rocm_jax/jaxlib/lapack.py
2023-06-23 15:12:14 -07:00

865 lines
28 KiB
Python

# Copyright 2018 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Shims that allow the XLA CPU backend to call scipy-provided LAPACK kernels
# via CustomCallWithLayout.
import jaxlib.mlir.ir as ir
import jaxlib.mlir.dialects.stablehlo as hlo
import numpy as np
from typing import Optional, Sequence, Union
from jaxlib import xla_client
from .hlo_helpers import (
custom_call, ir_constant_u8, ir_constant_i32,
shape_tensor
)
from .cpu import _lapack
for _name, _value in _lapack.registrations().items():
xla_client.register_custom_call_target(_name, _value, platform="cpu")
# Function that lazily initializes the LAPACK kernels in the runtime on first
# use.
_initialize = _lapack.initialize
def _hlo_u8(x):
return hlo.ConstantOp(
ir.DenseElementsAttr.get(
np.array(x, dtype=np.uint8),
type=ir.IntegerType.get_unsigned(8))).result
def _hlo_s32(x):
return hlo.ConstantOp(
ir.DenseElementsAttr.get(
np.array(x, dtype=np.int32),
type=ir.IntegerType.get_signless(32))).result
def _ensure_hlo_s32(x):
return _hlo_s32(x) if isinstance(x, int) else x
# When we generate custom calls with dynamic shapes we have to pass
# both the result_types, with ir.ShapedType.get_dynamic_size in place of
# the dynamic dimensions, and also result_shapes, which are ir.Value representing
# 1D int32 tensors. If all the shapes are static we can use result_shapes=None.
# We first construct for each result a pair with the shape and element type,
# the shape containing either integer or ir.Value.
DimensionSize = Union[int, ir.Value] # an ir.Value if not static dimension
ShapeTypePair = tuple[Sequence[DimensionSize], ir.Type]
def mk_result_types_and_shapes(
shape_type_pairs: Sequence[ShapeTypePair]
) -> tuple[list[ir.Type], Optional[list[ir.Value]]]:
result_types: list[ir.Type] = []
result_shapes: list[ir.Value] = []
has_dynamic_shapes = any(
any(not isinstance(d, int) for d in rshape)
for rshape, _ in shape_type_pairs)
for (rshape, rtype) in shape_type_pairs:
if has_dynamic_shapes:
result_shapes.append(shape_tensor(rshape))
result_types.append(
ir.RankedTensorType.get(
[d if isinstance(d, int) else ir.ShapedType.get_dynamic_size()
for d in rshape],
rtype))
return (result_types,
result_shapes if has_dynamic_shapes else None)
def _hlo_min(x: DimensionSize, y: DimensionSize) -> DimensionSize:
if type(x) is int:
if type(y) is int:
return min(x, y)
x = _hlo_s32(x)
if type(y) is int:
y = _hlo_s32(y)
