rocm_jax/jax/interpreters/batching.py
2022-07-09 10:03:40 -07:00

714 lines
31 KiB
Python

# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from typing import (Any, Callable, Dict, Set, Optional, Tuple, Union, Iterable,
Type, Sequence)
import numpy as np
import jax
from jax.config import config
from jax import core
from jax.core import raise_to_shaped, Trace, Tracer
from jax._src import source_info_util
from jax._src.tree_util import tree_unflatten, tree_flatten
from jax._src.ad_util import (add_jaxvals, add_jaxvals_p, zeros_like_jaxval,
zeros_like_p, Zero)
from jax import linear_util as lu
from jax._src.util import (unzip2, unzip3, safe_map, safe_zip, wrap_name,
split_list, canonicalize_axis, moveaxis,
as_hashable_function, curry, memoize,
weakref_lru_cache)
from jax.interpreters import partial_eval as pe
map = safe_map
def _update_annotation(
f: lu.WrappedFun, orig_type: Optional[core.InputType],
axis_size: core.AxisSize, axis_name: core.AxisName,
in_dims: Sequence[Optional[int]]) -> lu.WrappedFun:
if orig_type is None: return f
if isinstance(axis_size, core.Tracer):
in_type_ = [(core.unmapped_aval(core.DBIdx(0), axis_name, dim, aval), keep)
for dim, (aval, keep) in zip(in_dims, orig_type)]
in_type = [(axis_size.aval, False), *in_type_]
else:
in_type = [(core.unmapped_aval(axis_size, axis_name, dim, aval), keep)
for dim, (aval, keep) in zip(in_dims, orig_type)]
return lu.annotate(f, tuple(in_type))
### vmappable typeclass
Vmappable = Any
Elt = Any
MapSpec = Any
AxisSize = Any
Array = Any
GetIdx = Callable[[], Tracer] # TODO(mattjj): revise this laziness
ToEltHandler = Callable[[Callable, GetIdx, Vmappable, MapSpec], Elt]
FromEltHandler = Callable[[Callable, AxisSize, Elt, MapSpec], Vmappable]
MakeIotaHandler = Callable[[AxisSize], Array]
def to_elt(trace: Trace, get_idx: GetIdx, x: Vmappable, spec: MapSpec) -> Elt:
handler = to_elt_handlers.get(type(x))
if handler:
return handler(partial(to_elt, trace, get_idx), get_idx, x, spec)
else:
spec = spec and canonicalize_axis(spec, len(np.shape(x)))
return (BatchTracer(trace, x, spec, source_info_util.current())
if spec is not None else x)
to_elt_handlers: Dict[Type, ToEltHandler] = {}
def from_elt(trace: 'BatchTrace', axis_size: AxisSize, x: Elt, spec: MapSpec
) -> Vmappable:
handler = from_elt_handlers.get(type(x))
if handler:
return handler(partial(from_elt, trace), axis_size, x, spec)
else:
x_ = trace.full_raise(x)
return matchaxis(trace.axis_name, axis_size, x_.batch_dim, spec, x_.val)
from_elt_handlers: Dict[Type, FromEltHandler] = {}
def make_iota(axis_size: AxisSize) -> Array:
handler = make_iota_handlers.get(type(axis_size))
if handler:
return handler(axis_size)
else:
return jax.lax.iota('int32', int(axis_size))
make_iota_handlers: Dict[Type, MakeIotaHandler] = {}
def register_vmappable(data_type: Type, spec_type: Type, axis_size_type: Type,
to_elt: Callable, from_elt: Callable,
make_iota: Optional[Callable]):
vmappables[data_type] = (spec_type, axis_size_type)
spec_types.add(spec_type)
to_elt_handlers[data_type] = to_elt
from_elt_handlers[data_type] = from_elt
if make_iota: make_iota_handlers[axis_size_type] = make_iota
vmappables: Dict[Type, Tuple[Type, Type]] = {}
spec_types: Set[Type] = set()
def unregister_vmappable(data_type: Type) -> None:
