mirror of
https://github.com/ROCm/jax.git
synced 2025-04-25 21:56:04 +00:00

* Change test tolerance logic not to choose tolerance values based on flags (in particular, --jax_enable_x64). We would like to move away from having global flags to enable 64-bit mode. We therefore need other methods to select test tolerances. Instead, use a per-type default tolerance, and allow tests to pass per-type dictionaries of tolerances as atol and rtol values. Fix up a number of tolerances to make tests pass. * Fix test tolerances. * Fix dtype canonicalization for test tolerances. * Relax core test_vjp tolerance.
111 lines
4.1 KiB
Python
111 lines
4.1 KiB
Python
# Copyright 2019 Google LLC
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
|
|
import numpy as onp
|
|
|
|
from absl.testing import absltest
|
|
from absl.testing import parameterized
|
|
|
|
from jax import numpy as np
|
|
from jax import test_util as jtu
|
|
|
|
from jax.config import config
|
|
config.parse_flags_with_absl()
|
|
|
|
|
|
float_dtypes = [onp.float32, onp.float64]
|
|
# TODO(b/144573940): onp.complex128 isn't supported by XLA, and the JAX
|
|
# implementation casts to complex64.
|
|
complex_dtypes = [onp.complex64]
|
|
inexact_dtypes = float_dtypes + complex_dtypes
|
|
int_dtypes = [onp.int32, onp.int64]
|
|
bool_dtypes = [onp.bool_]
|
|
all_dtypes = float_dtypes + complex_dtypes + int_dtypes + bool_dtypes
|
|
|
|
|
|
def _get_fftn_test_axes(shape):
|
|
axes = [[]]
|
|
ndims = len(shape)
|
|
# XLA's FFT op only supports up to 3 innermost dimensions.
|
|
if ndims <= 3: axes.append(None)
|
|
for naxes in range(1, min(ndims, 3) + 1):
|
|
axes.append(range(ndims - naxes, ndims))
|
|
return axes
|
|
|
|
|
|
class FftTest(jtu.JaxTestCase):
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_inverse={}_shape={}_axes={}".format(
|
|
inverse, jtu.format_shape_dtype_string(shape, dtype), axes),
|
|
"axes": axes, "shape": shape, "dtype": dtype, "rng_factory": rng_factory,
|
|
"inverse": inverse}
|
|
for inverse in [False, True]
|
|
for rng_factory in [jtu.rand_default]
|
|
for dtype in all_dtypes
|
|
for shape in [(10,), (10, 10), (2, 3, 4), (2, 3, 4, 5)]
|
|
for axes in _get_fftn_test_axes(shape)))
|
|
def testFftn(self, inverse, shape, dtype, axes, rng_factory):
|
|
rng = rng_factory()
|
|
args_maker = lambda: (rng(shape, dtype),)
|
|
np_op = np.fft.ifftn if inverse else np.fft.fftn
|
|
onp_op = onp.fft.ifftn if inverse else onp.fft.fftn
|
|
np_fn = lambda a: np_op(a, axes=axes)
|
|
onp_fn = lambda a: onp_op(a, axes=axes)
|
|
# Numpy promotes to complex128 aggressively.
|
|
self._CheckAgainstNumpy(onp_fn, np_fn, args_maker, check_dtypes=False,
|
|
tol=1e-4)
|
|
self._CompileAndCheck(np_fn, args_maker, check_dtypes=True)
|
|
# Test gradient for differentiable types.
|
|
if dtype in inexact_dtypes:
|
|
# TODO(skye): can we be more precise?
|
|
tol = 1e-1
|
|
jtu.check_grads(np_fn, args_maker(), order=1, atol=tol, rtol=tol)
|
|
jtu.check_grads(np_fn, args_maker(), order=2, atol=tol, rtol=tol)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_inverse={}".format(inverse),
|
|
"inverse": inverse}
|
|
for inverse in [False, True]))
|
|
def testFftnErrors(self, inverse):
|
|
rng = jtu.rand_default()
|
|
name = 'ifftn' if inverse else 'fftn'
|
|
func = np.fft.ifftn if inverse else np.fft.fftn
|
|
self.assertRaisesRegex(
|
|
ValueError,
|
|
"jax.np.fft.{} only supports 1D, 2D, and 3D FFTs over the innermost axes. "
|
|
"Got axes None with input rank 4.".format(name),
|
|
lambda: func(rng([2, 3, 4, 5], dtype=onp.float64), axes=None))
|
|
self.assertRaisesRegex(
|
|
ValueError,
|
|
"jax.np.fft.{} only supports 1D, 2D, and 3D FFTs over the innermost axes. "
|
|
"Got axes \\[0\\] with input rank 4.".format(name),
|
|
lambda: func(rng([2, 3, 4, 5], dtype=onp.float64), axes=[0]))
|
|
self.assertRaisesRegex(
|
|
ValueError,
|
|
"jax.np.fft.{} does not support repeated axes. Got axes \\[1, 1\\].".format(name),
|
|
lambda: func(rng([2, 3], dtype=onp.float64), axes=[1, 1]))
|
|
self.assertRaises(
|
|
IndexError, lambda: func(rng([2, 3], dtype=onp.float64), axes=[2]))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
absltest.main()
|