return hlo.MinOp(x, y).result
# TODO(phawkins): it would be nice to avoid duplicating code for each type.
# ?trsm(left_side, lower, trans_a, diag, m, n, alpha, a, b):
# triangular solve
def trsm_hlo(dtype, alpha, a, b, left_side=False, lower=False, trans_a=False,
conj_a=False, diag=False):
_initialize()
a_type = ir.RankedTensorType(a.type)
b_type = ir.RankedTensorType(b.type)
dims = b_type.shape
m, n = dims[-2:]
k = m if left_side else n
batch_dims = tuple(dims[:-2])
num_bd = len(batch_dims)
num_b = 1
for d in batch_dims:
num_b *= d
if (batch_dims + (k, k) != tuple(a_type.shape) or
a_type.element_type != b_type.element_type):
raise ValueError("Argument mismatch for trsm, got {} and {}".format(
a_type, b_type))
if dtype == np.float32:
fn = "blas_strsm"
elif dtype == np.float64:
fn = "blas_dtrsm"
elif dtype == np.complex64:
fn = "blas_ctrsm"
elif dtype == np.complex128:
fn = "blas_ztrsm"
else:
raise NotImplementedError(f"Unsupported dtype {dtype}")
if conj_a and not trans_a:
raise NotImplementedError("Conjugation without transposition not supported")
scalar_layout = []
layout = (num_bd, num_bd + 1) + tuple(range(num_bd - 1, -1, -1))
return custom_call(
fn,
[b.type],
[_hlo_s32(int(left_side)), _hlo_s32(int(lower)),
_hlo_s32((2 if conj_a else 1) if trans_a else 0), _hlo_s32(int(diag)),
_hlo_s32(m), _hlo_s32(n), _hlo_s32(num_b),
alpha, a, b],
operand_layouts=[scalar_layout] * 8 + [layout] * 2,
result_layouts=[layout],
operand_output_aliases={9: 0},
)
# # ?getrf: LU decomposition
def getrf_hlo(dtype, a: ir.Value, *,
a_shape_vals: tuple[DimensionSize, ...]):
_initialize()
a_type = ir.RankedTensorType(a.type)
assert len(a_shape_vals) >= 2
batch_dims_vals = a_shape_vals[:-2]
num_bd = len(a_shape_vals) - 2
m, n = a_shape_vals[-2:]
if dtype == np.float32:
fn = b"lapack_sgetrf"
elif dtype == np.float64:
fn = b"lapack_dgetrf"
elif dtype == np.complex64:
fn = b"lapack_cgetrf"
elif dtype == np.complex128:
fn = b"lapack_zgetrf"
else:
raise NotImplementedError(f"Unsupported dtype {dtype}")
scalar_layout = []
layout = (num_bd, num_bd + 1) + tuple(range(num_bd - 1, -1, -1))
i32_type = ir.IntegerType.get_signless(32)
shape_type_pairs: Sequence[ShapeTypePair] = [
(a_shape_vals, a_type.element_type),
(batch_dims_vals + (_hlo_min(m, n),), i32_type),
(batch_dims_vals, i32_type)
]
result_types, result_shapes = mk_result_types_and_shapes(shape_type_pairs)
batch_size_val = ir_constant_i32(1)
for b_v in batch_dims_vals:
batch_size_val = hlo.MulOp(batch_size_val, _ensure_hlo_s32(b_v)).result
return custom_call(
fn,
result_types,
[batch_size_val, _ensure_hlo_s32(m), _ensure_hlo_s32(n), a],
operand_layouts=[scalar_layout] * 3 + [layout],
result_layouts=[
layout,
tuple(range(num_bd, -1, -1)),
tuple(range(num_bd - 1, -1, -1)),
],
operand_output_aliases={3: 0},
result_shapes=result_shapes,
)
# # ?geqrf: QR decomposition
def geqrf_hlo(dtype, a: ir.Value, *,
a_shape_vals: tuple[DimensionSize, ...]):
_initialize()
a_type = ir.RankedTensorType(a.type)
assert len(a_shape_vals) >= 2
m, n = a_shape_vals[-2:]
assert type(m) is int
assert type(n) is int
batch_dims_vals = a_shape_vals[:-2]
num_bd = len(batch_dims_vals)
if dtype == np.float32:
fn = b"lapack_sgeqrf"
lwork = _lapack.lapack_sgeqrf_workspace(m, n)
elif dtype == np.float64:
fn = b"lapack_dgeqrf"
lwork = _lapack.lapack_dgeqrf_workspace(m, n)
elif dtype == np.complex64:
fn = b"lapack_cgeqrf"
lwork = _lapack.lapack_cgeqrf_workspace(m, n)
elif dtype == np.complex128:
fn = b"lapack_zgeqrf"
lwork = _lapack.lapack_zgeqrf_workspace(m, n)
else:
raise NotImplementedError(f"Unsupported dtype {dtype}")
scalar_layout = []
layout = (num_bd, num_bd + 1) + tuple(range(num_bd - 1, -1, -1))
i32_type = ir.IntegerType.get_signless(32)
batch_size_val = ir_constant_i32(1)
for b_v in batch_dims_vals:
batch_size_val = hlo.MulOp(batch_size_val, _ensure_hlo_s32(b_v)).result
shape_type_pairs: Sequence[ShapeTypePair] = [
(a_shape_vals, a_type.element_type),
(batch_dims_vals + (min(m, n),), a_type.element_type),
(batch_dims_vals, i32_type),
([lwork], a_type.element_type),
]
result_types, result_shapes = mk_result_types_and_shapes(shape_type_pairs)
out = custom_call(
fn,
result_types,
[batch_size_val, _hlo_s32(m), _hlo_s32(n), _hlo_s32(lwork), a],
operand_layouts=[scalar_layout] * 4 + [layout],
result_layouts=[
layout,
tuple(range(num_bd, -1, -1)),
tuple(range(num_bd - 1, -1, -1)),
[0],
],
operand_output_aliases={4: 0},
result_shapes=result_shapes,
)
return out[:3]
# # ?orgqr: product of elementary Householder reflectors:
def orgqr_hlo(dtype, a: ir.Value, tau, *,
a_shape_vals: tuple[DimensionSize, ...],
tau_shape_vals: tuple[DimensionSize, ...]):
_initialize()
a_type = ir.RankedTensorType(a.type)
dims = a_type.shape
dims_vals = a_shape_vals
assert len(dims) >= 2
m, n = dims[-2:]
assert m != ir.ShapedType.get_dynamic_size()
assert n != ir.ShapedType.get_dynamic_size()
batch_dims_vals = dims_vals[:-2]
num_bd = len(batch_dims_vals)
batch_size_val = ir_constant_i32(1)
for b_v in batch_dims_vals:
batch_size_val = hlo.MulOp(batch_size_val, _ensure_hlo_s32(b_v)).result
k = tau_shape_vals[-1]
assert type(k) is int
if dtype == np.float32:
fn = b"lapack_sorgqr"
lwork = _lapack.lapack_sorgqr_workspace(m, n, k)
elif dtype == np.float64:
fn = b"lapack_dorgqr"
lwork = _lapack.lapack_dorgqr_workspace(m, n, k)
elif dtype == np.complex64:
fn = b"lapack_cungqr"
lwork = _lapack.lapack_cungqr_workspace(m, n, k)
elif dtype == np.complex128:
fn = b"lapack_zungqr"
lwork = _lapack.lapack_zungqr_workspace(m, n, k)
else:
raise NotImplementedError(f"Unsupported dtype {dtype}")
scalar_layout = []
layout = (num_bd, num_bd + 1) + tuple(range(num_bd - 1, -1, -1))
i32_type = ir.IntegerType.get_signless(32)
shape_type_pairs: Sequence[ShapeTypePair] = [
(a_shape_vals, a_type.element_type),
(batch_dims_vals, i32_type),
([lwork], a_type.element_type),
]
result_types, result_shapes = mk_result_types_and_shapes(shape_type_pairs)
out = custom_call(
fn,
result_types,
[batch_size_val, _hlo_s32(m), _hlo_s32(n), _hlo_s32(k),
_hlo_s32(lwork), a, tau],
operand_layouts=[scalar_layout] * 5 + [
layout,
tuple(range(num_bd, -1, -1)),
],
result_layouts=[
layout,
tuple(range(num_bd - 1, -1, -1)),
[0],
],
operand_output_aliases={5: 0},
result_shapes=result_shapes,
)
return out[:2]
# ?potrf: Cholesky decomposition
def potrf_hlo(dtype, a: ir.Value, *, lower=False,
a_shape_vals: tuple[DimensionSize, ...]):
_initialize()
a_type = ir.RankedTensorType(a.type)
n = a_shape_vals[-1]
if dtype == np.float32:
fn = b"lapack_spotrf"
elif dtype == np.float64:
fn = b"lapack_dpotrf"
elif dtype == np.complex64:
fn = b"lapack_cpotrf"
elif dtype == np.complex128:
fn = b"lapack_zpotrf"
else:
raise NotImplementedError(f"Unsupported dtype {dtype}")