spec_type, axis_size_type = vmappables.pop(data_type)
spec_types.remove(spec_type)
del to_elt_handlers[data_type]
del from_elt_handlers[data_type]
if axis_size_type in make_iota_handlers:
del make_iota_handlers[axis_size_type]
def is_vmappable(x: Any) -> bool:
return type(x) in vmappables
@lu.transformation_with_aux
def flatten_fun_for_vmap(in_tree, *args_flat):
py_args, py_kwargs = tree_unflatten(in_tree, args_flat)
ans = yield py_args, py_kwargs
yield tree_flatten(ans, is_leaf=is_vmappable)
### tracer
# TODO(mattjj): use a special sentinel type rather than None
NotMapped = type(None)
not_mapped = None
class BatchTracer(Tracer):
__slots__ = ['val', 'batch_dim', 'source_info']
def __init__(self, trace, val, batch_dim: Optional[int],
source_info: Optional[source_info_util.SourceInfo] = None):
if config.jax_enable_checks:
assert type(batch_dim) in (int, NotMapped)
if type(batch_dim) is int:
aval = raise_to_shaped(core.get_aval(val))
assert batch_dim is not_mapped or 0 <= batch_dim < len(aval.shape) # type: ignore
self._trace = trace
self.val = val
self.batch_dim = batch_dim
self.source_info = source_info
@property
def aval(self):
aval = raise_to_shaped(core.get_aval(self.val))
if self.batch_dim is not_mapped:
return aval
return core.mapped_aval(aval.shape[self.batch_dim], self.batch_dim, aval)
def full_lower(self):
if self.batch_dim is not_mapped:
return core.full_lower(self.val)
else:
return self
def _origin_msg(self):
if self.source_info is None:
return ""
return ("\nThis Tracer was created on line "
f"{source_info_util.summarize(self.source_info)}")
def _contents(self):
return [('val', self.val), ('batch_dim', self.batch_dim)]
class BatchTrace(Trace):
def __init__(self, *args, axis_name):
super().__init__(*args)
self.axis_name = axis_name
def pure(self, val):
return BatchTracer(self, val, not_mapped, source_info_util.current())
def lift(self, val):
return BatchTracer(self, val, not_mapped, source_info_util.current())
def sublift(self, val):
return BatchTracer(self, val.val, val.batch_dim, source_info_util.current())
def get_primitive_batcher(self, primitive, frame):
if primitive in primitive_batchers:
return primitive_batchers[primitive]
elif primitive in axis_primitive_batchers:
return self.get_axis_primitive_batcher(primitive, frame)
msg = "Batching rule for '{}' not implemented"
raise NotImplementedError(msg.format(primitive))
def get_axis_primitive_batcher(self, primitive, frame):
return partial(axis_primitive_batchers[primitive],
frame.size, frame.name, frame.main_trace.trace_type)
def get_frame(self, vals, dims) -> core.AxisEnvFrame:
if self.axis_name is core.no_axis_name:
# If axis name is `no_axis_name` we can't find it via `core.axis_name` so
# we reconstruct it from the information we have available
axis_size, = core.dedup_referents(x.shape[d] for x, d in zip(vals, dims)
if d is not not_mapped)
return core.AxisEnvFrame(self.axis_name, axis_size, self.main)
return core.axis_frame(self.axis_name)
def process_primitive(self, primitive, tracers, params):
vals_in, dims_in = unzip2((t.val, t.batch_dim) for t in tracers)
is_axis_primitive = primitive in axis_primitive_batchers
used_names = core.used_axis_names(primitive, params)
if is_axis_primitive and _main_trace_for_axis_names(self.main, used_names):
