backend.compile(built_c, compile_options=options,
host_callbacks=host_callbacks)
# Some backends don't have `host_callbacks` option yet
# TODO(sharadmv): remove this fallback when all backends allow `compile`
# to take in `host_callbacks`
return backend.compile(built_c, compile_options=options)
def compile_or_get_cached(
backend: xc.Client,
computation: ir.Module,
devices: np.ndarray,
compile_options: xc.CompileOptions,
host_callbacks: Sequence[Any],
pgle_profiler: profiler.PGLEProfiler | None = None,
) -> xc.LoadedExecutable:
sym_name = computation.operation.attributes['sym_name']
module_name = ir.StringAttr(sym_name).value
if dumped_to := mlir.dump_module_to_file(computation, "compile"):
logging.info("Dumped the module to %s.", dumped_to)
# Persistent compilation cache only implemented on TPU and GPU and the backend
# that supports serialization of executables.
# TODO(skye): add warning when initializing cache on unsupported default platform
supported_platforms = ["tpu", "gpu", "cpu"]
use_compilation_cache = (
config.enable_compilation_cache.value
and getattr(backend, "supports_executable_serialization", True)
and backend.platform in supported_platforms
)
if not use_compilation_cache:
return backend_compile(backend, computation, compile_options,
host_callbacks)
compilation_cache.set_once_cache_used(
lambda: monitoring.record_event(
"/jax/compilation_cache/tasks_using_cache"))
monitoring.record_event('/jax/compilation_cache/compile_requests_use_cache')
try:
cache_key = compilation_cache.get_cache_key(
computation, devices, compile_options, backend)
except xc._xla.XlaRuntimeError as ex:
logger.error("compile_or_get_cached: unable to generate cache key, "
"skipping the cache: %s", ex)
return backend_compile(backend, computation, compile_options,
host_callbacks)
is_multi_process = (
len({device.process_index for device in devices.flatten()}) > 1)
min_device_process_id = (
min(devices.flatten(), key=lambda device: device.id).process_index)
# When PGLE is enabled there might be 3 types of situations:
# 1. PGLE profiled module (the one which was recompiled with FDO profile) is
# in the persistent cache. In this case the module should be returned from
# cache and PGLE should be disabled for this module. Is module is stored in
# the persistent cache under the "pgle_profiled_module_key" which calculated
# with replacing FDO profile with flag which identify that module were PGLE
# profiled.
# 2. PGLE profiled module is not in the persistent cache and the module is
# getting built with an FDO profile. In this case we need to share FDO profile
# with other processes and store the result under the
# "pgle_profiled_module_key" so later in case 1 we will be able to find the
# module.
# 3. PGLE profiled module is not in the persistent cache and the module is
# getting compiled to be PGLEd (FDO profile is empty). In this case we need to
# simply return the non-PGLE profiled module from the persistent cache.
if (config.enable_pgle.value
and config.pgle_profiling_runs.value > 0):
fdo_profile = compile_options.executable_build_options.fdo_profile
compile_options.executable_build_options.fdo_profile = b"pgle profiled"
pgle_profiled_module_key = compilation_cache.get_cache_key(
computation, devices, compile_options, backend)
compile_options.executable_build_options.fdo_profile = fdo_profile
if _is_executable_in_cache(backend, pgle_profiled_module_key):
# Load PGLE profiled module from the persistent cache.
cache_key = pgle_profiled_module_key
if pgle_profiler is not None:
pgle_profiler.disable()
elif fdo_profile is not None and len(fdo_profile) > 0:
# Store module under PGLE profiled module cache key.
cache_key = pgle_profiled_module_key
if is_multi_process and distributed.global_state.client is not None:
compile_options.executable_build_options.fdo_profile = _share_fdo_profiles(
computation, devices, compile_options, backend,
distributed.global_state.client,
min_device_process_id
)
cache_retrieval_start = time.monotonic()
retrieved_executable, retrieved_compile_time = _cache_read(
module_name, cache_key, compile_options, backend)
cache_retrieval_time = time.monotonic() - cache_retrieval_start
if retrieved_executable is not None:
assert retrieved_compile_time is not None
logger.debug("Persistent compilation cache hit for '%s'", module_name)
monitoring.record_event('/jax/compilation_cache/cache_hits')
monitoring.record_event_duration_secs(
'/jax/compilation_cache/compile_time_saved_sec',
retrieved_compile_time - cache_retrieval_time)
monitoring.record_event_duration_secs(
"/jax/compilation_cache/cache_retrieval_time_sec", cache_retrieval_time)