batch_dims_vals = a_shape_vals[:-2]
num_bd = len(batch_dims_vals)
batch_size_val = ir_constant_i32(1)
for b_v in batch_dims_vals:
batch_size_val = hlo.MulOp(batch_size_val, _ensure_hlo_s32(b_v)).result
scalar_layout = []
layout = (num_bd, num_bd + 1) + tuple(range(num_bd - 1, -1, -1))
info_layout = tuple(range(num_bd - 1, -1, -1))
shape_type_pairs: Sequence[ShapeTypePair] = [
(a_shape_vals, a_type.element_type),
(batch_dims_vals, ir.IntegerType.get_signless(32))
]
result_types, result_shapes = mk_result_types_and_shapes(shape_type_pairs)
out = custom_call(
fn,
result_types,
[_hlo_s32(int(lower)), batch_size_val, _ensure_hlo_s32(n), a],
operand_layouts=[scalar_layout] * 3 + [layout],
result_layouts=[layout, info_layout],
operand_output_aliases={3: 0},
result_shapes=result_shapes,
)
return out[:2]
# # ?gesdd: Singular value decomposition
def gesdd_hlo(dtype, a: ir.Value, *, full_matrices=True, compute_uv=True,
a_shape_vals: tuple[DimensionSize, ...]):
_initialize()
a_type = ir.RankedTensorType(a.type)
assert len(a_shape_vals) >= 2
m, n = a_shape_vals[-2:]
assert type(m) is int
assert type(n) is int
batch_dims_vals = a_shape_vals[:-2]
num_bd = len(batch_dims_vals)
batch_size_val = ir_constant_i32(1)
for b_v in batch_dims_vals:
batch_size_val = hlo.MulOp(batch_size_val, _ensure_hlo_s32(b_v)).result
i32_type = ir.IntegerType.get_signless(32)
workspace: list[ShapeTypePair]
if dtype == np.float32:
fn = b"lapack_sgesdd"
singular_vals_type = ir.F32Type.get()
lwork = _lapack.sgesdd_work_size(m, n, compute_uv, full_matrices)
workspace = [
([_lapack.gesdd_iwork_size(m, n)], i32_type),
([lwork], a_type.element_type),
]
workspace_layouts = [[0], [0]]
elif dtype == np.float64:
fn = b"lapack_dgesdd"
singular_vals_type = ir.F64Type.get()
lwork = _lapack.dgesdd_work_size(m, n, compute_uv, full_matrices)
workspace = [
([_lapack.gesdd_iwork_size(m, n)], i32_type),
([lwork], a_type.element_type),
]
workspace_layouts = [[0], [0]]
elif dtype == np.complex64:
fn = b"lapack_cgesdd"
singular_vals_type = ir.F32Type.get()
lwork = _lapack.cgesdd_work_size(m, n, compute_uv, full_matrices)
workspace = [
([_lapack.gesdd_iwork_size(m, n)], i32_type),
([_lapack.cgesdd_rwork_size(m, n, int(compute_uv))], ir.F32Type.get()),
([lwork], a_type.element_type),
]
workspace_layouts = [[0], [0], [0]]
elif dtype == np.complex128:
fn = b"lapack_zgesdd"
singular_vals_type = ir.F64Type.get()
lwork = _lapack.zgesdd_work_size(m, n, compute_uv, full_matrices)
workspace = [
([_lapack.gesdd_iwork_size(m, n)], i32_type),
([_lapack.cgesdd_rwork_size(m, n, int(compute_uv))], ir.F64Type.get()),
([lwork], a_type.element_type),
]
workspace_layouts = [[0], [0], [0]]
else:
raise NotImplementedError(f"Unsupported dtype {dtype}")
scalar_layout = []
layout = (num_bd, num_bd + 1) + tuple(range(num_bd - 1, -1, -1))
shape_type_pairs: Sequence[ShapeTypePair] = [
(a_shape_vals, a_type.element_type),
(batch_dims_vals + (min(m, n),), singular_vals_type),
(batch_dims_vals + (m, m if full_matrices else min(m, n)), a_type.element_type),
(batch_dims_vals + (n if full_matrices else min(m, n), n), a_type.element_type),
(batch_dims_vals, i32_type),
] + workspace
result_types, result_shapes = mk_result_types_and_shapes(shape_type_pairs)
out = custom_call(
fn,
result_types,
[_hlo_s32(int(full_matrices)), _hlo_s32(int(compute_uv)), batch_size_val,