frame = self.get_frame(vals_in, dims_in)
batcher_primitive = self.get_axis_primitive_batcher(primitive, frame)
val_out, dim_out = batcher_primitive(vals_in, dims_in, **params)
elif all(bdim is not_mapped for bdim in dims_in):
return primitive.bind(*vals_in, **params)
else:
frame = self.get_frame(vals_in, dims_in)
batched_primitive = self.get_primitive_batcher(primitive, frame)
val_out, dim_out = batched_primitive(vals_in, dims_in, **params)
src = source_info_util.current()
if primitive.multiple_results:
return [BatchTracer(self, x, d, src) for x, d in zip(val_out, dim_out)]
return map(partial(BatchTracer, self), val_out, dim_out)
else:
return BatchTracer(self, val_out, dim_out, src)
def process_call(self, call_primitive, f, tracers, params):
assert call_primitive.multiple_results
if config.jax_experimental_name_stack:
params = dict(params, name=params.get('name', f.__name__))
else:
params = dict(params, name=wrap_name(params.get('name', f.__name__), 'vmap'))
vals, dims = unzip2((t.val, t.batch_dim) for t in tracers)
if all(bdim is not_mapped for bdim in dims):
return call_primitive.bind(f, *vals, **params)
else:
f_, dims_out = batch_subtrace(f, self.main, dims)
axis_size, = core.dedup_referents(x.shape[d] for x, d in zip(vals, dims)
if d is not not_mapped)
f_ = _update_annotation(f_, f.in_type, axis_size, self.axis_name, dims)
vals_out = call_primitive.bind(f_, *vals, **params)
src = source_info_util.current()
return [BatchTracer(self, v, d, src) for v, d in zip(vals_out, dims_out())]
def post_process_call(self, call_primitive, out_tracers, params):
vals, dims, srcs = unzip3((t.val, t.batch_dim, t.source_info)
for t in out_tracers)
main = self.main
def todo(vals):
trace = main.with_cur_sublevel()
return map(partial(BatchTracer, trace), vals, dims, srcs)
return vals, todo
def process_map(self, map_primitive, f: lu.WrappedFun, tracers, params):
vals, dims = unzip2((t.val, t.batch_dim) for t in tracers)
if all(dim is not_mapped for dim in dims):
return map_primitive.bind(f, *vals, **params)
else:
assert len({x.shape[d] for x, d in zip(vals, dims) if d is not not_mapped}) == 1
# The logic for the dimension math below is as follows:
# ╔═════════════╦════════════════════════════════════════╦═══════════╗
# ║ d / in_axis ║ None ║ int ║
# ╠═════════════╬════════════════════════════════════════╩═══════════╣
# ║ None ║ No extra axis, so in_axis unaffected ║
# ╠═════════════╬════════════════════════════════════════╦═══════════╣
# ║ int ║ Not mapped, so batching dim unaffected ║ See below ║
# ╚═════════════╩════════════════════════════════════════╩═══════════╝
# When both d and in_axis are defined then:
# - If `d <= in_axis`, we have to move the `in_axis` one dimension further;
# - If `d > in_axis`, we have to decrement `d` (as `in_axis` will get removed).
def both_mapped(in_out_axis, d):
return in_out_axis is not None and d is not not_mapped
new_in_axes = tuple(
in_axis + 1 if both_mapped(in_axis, d) and d <= in_axis else in_axis
for d, in_axis in zip(dims, params['in_axes']))
new_dims = tuple(
d - 1 if both_mapped(in_axis, d) and in_axis < d else d
for d, in_axis in zip(dims, params['in_axes']))
f, dims_out = batch_subtrace(f, self.main, new_dims)
out_axes_thunk = params['out_axes_thunk']