return retrieved_executable
elif (
config.share_binary_between_hosts.value
and is_multi_process
and distributed.global_state.client is not None
# Host callbacks are currently baked into the HLO module so we cant share
# them.
and len(host_callbacks) == 0
):
return _compile_and_share_module(
backend,
computation,
compile_options,
host_callbacks,
distributed.global_state.client,
module_name,
cache_key,
min_device_process_id
)
elif (
config.share_autotune_config_between_hosts.value
and is_multi_process
and distributed.global_state.client is not None
):
return _compile_and_write_autotune_config(
backend,
computation,
compile_options,
host_callbacks,
distributed.global_state.client,
module_name,
cache_key,
min_device_process_id
)
else:
return _compile_and_write_cache(
backend,
computation,
compile_options,
host_callbacks,
module_name,
cache_key,
)
# The process that has the lowest device ID should share FDO profile before
# compilation with other processes.
def _share_fdo_profiles(
computation: ir.Module,
devices: np.ndarray,
compile_options: xc.CompileOptions,
backend: xc.Client,
global_client: lib.xla_extension.DistributedRuntimeClient,
min_process_id
) -> Optional[bytes]:
sym_name = computation.operation.attributes['sym_name']
module_name = ir.StringAttr(sym_name).value
fdo_profile = compile_options.executable_build_options.fdo_profile
if fdo_profile is None or len(fdo_profile) == 0:
return fdo_profile
compile_options.executable_build_options.fdo_profile = b""
profile_key = (
compilation_cache.get_cache_key(
computation, devices, compile_options, backend
)
+ "_fdo_sync"
)
if profile_key in _share_fdo_profiles.modules_profiles:
return _share_fdo_profiles.modules_profiles[profile_key]
share_timeout = config.share_binary_between_hosts_timeout_ms.value
if distributed.global_state.process_id == min_process_id:
logger.debug(
"Sharing FDO profile: %s. For module %s. Process %d.",
fdo_profile,
module_name,
min_process_id,
)
global_client.key_value_set_bytes(profile_key, fdo_profile)
else:
logger.debug(
"Waiting for FDO profile: %s. For module %s. Should be set by process %d.",
fdo_profile,
module_name,
min_process_id,
)
fdo_profile = global_client.blocking_key_value_get_bytes(
profile_key, share_timeout
)
_share_fdo_profiles.modules_profiles[profile_key] = fdo_profile
return fdo_profile
_share_fdo_profiles.modules_profiles = {}
# The process with the first_process_id should compile the module and write an
# autotune config to the K-V storage.
def _compile_and_write_autotune_config(
backend: xc.Client,
computation: ir.Module,
compile_options: xc.CompileOptions,
host_callbacks: Sequence[Any],
global_client: lib.xla_extension.DistributedRuntimeClient,
module_name: str,
cache_key: str,
first_process_id: int
) -> xc.LoadedExecutable:
share_timeout = config.share_binary_between_hosts_timeout_ms.value
debug_options = compile_options.executable_build_options.debug_options
if _compile_and_write_autotune_config.autotune_configs_dir is None:
_compile_and_write_autotune_config.autotune_configs_dir = tempfile.mkdtemp()
autotune_tmp_file = os.path.join(
_compile_and_write_autotune_config.autotune_configs_dir, cache_key
)
if os.path.exists(autotune_tmp_file):
logger.debug(
"Compiling module: %s. Use existing autotune config file: %s",
module_name,
autotune_tmp_file,
)
debug_options.xla_gpu_load_autotune_results_from = autotune_tmp_file
return _compile_and_write_cache(
backend,
computation,
compile_options,
host_callbacks,
module_name,
cache_key,
)
if distributed.global_state.process_id == first_process_id:
debug_options.xla_gpu_dump_autotune_results_to = autotune_tmp_file
logger.debug("Process %d compiling and dumping autotune for module: %s",
first_process_id, module_name)
executable = _compile_and_write_cache(
backend,
computation,
compile_options,
host_callbacks,
module_name,
cache_key,
)
logger.debug(
"Writing autotune config for module %s to %s",
module_name,
autotune_tmp_file,
)
with open(autotune_tmp_file, "rb") as f:
autotune_config = f.read()
autotune_config = compilation_cache.compress_executable(autotune_config)
global_client.key_value_set_bytes(cache_key, autotune_config)
logger.debug(
"Autotune config for module %s with size %d shared by cache_key %s",
module_name,
len(autotune_config),
cache_key,
)
else:
logger.debug(
"Compiling module %s, waiting for config to be shared by cache_key %s"
"from process %d",
module_name,
cache_key,
first_process_id
)
autotune_config = global_client.blocking_key_value_get_bytes(
cache_key, share_timeout
)
logger.debug(
"Received autotune config for module %s of size %d",
module_name,
len(autotune_config),
)
autotune_config = compilation_cache.decompress_executable(autotune_config)
with open(autotune_tmp_file, "wb") as f:
f.write(autotune_config)
logger.debug(
"Compiling module %s, using autotune config from %s",
module_name,
autotune_tmp_file,
)
debug_options.xla_gpu_load_autotune_results_from = autotune_tmp_file
executable = _compile_and_write_cache(
backend,
computation,
compile_options,
host_callbacks,
module_name,
cache_key,
)