_hlo_s32(m), _hlo_s32(n), _hlo_s32(lwork), a],
operand_layouts=[scalar_layout] * 6 + [layout],
result_layouts=[
layout,
(num_bd,) + tuple(range(num_bd - 1, -1, -1)),
layout,
layout,
tuple(range(num_bd - 1, -1, -1)),
] + workspace_layouts,
operand_output_aliases={6: 0},
result_shapes=result_shapes
)
return out[1:5]
# # syevd: Symmetric eigendecomposition
def syevd_hlo(dtype, a: ir.Value, batch_size: ir.Value,
result_shape_v: ir.Value, result_shape_w: ir.Value,
result_shape_info: ir.Value, lower=False):
_initialize()
a_type = ir.RankedTensorType(a.type)
dims = a_type.shape
assert len(dims) >= 2
m, n = dims[-2:]
assert m == n, dims
# Non-batch dimensions must be static
assert n != ir.ShapedType.get_dynamic_size(), dims
batch_dims = tuple(dims[:-2])
num_bd = len(batch_dims)
i32_type = ir.IntegerType.get_signless(32)
if dtype == np.float32:
fn = b"lapack_ssyevd"
eigvals_type = ir.F32Type.get()
workspace = [
ir.RankedTensorType.get([_lapack.syevd_work_size(n)],
a_type.element_type),
ir.RankedTensorType.get([_lapack.syevd_iwork_size(n)], i32_type),
]
elif dtype == np.float64:
fn = b"lapack_dsyevd"
eigvals_type = ir.F64Type.get()
workspace = [
ir.RankedTensorType.get([_lapack.syevd_work_size(n)],
a_type.element_type),
ir.RankedTensorType.get([_lapack.syevd_iwork_size(n)], i32_type),
]
elif dtype == np.complex64:
fn = b"lapack_cheevd"
eigvals_type = ir.F32Type.get()
workspace = [
ir.RankedTensorType.get([_lapack.heevd_work_size(n)],
a_type.element_type),
ir.RankedTensorType.get([_lapack.heevd_rwork_size(n)], eigvals_type),
ir.RankedTensorType.get([_lapack.syevd_iwork_size(n)], i32_type),
]
elif dtype == np.complex128:
fn = b"lapack_zheevd"
eigvals_type = ir.F64Type.get()
workspace = [
ir.RankedTensorType.get([_lapack.heevd_work_size(n)],
a_type.element_type),
ir.RankedTensorType.get([_lapack.heevd_rwork_size(n)], eigvals_type),
ir.RankedTensorType.get([_lapack.syevd_iwork_size(n)], i32_type),
]
else:
raise NotImplementedError(f"Unsupported dtype {dtype}")
batch_size = hlo.ConvertOp(ir.RankedTensorType.get((), i32_type),
batch_size).result
scalar_layout = []
shape_layout = [0]
workspace_layouts = [shape_layout] * len(workspace)
layout = (num_bd, num_bd + 1) + tuple(range(num_bd - 1, -1, -1))
if any(d == ir.ShapedType.get_dynamic_size() for d in batch_dims):
# The workspace outputs have constant shapes
def mk_constant_shape_tensor(ranked_type: ir.RankedTensorType) -> ir.Value:
return hlo.ConstantOp(
ir.DenseElementsAttr.get(np.array(ranked_type.shape, dtype=np.int32),
type=i32_type)).result
workspace_shapes = [mk_constant_shape_tensor(t) for t in workspace]
result_shapes = [result_shape_v, result_shape_w, result_shape_info] + workspace_shapes
else:
result_shapes = None
out = custom_call(
fn,
[
a.type,
ir.RankedTensorType.get(batch_dims + (n,), eigvals_type),
ir.RankedTensorType.get(batch_dims, i32_type),
] + workspace,
[_hlo_s32(1 if lower else 0), batch_size, _hlo_s32(n), a],
operand_layouts=[scalar_layout] * 3 + [layout],
result_layouts=[
layout,
tuple(range(num_bd, -1, -1)),
tuple(range(num_bd - 1, -1, -1)),
] + workspace_layouts,
operand_output_aliases={3: 0},
result_shapes=result_shapes,
)
return out[:3]
# # geev: Nonsymmetric eigendecomposition (eig)
def geev_hlo(dtype, input, *,
input_shape_vals: tuple[ir.Value, ...], # input.shape as ir.Values
jobvl=True, jobvr=True):