# NOTE: This assumes that the choice of the dimensions over which outputs
# are batched is entirely dependent on the function and not e.g. on the
# data or its shapes.
@as_hashable_function(closure=out_axes_thunk)
def new_out_axes_thunk():
return tuple(out_axis + 1 if both_mapped(out_axis, d) and d < out_axis else out_axis
for out_axis, d in zip(out_axes_thunk(), dims_out()))
new_params = dict(params, in_axes=new_in_axes, out_axes_thunk=new_out_axes_thunk)
vals_out = map_primitive.bind(f, *vals, **new_params)
dims_out = (d + 1 if both_mapped(out_axis, d) and out_axis <= d else d
for d, out_axis in zip(dims_out(), out_axes_thunk()))
src = source_info_util.current()
return [BatchTracer(self, v, d, src) for v, d in zip(vals_out, dims_out)]
def post_process_map(self, call_primitive, out_tracers, params):
vals, dims, srcs = unzip3((t.val, t.batch_dim, t.source_info)
for t in out_tracers)
main = self.main
def both_mapped(in_out_axis, d):
return in_out_axis is not None and d is not not_mapped
def todo(vals):
trace = main.with_cur_sublevel()
return [BatchTracer(trace, v, d + 1 if both_mapped(oa, d) and oa <= d else d, s)
for v, d, oa, s in zip(vals, dims, params['out_axes_thunk'](), srcs)]
if call_primitive.map_primitive:
def out_axes_transform(out_axes):
return tuple(out_axis + 1 if both_mapped(out_axis, d) and d < out_axis else out_axis
for out_axis, d in zip(out_axes, dims))
todo = (todo, out_axes_transform)
return vals, todo
def process_custom_jvp_call(self, prim, fun, jvp, tracers):
in_vals, in_dims = unzip2((t.val, t.batch_dim) for t in tracers)
fun, out_dims1 = batch_subtrace(fun, self.main, in_dims)
jvp, out_dims2 = batch_custom_jvp_subtrace(jvp, self.main, in_dims)
out_vals = prim.bind(fun, jvp, *in_vals)
fst, out_dims = lu.merge_linear_aux(out_dims1, out_dims2)
if not fst:
assert out_dims == out_dims[:len(out_dims) // 2] * 2
out_dims = out_dims[:len(out_dims) // 2]
src = source_info_util.current()
return [BatchTracer(self, v, d, src) for v, d in zip(out_vals, out_dims)]
def post_process_custom_jvp_call(self, out_tracers, jvp_was_run):
vals, dims, srcs = unzip3((t.val, t.batch_dim, t.source_info)
for t in out_tracers)
main = self.main
def todo(vals):
trace = main.with_cur_sublevel()
if jvp_was_run:
primal_dims, tangent_dims = dims[:len(vals)], dims[len(vals):]
assert primal_dims == tangent_dims
primal_srcs = srcs[:len(vals)]
return map(partial(BatchTracer, trace), vals, primal_dims, primal_srcs)
else:
return map(partial(BatchTracer, trace), vals, dims, srcs)
return vals, todo
def process_custom_vjp_call(self, prim, fun, fwd, bwd, tracers, *, out_trees):
in_vals, in_dims = unzip2((t.val, t.batch_dim) for t in tracers)
axis_size, = {x.shape[d] for x, d in zip(in_vals, in_dims)
if d is not not_mapped}
fun, out_dims1 = batch_subtrace(fun, self.main, in_dims)
fwd, out_dims2 = batch_subtrace(fwd, self.main, in_dims)
bwd = batch_custom_vjp_bwd(bwd, self.axis_name, axis_size,
out_dims2, in_dims, self.main.trace_type)
out_vals = prim.bind(fun, fwd, bwd, *in_vals, out_trees=out_trees)
fst, out_dims = lu.merge_linear_aux(out_dims1, out_dims2)
if not fst:
out_dims = out_dims[-len(out_vals) % len(out_dims):]
src = source_info_util.current()
return [BatchTracer(self, v, d, src) for v, d in zip(out_vals, out_dims)]
def post_process_custom_vjp_call(self, out_tracers, _):
vals, dims, srcs = unzip3((t.val, t.batch_dim, t.source_info)
for t in out_tracers)
main = self.main
def todo(vals):
trace = main.with_cur_sublevel()
return map(partial(BatchTracer, trace), vals, dims, srcs)
return vals, todo
def post_process_custom_vjp_call_fwd(self, out_tracers, out_trees):
vals, dims, srcs = unzip3((t.val, t.batch_dim, t.source_info)
for t in out_tracers)
axis_size, = {x.shape[d] for x, d in zip(vals, dims) if d is not not_mapped}
main, trace_type = self.main, self.main.trace_type
axis_name = self.axis_name
_, res_tree = out_trees()
num_res = res_tree.num_leaves
res_dims, primal_dims = split_list(dims, [num_res])
_, primal_srcs = split_list(srcs, [num_res])
def todo(vals):
trace = main.with_cur_sublevel()
return map(partial(BatchTracer, trace), vals, primal_dims, primal_srcs)
def bwd_transform(bwd):
return batch_custom_vjp_bwd(bwd, axis_name, axis_size, dims, (None,),
trace_type)
return vals, todo, bwd_transform
def _main_trace_for_axis_names(main_trace: core.MainTrace,
axis_name: Iterable[core.AxisName],
) -> bool:
