rocm_jax/jaxlib/cuda_linalg.py
Peter Hawkins a48752a578 [MHLO] Remove most XLA translation rules.
Almost all XLA translation rules have MHLO equivalents at this point, and there are no code paths that use the XLA translation rules in preference to their MLIR equivalents.

PiperOrigin-RevId: 442547482
2022-04-18 08:28:35 -07:00

64 lines
2.2 KiB
Python

# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import operator
import jaxlib.mlir.ir as ir
import jaxlib.mlir.dialects.mhlo as mhlo
import numpy as np
from jaxlib import xla_client
try:
from . import _cuda_linalg
for _name, _value in _cuda_linalg.registrations().items():
xla_client.register_custom_call_target(_name, _value, platform="CUDA")
except ImportError:
pass
_prod = lambda xs: functools.reduce(operator.mul, xs, 1)
def lu_pivots_to_permutation_mhlo(pivots, *, permutation_size):
"""Kernel for the transformation of pivots to permutations on GPU."""
typ = ir.RankedTensorType(pivots.type)
dims = typ.shape
i32_type = ir.IntegerType.get_signless(32)
assert typ.element_type == i32_type, typ
batch_size = _prod(dims[:-1])
pivot_size = dims[-1]
opaque = _cuda_linalg.cuda_lu_pivots_to_permutation_descriptor(
batch_size, pivot_size, permutation_size)
pivots_layout = ir.DenseIntElementsAttr.get(np.arange(len(dims) - 1, -1, -1),
type=ir.IndexType.get())
permutations_layout = pivots_layout
permutations_dims = list(dims)
permutations_dims[-1] = permutation_size
permutations_type = ir.RankedTensorType.get(permutations_dims, i32_type)
return mhlo.CustomCallOp(
[permutations_type],
[pivots],
call_target_name = ir.StringAttr.get("cuda_lu_pivots_to_permutation"),
has_side_effect=ir.BoolAttr.get(False),
backend_config=ir.StringAttr.get(opaque),
api_version=ir.IntegerAttr.get(i32_type, 2),
called_computations=ir.ArrayAttr.get([]),
operand_layouts=ir.ArrayAttr.get([pivots_layout]),
result_layouts=ir.ArrayAttr.get([permutations_layout])).result