# input_shape_vals are used for when input has dynamic shapes.
_initialize()
input_shape = ir.RankedTensorType(input.type).shape
assert len(input_shape) >= 2
n = input_shape[-1]
n_val: ir.Value = input_shape_vals[-1]
batch_dims = tuple(input_shape[:-2])
batch_dims_vals = input_shape_vals[:-2]
num_bd = len(batch_dims)
layout = (num_bd, num_bd + 1) + tuple(range(num_bd - 1, -1, -1))
jobvl_c = ord('V' if jobvl else 'N')
jobvr_c = ord('V' if jobvr else 'N')
i32_type = ir.IntegerType.get_signless(32)
f32_type = ir.F32Type.get()
f64_type = ir.F64Type.get()
c64_type = ir.ComplexType.get(ir.F32Type.get())
c128_type = ir.ComplexType.get(ir.F64Type.get())
if n == ir.ShapedType.get_dynamic_size():
two_n = ir.ShapedType.get_dynamic_size()
else:
two_n = n + n
if dtype == np.float32:
fn = b"lapack_sgeev"
real = True
eigvecs_type = c64_type
workspace_types = [ir.RankedTensorType.get([n, n], f32_type)] * 3
workspace_result_shapes = [shape_tensor((n_val, n_val))] * 3
workspace_layouts = [[0, 1]] * 3
eigval_types = [
ir.RankedTensorType.get(batch_dims + (n,), f32_type)] * 2
eigval_result_shapes = [
shape_tensor(batch_dims_vals + (n_val,))] * 2
eigvals_layouts = [tuple(range(num_bd, -1, -1))] * 2
elif dtype == np.float64:
fn = b"lapack_dgeev"
real = True
eigvecs_type = c128_type
workspace_types = [ir.RankedTensorType.get([n, n], f64_type)] * 3
workspace_result_shapes = [shape_tensor((n_val, n_val))] * 3
workspace_layouts = [[0, 1]] * 3
eigval_types = [
ir.RankedTensorType.get(batch_dims + (n,), f64_type)] * 2
eigval_result_shapes = [
shape_tensor(batch_dims_vals + (n_val,))] * 2
eigvals_layouts = [tuple(range(num_bd, -1, -1))] * 2
elif dtype == np.complex64:
fn = b"lapack_cgeev"
real = False
eigvecs_type = c64_type
workspace_types = [
ir.RankedTensorType.get([n, n], c64_type),
ir.RankedTensorType.get([two_n], f32_type)]
workspace_result_shapes = [
shape_tensor((n_val, n_val)),
shape_tensor((hlo.AddOp(n_val, n_val).result,))]
workspace_layouts = [[0, 1], [0]]
eigval_types = [
ir.RankedTensorType.get(batch_dims + (n,), c64_type)]
eigval_result_shapes = [shape_tensor(batch_dims_vals + (n_val,))]
eigvals_layouts = [tuple(range(num_bd, -1, -1))]
elif dtype == np.complex128:
fn = b"lapack_zgeev"
real = False
eigvecs_type = c128_type
workspace_types = [
ir.RankedTensorType.get([n, n], c128_type),
ir.RankedTensorType.get([two_n], f64_type)]
workspace_result_shapes = [
shape_tensor((n_val, n_val)),
shape_tensor((hlo.AddOp(n_val, n_val).result,))]
workspace_layouts = [[0, 1], [0]]
eigval_types = [
ir.RankedTensorType.get(batch_dims + (n,), c128_type)]
eigval_result_shapes = [
shape_tensor(batch_dims_vals + (n_val,))]
eigvals_layouts = [tuple(range(num_bd, -1, -1))]
else:
raise NotImplementedError(f"Unsupported dtype {dtype}")
scalar_layout = []
info_layout = tuple(range(num_bd - 1, -1, -1))
batch_size_val = ir_constant_i32(1)
for b_v in batch_dims_vals:
batch_size_val = hlo.MulOp(batch_size_val, b_v).result