# This function exists to identify whether a main trace corresponds to any of
# the axis names used by a primitive. Axis names alone aren't enough because
# axis names can shadow, so we use the main trace as a tag.
return any(main_trace is core.axis_frame(n).main_trace for n in axis_name)
### API for batching callables with vmappable inputs and outputs
def batch(fun: lu.WrappedFun, axis_name: core.AxisName, axis_size,
in_dims, out_dim_dests, main_type: Type[BatchTrace] = BatchTrace,
) -> lu.WrappedFun:
# we split up _batch_inner and _batch_outer for the leak checker
f = _batch_inner(fun, axis_size, out_dim_dests)
return _batch_outer(f, axis_name, axis_size, in_dims, main_type)
@lu.transformation
def _batch_outer(axis_name, axis_size, in_dims, main_type, *in_vals):
with core.new_main(main_type, axis_name=axis_name) as main:
with core.extend_axis_env(axis_name, axis_size, main):
with source_info_util.transform_name_stack('vmap'):
outs = yield (main, in_dims, *in_vals), {}
del main
yield outs
@lu.transformation
def _batch_inner(axis_size, out_dim_dests, main, in_dims, *in_vals):
in_dims = in_dims() if callable(in_dims) else in_dims
trace = main.with_cur_sublevel()
idx = memoize(lambda: BatchTracer(trace, make_iota(axis_size), 0,
source_info_util.current()))
in_tracers = map(partial(to_elt, trace, idx), in_vals, in_dims)
outs = yield in_tracers, {}
out_dim_dests = out_dim_dests() if callable(out_dim_dests) else out_dim_dests
out_vals = map(partial(from_elt, trace, axis_size), outs, out_dim_dests)
yield out_vals
# NOTE: This divides the in_axes by the tile_size and multiplies the out_axes by it.
def vtile(f_flat: lu.WrappedFun,
in_axes_flat: Tuple[Optional[int], ...],
out_axes_flat: Tuple[Optional[int], ...],
tile_size: Optional[int],
axis_name: core.AxisName,
main_type: Type[BatchTrace] = BatchTrace):
@curry
def tile_axis(arg, axis: Optional[int], tile_size):
if axis is None:
return arg
shape = list(arg.shape)
shape[axis:axis+1] = [tile_size, shape[axis] // tile_size]
return arg.reshape(shape)
def untile_axis(out, axis: Optional[int]):
if axis is None:
return out
shape = list(out.shape)
shape[axis:axis+2] = [shape[axis] * shape[axis+1]]
return out.reshape(shape)
@lu.transformation
def _map_to_tile(*args_flat):
sizes = (x.shape[i] for x, i in safe_zip(args_flat, in_axes_flat) if i is not None)
tile_size_ = tile_size or next(sizes, None)
assert tile_size_ is not None, "No mapped arguments?"