return executable
_compile_and_write_autotune_config.autotune_configs_dir = None
# The process with the first_process_id should compile the module and write it
# to the K-V storage.
def _compile_and_share_module(
backend: xc.Client,
computation: ir.Module,
compile_options: xc.CompileOptions,
host_callbacks: Sequence[Any],
global_client: lib.xla_extension.DistributedRuntimeClient,
module_name: str,
cache_key: str,
first_process_id: int
) -> xc.LoadedExecutable:
share_timeout = config.share_binary_between_hosts_timeout_ms.value
# TODO: We need a proper eviction protocol here, otherwise all compiled
# modules will pile in memory.
if cache_key in _compile_and_share_module.modules_cache:
return _compile_and_share_module.modules_cache[cache_key]
if distributed.global_state.process_id == first_process_id:
logger.debug("Process %d compiling and sharing module: %s",
first_process_id, module_name)
executable = _compile_and_write_cache(
backend,
computation,
compile_options,
host_callbacks,
module_name,
cache_key,
)
serialized_executable = backend.serialize_executable(executable)
serialized_executable = compilation_cache.compress_executable(
serialized_executable
)
global_client.key_value_set_bytes(cache_key, serialized_executable)
else:
logger.debug("Waiting for module: %s from process %d", module_name,
first_process_id)
serialized_executable = global_client.blocking_key_value_get_bytes(
cache_key, share_timeout
)
serialized_executable = compilation_cache.decompress_executable(
serialized_executable
)
executable = backend.deserialize_executable(
serialized_executable, compile_options
)
_compile_and_share_module.modules_cache[cache_key] = executable
return executable
_compile_and_share_module.modules_cache = {}
def _compile_and_write_cache(
backend: xc.Client,
computation: ir.Module,
compile_options: xc.CompileOptions,
host_callbacks: Sequence[Any],
module_name: str,
cache_key: str,
) -> xc.LoadedExecutable:
start_time = time.monotonic()
executable = backend_compile(
backend, computation, compile_options, host_callbacks
)
compile_time = time.monotonic() - start_time
_cache_write(
cache_key, compile_time, module_name, backend, executable, host_callbacks
)
return executable
def _is_executable_in_cache(backend, cache_key) -> bool:
"""Checks if executable is presented in cache on a given key
"""
try:
return compilation_cache.is_executable_in_cache(backend, cache_key)
except Exception as ex:
if config.raise_persistent_cache_errors.value:
raise
warnings.warn(
f"Error reading persistent compilation cache entry for "
f"'{cache_key}': {type(ex).__name__}: {ex}")
return False
def _cache_read(
module_name: str, cache_key: str, compile_options: xc.CompileOptions,
backend: xc.Client
) -> tuple[xc.LoadedExecutable | None, int | None]:
"""Looks up the `computation` and it's compilation time in the persistent
compilation cache repository.
"""
try:
return compilation_cache.get_executable_and_time(
cache_key, compile_options, backend)
except Exception as ex:
if config.raise_persistent_cache_errors.value:
raise
warnings.warn(
f"Error reading persistent compilation cache entry for "
f"'{module_name}': {type(ex).__name__}: {ex}")
return None, None
def _cache_write(cache_key: str,
compile_time_secs: float,
module_name: str,
backend: xc.Client, executable: xc.LoadedExecutable,
host_callbacks: Sequence[Any]) -> None:
"""Writes the `serialized_computation` and its compilation time to the
persistent compilation cache repository.
"""
# Only write cache entries from the first process. Otherwise we create
# problems with contention for writes on some filesystems, e.g., GCS.
if distributed.global_state.process_id != 0:
logger.debug("Not writing persistent cache entry since process_id != 0")
return
if host_callbacks:
logger.debug(
"Not writing persistent cache entry for '%s' because it uses host "
"callbacks (e.g. from jax.debug.print or breakpoint)", module_name)
return
min_compile_time = config.persistent_cache_min_compile_time_secs.value
if compile_time_secs < min_compile_time:
logger.debug(
"Not writing persistent cache entry for '%s' because it took < %.2f "
"seconds to compile (%.2fs)", module_name, min_compile_time,
compile_time_secs)
return
else:
logger.debug(
"'%s' took at least %.2f seconds to compile (%.2fs)",
module_name, min_compile_time, compile_time_secs)
try:
compilation_cache.put_executable_and_time(
cache_key, module_name, executable, backend, int(compile_time_secs))
except Exception as ex:
if config.raise_persistent_cache_errors.value:
raise
warnings.warn(
f"Error writing persistent compilation cache entry for "
f"'{module_name}': {type(ex).__name__}: {ex}")