result_types = (
workspace_types + eigval_types + [
ir.RankedTensorType.get(input_shape, eigvecs_type),
ir.RankedTensorType.get(input_shape, eigvecs_type),
ir.RankedTensorType.get(batch_dims, i32_type),
])
if any(a == ir.ShapedType.get_dynamic_size() for a in input_shape):
result_shapes = workspace_result_shapes + eigval_result_shapes + [
shape_tensor(input_shape_vals),
shape_tensor(input_shape_vals),
shape_tensor(batch_dims_vals),
]
else:
result_shapes = None
out = custom_call(
fn,
result_types,
[batch_size_val, n_val,
ir_constant_u8(jobvl_c),
ir_constant_u8(jobvr_c),
input],
operand_layouts=[scalar_layout] * 4 + [layout],
result_layouts=(workspace_layouts + eigvals_layouts + [layout] * 2 +
[info_layout]),
result_shapes=result_shapes,
)
if real:
return (hlo.ComplexOp(out[3], out[4]).result, out[5], out[6], out[7])
else:
return out[2:6]
# # gees : Schur factorization
def gees_hlo(dtype, a, jobvs=True, sort=False, select=None):
_initialize()
a_type = ir.RankedTensorType(a.type)
etype = a_type.element_type
dims = a_type.shape
assert len(dims) >= 2
m, n = dims[-2:]
assert m == n
batch_dims = tuple(dims[:-2])
num_bd = len(batch_dims)
b = 1
for d in batch_dims:
b *= d
layout = (num_bd, num_bd + 1) + tuple(range(num_bd - 1, -1, -1))
if sort:
raise NotImplementedError(
"The sort feature of LAPACK's gees routine is not implemented.")
jobvs = ord('V' if jobvs else 'N')
sort = ord('S' if sort else 'N')
if dtype == np.float32:
fn = "lapack_sgees"
elif dtype == np.float64:
fn = "lapack_dgees"
elif dtype == np.complex64:
fn = "lapack_cgees"
elif dtype == np.complex128:
fn = "lapack_zgees"
else:
raise NotImplementedError(f"Unsupported dtype {dtype}")
if not np.issubdtype(dtype, np.complexfloating):
workspaces = [ir.RankedTensorType.get(dims, etype)]
workspace_layouts = [layout]
eigvals = [ir.RankedTensorType.get(batch_dims + (n,), etype)] * 2
eigvals_layouts = [tuple(range(num_bd, -1, -1))] * 2
else:
workspaces = [
ir.RankedTensorType.get(dims, etype),
ir.RankedTensorType.get([n], ir.ComplexType(etype).element_type),
]
workspace_layouts = [layout, [0]]
eigvals = [ir.RankedTensorType.get(batch_dims + (n,), etype)]
eigvals_layouts = [tuple(range(num_bd, -1, -1))]
i32_type = ir.IntegerType.get_signless(32)
scalar_layout = []
out = custom_call(
fn,
workspaces + eigvals + [
ir.RankedTensorType.get(dims, etype),
ir.RankedTensorType.get(batch_dims, i32_type),
ir.RankedTensorType.get(batch_dims, i32_type),
],
[
_hlo_s32(b),
_hlo_s32(n),
_hlo_u8(np.uint8(jobvs)),
_hlo_u8(np.uint8(sort)),
# TODO: figure out how to put the callable select function here
a
],
operand_layouts=[scalar_layout] * 4 + [layout],
result_layouts=workspace_layouts + eigvals_layouts + [
layout,
tuple(range(num_bd - 1, -1, -1)),
tuple(range(num_bd - 1, -1, -1)),
],
operand_output_aliases={4: 0},
)
if sort == ord('S'):
return (out[0], out[3], out[4], out[5])
else:
return (out[0], out[3], out[5])