outputs_flat = yield map(tile_axis(tile_size=tile_size_), args_flat, in_axes_flat), {}
yield map(untile_axis, outputs_flat, out_axes_flat)
return _map_to_tile(batch(
f_flat, axis_name, tile_size, in_axes_flat, out_axes_flat, main_type=main_type))
### API for batching functions with jaxpr type inputs and outputs
@lu.transformation_with_aux
def batch_subtrace(main, in_dims, *in_vals):
# used in e.g. process_call
trace = main.with_cur_sublevel()
in_dims = in_dims() if callable(in_dims) else in_dims
in_tracers = [BatchTracer(trace, x, dim, source_info_util.current())
if dim is not None else x for x, dim in zip(in_vals, in_dims)]
outs = yield in_tracers, {}
out_tracers = map(trace.full_raise, outs)
out_vals, out_dims = unzip2((t.val, t.batch_dim) for t in out_tracers)
yield out_vals, out_dims
### API for batching jaxprs
def batch_jaxpr(closed_jaxpr, axis_size, in_batched, instantiate, axis_name,
main_type):
inst = tuple(instantiate) if isinstance(instantiate, list) else instantiate
return _batch_jaxpr(closed_jaxpr, axis_size, tuple(in_batched), inst,
axis_name, main_type)
def _batch_jaxpr(closed_jaxpr, axis_size, in_batched, instantiate, axis_name,
main_type):
assert (isinstance(instantiate, bool) or
isinstance(instantiate, (list, tuple)) and
all(isinstance(b, bool) for b in instantiate))
if isinstance(instantiate, bool):
instantiate = [instantiate] * len(closed_jaxpr.out_avals)
in_axes = [0 if b else not_mapped for b in in_batched]
out_axes_dest = [0 if inst else zero_if_mapped for inst in instantiate]
return batch_jaxpr_axes(closed_jaxpr, axis_size, in_axes, out_axes_dest,
axis_name, main_type)
def batch_jaxpr_axes(closed_jaxpr, axis_size, in_axes, out_axes_dest, axis_name,
main_type):
return _batch_jaxpr_axes(closed_jaxpr, axis_size, tuple(in_axes),
tuple(out_axes_dest), axis_name, main_type)
@weakref_lru_cache
def _batch_jaxpr_axes(closed_jaxpr, axis_size, in_axes, out_axes_dest,
axis_name, main_type):
f = lu.wrap_init(core.jaxpr_as_fun(closed_jaxpr))
f, out_batched = _batch_jaxpr_inner(f, axis_size, out_axes_dest)
f = _batch_jaxpr_outer(f, axis_name, axis_size, in_axes, main_type)
avals_in = [core.unmapped_aval(axis_size, axis_name, b, aval) if b is not not_mapped
else aval for aval, b in zip(closed_jaxpr.in_avals, in_axes)]
jaxpr_out, _, consts = pe.trace_to_jaxpr_dynamic(f, avals_in)
return core.ClosedJaxpr(jaxpr_out, consts), out_batched()
@lu.transformation_with_aux
def _batch_jaxpr_inner(axis_size, out_axes_dest, main, in_axes, *in_vals):
trace = main.with_cur_sublevel()
in_tracers = [BatchTracer(trace, val, dim) if dim is not None else val
for val, dim in zip(in_vals, in_axes)]
outs = yield in_tracers, {}
out_tracers = map(trace.full_raise, outs)
out_vals, out_axes = unzip2((t.val, t.batch_dim) for t in out_tracers)
out_axes_dest = [(None if src is not_mapped else 0)
if dst is zero_if_mapped else dst
for src, dst in zip(out_axes, out_axes_dest)]
if len(out_axes_dest) != len(out_axes):
out_axis_dest, = out_axes_dest
out_axes_dest = [out_axis_dest] * len(out_axes)
out_vals = map(partial(matchaxis, trace.axis_name, axis_size),
out_axes, out_axes_dest, out_vals)
out_batched = [dst is not None for dst in out_axes_dest]
yield out_vals, out_batched
@lu.transformation
def _batch_jaxpr_outer(axis_name, axis_size, in_dims, main_type, *in_vals):
if axis_size is None:
axis_size, = {x.shape[d] for x, d in zip(in_vals, in_dims) if d is not not_mapped}
in_dims = in_dims() if callable(in_dims) else in_dims
in_dims = [canonicalize_axis(ax, np.ndim(x)) if isinstance(ax, int)
else ax for x, ax in zip(in_vals, in_dims)]