# gehrd: Reduction of a non-symmetric square matrix to upper Hessenberg form.
def gehrd_hlo(dtype, a):
_initialize()
a_type = ir.RankedTensorType(a.type)
dims = a_type.shape
assert len(dims) >= 2
m, n = dims[-2:]
assert m == n, (m, n)
batch_dims = tuple(dims[:-2])
num_bd = len(batch_dims)
b = 1
for d in batch_dims:
b *= d
if dtype == np.float32:
fn = b"lapack_sgehrd"
lwork = _lapack.lapack_sgehrd_workspace(n, n, 1, n)
elif dtype == np.float64:
fn = b"lapack_dgehrd"
lwork = _lapack.lapack_dgehrd_workspace(n, n, 1, n)
elif dtype == np.complex64:
fn = b"lapack_cgehrd"
lwork = _lapack.lapack_cgehrd_workspace(n, n, 1, n)
elif dtype == np.complex128:
fn = b"lapack_zgehrd"
lwork = _lapack.lapack_zgehrd_workspace(n, n, 1, n)
else:
raise NotImplementedError(f"Unsupported dtype {dtype}")
layout = (num_bd, num_bd + 1) + tuple(range(num_bd - 1, -1, -1))
i32_type = ir.IntegerType.get_signless(32)
out = custom_call(
fn,
[
a.type,
ir.RankedTensorType.get(batch_dims + (n - 1,), a_type.element_type),
ir.RankedTensorType.get(batch_dims, i32_type),
ir.RankedTensorType.get([lwork], a_type.element_type),
],
[_hlo_s32(n), _hlo_s32(1), _hlo_s32(n), _hlo_s32(n), _hlo_s32(b),
_hlo_s32(lwork), a],
operand_layouts=[[]] * 6 + [layout],
result_layouts=[
layout,
(num_bd,) + tuple(range(num_bd - 1, -1, -1)),
tuple(range(num_bd - 1, -1, -1)),
[0],
],
operand_output_aliases={6: 0},
)
return out[:3]
# sytrd: Reduction of a symmetric (Hermitian) matrix to tridiagonal form.
def sytrd_hlo(dtype, a, *, lower):
_initialize()
a_type = ir.RankedTensorType(a.type)
dims = a_type.shape
assert len(dims) >= 2
m, n = dims[-2:]
assert m == n, (m, n)
batch_dims = tuple(dims[:-2])
num_bd = len(batch_dims)
b = 1
for d in batch_dims:
b *= d
if dtype == np.float32:
fn = b"lapack_ssytrd"
lwork = _lapack.lapack_ssytrd_workspace(n, n)
diag_type = a_type.element_type
elif dtype == np.float64:
fn = b"lapack_dsytrd"
lwork = _lapack.lapack_dsytrd_workspace(n, n)
diag_type = a_type.element_type
elif dtype == np.complex64:
fn = b"lapack_chetrd"
lwork = _lapack.lapack_chetrd_workspace(n, n)
diag_type = ir.F32Type.get()
elif dtype == np.complex128:
fn = b"lapack_zhetrd"
lwork = _lapack.lapack_zhetrd_workspace(n, n)
diag_type = ir.F64Type.get()
else:
raise NotImplementedError(f"Unsupported dtype {dtype}")
layout = (num_bd, num_bd + 1) + tuple(range(num_bd - 1, -1, -1))
i32_type = ir.IntegerType.get_signless(32)
out = custom_call(
fn,
[
a.type,
ir.RankedTensorType.get(batch_dims + (n,), diag_type),
ir.RankedTensorType.get(batch_dims + (n - 1,), diag_type),
ir.RankedTensorType.get(batch_dims + (n - 1,), a_type.element_type),
ir.RankedTensorType.get(batch_dims, i32_type),
ir.RankedTensorType.get([lwork], a_type.element_type),
],
[_hlo_s32(n), _hlo_s32(1 if lower else 0), _hlo_s32(max(1, n)),
_hlo_s32(b), _hlo_s32(lwork), a],
operand_layouts=[[]] * 5 + [layout],
result_layouts=[
layout,
(num_bd,) + tuple(range(num_bd - 1, -1, -1)),
(num_bd,) + tuple(range(num_bd - 1, -1, -1)),
(num_bd,) + tuple(range(num_bd - 1, -1, -1)),
tuple(range(num_bd - 1, -1, -1)),
[0],
],
operand_output_aliases={5: 0},
)
return out[:5]