with core.new_main(main_type, axis_name=axis_name) as main:
with core.extend_axis_env(axis_name, axis_size, main):
out_vals = yield (main, in_dims, *in_vals), {}
del main
yield out_vals
def _merge_bdims(x, y):
if x == y:
return x
elif x is not_mapped:
return y
elif y is not_mapped:
return x
else:
return x # arbitrary
class ZeroIfMapped: pass
zero_if_mapped = ZeroIfMapped()
### functions for handling custom_vjp
@lu.transformation_with_aux
def batch_custom_jvp_subtrace(main, in_dims, *in_vals):
size, = {x.shape[d] for x, d in zip(in_vals, in_dims) if d is not not_mapped}
trace = main.with_cur_sublevel()
in_tracers = [BatchTracer(trace, val, dim) if dim is not None else val
for val, dim in zip(in_vals, in_dims * 2)]
outs = yield in_tracers, {}
out_tracers = map(trace.full_raise, outs)
out_vals, out_dims = unzip2((t.val, t.batch_dim) for t in out_tracers)
out_primals, out_tangents = split_list(out_vals, [len(out_vals) // 2])
out_primal_bds, out_tangent_bds = split_list(out_dims, [len(out_vals) // 2])
out_dims = map(_merge_bdims, out_primal_bds, out_tangent_bds)
out_primals = map(partial(matchaxis, trace.axis_name, size),
out_primal_bds, out_dims, out_primals)
out_tangents = map(partial(matchaxis, trace.axis_name, size),
out_tangent_bds, out_dims, out_tangents)
yield out_primals + out_tangents, out_dims * 2
def batch_custom_vjp_bwd(bwd, axis_name, axis_size, in_dims, out_dim_dests, main_type):
bwd, out_dims_thunk = batch_subtrace(bwd)
bwd_ = _batch_outer(bwd, axis_name, axis_size, in_dims, main_type)
return _match_axes_and_sum(bwd_, axis_size, axis_name, out_dims_thunk, out_dim_dests)
@lu.transformation
def _match_axes_and_sum(axis_size, axis_name, out_dims_thunk, out_dim_dests, *in_vals):
# this is like _match_axes, but we do reduce-sums as needed
out_vals = yield in_vals, {}
yield map(partial(_matchaxis_symbolic_zeros, axis_name, axis_size, axis_name,
sum_match=True), out_dims_thunk(), out_dim_dests, out_vals)
def _matchaxis_symbolic_zeros(axis_name, sz, name, src, dst, x, sum_match=False):
# Just like `matchaxis`, but handles symbolic zeros using ad_util.py
# TODO(mattjj): dedup with matchaxis
if isinstance(x, Zero):
if src == dst:
return x
elif type(src) == type(dst) == int:
aval = core.mapped_aval(sz, src, x.aval)
return Zero(core.unmapped_aval(sz, name, dst, aval))
elif src is not_mapped and dst is not not_mapped:
return Zero(core.unmapped_aval(sz, name, dst, x.aval))
elif dst is not_mapped and sum_match:
return Zero(core.mapped_aval(sz, src, x.aval))
else:
raise ValueError((axis_name, x, src, dst))
else:
return matchaxis(axis_name, sz, src, dst, x, sum_match=sum_match)
### utilities for defining primitives' batching rules
BatchingRule = Callable[..., Tuple[Any, Union[int, Tuple[int, ...]]]]
primitive_batchers : Dict[core.Primitive, BatchingRule] = {}
axis_primitive_batchers: Dict[core.Primitive, Callable] = {}
def defvectorized(prim):
primitive_batchers[prim] = partial(vectorized_batcher, prim)
def vectorized_batcher(prim, batched_args, batch_dims, **params):
assert all(batch_dims[0] == bd for bd in batch_dims[1:]), batch_dims
return prim.bind(*batched_args, **params), batch_dims[0]
def defbroadcasting(prim):
primitive_batchers[prim] = partial(broadcast_batcher, prim)
def broadcast_batcher(prim, args, dims, **params):
"""Process a primitive with built-in broadcasting.
Args:
args: the possibly-batched arguments
dims: list or tuple of the same length as `args`, where each
entry indicates the batching state of the corresponding entry to `args`:
either an int indicating the batch dimension, or else `not_mapped`
indicating no batching.
"""
assert len(args) > 1
shape, dim = next((x.shape, d) for x, d in zip(args, dims)
if d is not not_mapped)
if all(core.symbolic_equal_shape(shape, x.shape) and d == dim
for x, d in zip(args, dims) if np.ndim(x)):
# if there's only agreeing batch dims and scalars, just call the primitive
out = prim.bind(*args, **params)
return (out, (dim,) * len(out)) if prim.multiple_results else (out, dim)
else:
# We pass size of 1 here because (1) at least one argument has a real batch
# dimension and (2) all unmapped axes can have a singleton axis inserted and
# then rely on the primitive's built-in broadcasting.
args = [bdim_at_front(x, d, 1) if np.ndim(x) else x
for x, d in zip(args, dims)]
ndim = max(np.ndim(x) for x in args) # special-case scalar broadcasting
args = [_handle_scalar_broadcasting(ndim, x, d) for x, d in zip(args, dims)]
out = prim.bind(*args, **params)
return (out, (0,) * len(out)) if prim.multiple_results else (out, 0)
def _handle_scalar_broadcasting(nd, x, d):
if d is not_mapped or nd == np.ndim(x):
return x
else:
return jax.lax.expand_dims(x, tuple(range(np.ndim(x), nd)))
def defreducer(prim):
primitive_batchers[prim] = partial(reducer_batcher, prim)
def reducer_batcher(prim, batched_args, batch_dims, axes, **params):
operand, = batched_args
bdim, = batch_dims
axes = tuple(np.where(np.less(axes, bdim), axes, np.add(axes, 1)))
bdim_out = int(list(np.delete(np.arange(operand.ndim), axes)).index(bdim))
if 'input_shape' in params:
params = dict(params, input_shape=operand.shape)
return prim.bind(operand, axes=axes, **params), bdim_out
### general utilities for manipulating axes on jaxpr types (not vmappables)
def broadcast(x, sz, axis):
shape = list(np.shape(x))
shape.insert(axis, sz)
broadcast_dims = tuple(np.delete(np.arange(len(shape)), axis))
return jax.lax.broadcast_in_dim(x, shape, broadcast_dims)
def matchaxis(axis_name, sz, src, dst, x, sum_match=False):
try:
_ = core.get_aval(x)
except TypeError as e:
raise TypeError(f"Output from batched function {repr(x)} with type "
f"{type(x)} is not a valid JAX type") from e
if src == dst:
return x
elif type(src) == type(dst) == int:
return moveaxis(x, src, dst)
elif src is not_mapped and dst is not not_mapped:
return broadcast(x, sz, canonicalize_axis(dst, np.ndim(x) + 1))
elif dst is not_mapped and sum_match:
return x.sum(src)
else:
if (not isinstance(axis_name, core._TempAxisName) and
axis_name is not core.no_axis_name):
raise ValueError(f'vmap has mapped output (axis_name={axis_name}) '
f'but out_axes is {dst}')
else:
raise ValueError(f'vmap has mapped output but out_axes is {dst}')
def bdim_at_front(x, bdim, size):
if bdim is not_mapped:
return broadcast(x, size, 0)
else:
return moveaxis(x, bdim, 0)
# sets up primitive batchers for ad_util and xla primitives
def add_batched(batched_args, batch_dims):
bdx, bdy = batch_dims
x, y = batched_args
if bdx == bdy:
return add_jaxvals(x, y), bdx
elif bdx is not_mapped:
x = broadcast(x, y.shape[bdy], bdy)
return add_jaxvals(x, y), bdy
elif bdy is not_mapped:
y = broadcast(y, x.shape[bdx], bdx)
return add_jaxvals(x, y), bdx
else:
x = moveaxis(x, bdx, bdy)
return add_jaxvals(x, y), bdy
primitive_batchers[add_jaxvals_p] = add_batched
def zeros_like_batched(batched_args, batch_dims):
val, = batched_args
bdim, = batch_dims
return zeros_like_jaxval(val), bdim
primitive_batchers[zeros_like_p] = zeros_like_batched