rocm_jax/jaxlib/rocm/hipsolver_kernels.cc
Peter Hawkins 93b839ace4 Use input-output aliasing for jaxlib GPU custom calls.
Previously we had no way to tell XLA that inputs and outputs of GPU custom calls must alias. This now works in XLA:GPU so we can just ask XLA to enforce the aliasing we need.

PiperOrigin-RevId: 479642543
2022-10-07 12:22:04 -07:00

678 lines
24 KiB
C++

/* Copyright 2021 The JAX Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "jaxlib/rocm/hipsolver_kernels.h"
#include <algorithm>
#include <cstdint>
#include <stdexcept>
#include <utility>
#include <vector>
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "absl/synchronization/mutex.h"
#include "jaxlib/handle_pool.h"
#include "jaxlib/rocm/hip_gpu_kernel_helpers.h"
#include "jaxlib/kernel_helpers.h"
#include "rocm/include/hip/hip_runtime_api.h"
#include "rocm/include/hipsolver.h"
#include "tensorflow/compiler/xla/service/custom_call_status.h"
namespace jax {
template <>
/*static*/ absl::StatusOr<SolverHandlePool::Handle>
SolverHandlePool::Borrow(hipStream_t stream) {
SolverHandlePool* pool = Instance();
absl::MutexLock lock(&pool->mu_);
hipsolverHandle_t handle;
if (pool->handles_[stream].empty()) {
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(hipsolverCreate(&handle)));
} else {
handle = pool->handles_[stream].back();
pool->handles_[stream].pop_back();
}
if (stream) {
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(hipsolverSetStream(handle, stream)));
}
return Handle(pool, handle, stream);
}
static int SizeOfHipsolverType(HipsolverType type) {
switch (type) {
case HipsolverType::F32:
return sizeof(float);
case HipsolverType::F64:
return sizeof(double);
case HipsolverType::C64:
return sizeof(hipFloatComplex);
case HipsolverType::C128:
return sizeof(hipDoubleComplex);
}
}
// potrf: Cholesky decomposition
static absl::Status Potrf_(hipStream_t stream, void** buffers,
const char* opaque, size_t opaque_len) {
auto s = UnpackDescriptor<PotrfDescriptor>(opaque, opaque_len);
JAX_RETURN_IF_ERROR(s.status());
const PotrfDescriptor& d = **s;
auto h = SolverHandlePool::Borrow(stream);
JAX_RETURN_IF_ERROR(h.status());
auto& handle = *h;
int* info = static_cast<int*>(buffers[2]);
void* workspace = buffers[3];
if (d.batch == 1) {
switch (d.type) {
case HipsolverType::F32: {
float* a = static_cast<float*>(buffers[1]);
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
hipsolverSpotrf(handle.get(), d.uplo, d.n, a, d.n,
static_cast<float*>(workspace), d.lwork, info)));
break;
}
case HipsolverType::F64: {
double* a = static_cast<double*>(buffers[1]);
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
hipsolverDpotrf(handle.get(), d.uplo, d.n, a, d.n,
static_cast<double*>(workspace), d.lwork, info)));
break;
}
case HipsolverType::C64: {
hipFloatComplex* a = static_cast<hipFloatComplex*>(buffers[1]);
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(hipsolverCpotrf(
handle.get(), d.uplo, d.n, a, d.n,
static_cast<hipFloatComplex*>(workspace), d.lwork, info)));
break;
}
case HipsolverType::C128: {
hipDoubleComplex* a = static_cast<hipDoubleComplex*>(buffers[1]);
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(hipsolverZpotrf(
handle.get(), d.uplo, d.n, a, d.n,
static_cast<hipDoubleComplex*>(workspace), d.lwork, info)));
break;
}
}
} else {
auto buffer_ptrs_host =
MakeBatchPointers(stream, buffers[1], workspace, d.batch,
SizeOfHipsolverType(d.type) * d.n * d.n);
JAX_RETURN_IF_ERROR(buffer_ptrs_host.status());
// Make sure that accesses to buffer_ptrs_host complete before we delete it.
// TODO(phawkins): avoid synchronization here.
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(hipStreamSynchronize(stream)));
switch (d.type) {
case HipsolverType::F32: {
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(hipsolverSpotrfBatched(
handle.get(), d.uplo, d.n, static_cast<float**>(workspace), d.n,
reinterpret_cast<float*>(static_cast<float**>(workspace) + d.batch),
d.lwork, info, d.batch)));
break;
}
case HipsolverType::F64: {
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(hipsolverDpotrfBatched(
handle.get(), d.uplo, d.n, static_cast<double**>(workspace), d.n,
reinterpret_cast<double*>(static_cast<double**>(workspace) + d.batch),
d.lwork, info, d.batch)));
break;
}
case HipsolverType::C64: {
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(hipsolverCpotrfBatched(
handle.get(), d.uplo, d.n, static_cast<hipFloatComplex**>(workspace), d.n,
reinterpret_cast<hipFloatComplex*>(static_cast<hipFloatComplex**>(workspace) +
d.batch), d.lwork, info, d.batch)));
break;
}
case HipsolverType::C128: {
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(hipsolverZpotrfBatched(
handle.get(), d.uplo, d.n, static_cast<hipDoubleComplex**>(workspace), d.n,
reinterpret_cast<hipDoubleComplex*>(static_cast<hipDoubleComplex**>(workspace) +
d.batch), d.lwork, info, d.batch)));
break;
}
}
}
return absl::OkStatus();
}
void Potrf(hipStream_t stream, void** buffers, const char* opaque,
size_t opaque_len, XlaCustomCallStatus* status) {
auto s = Potrf_(stream, buffers, opaque, opaque_len);
if (!s.ok()) {
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
s.message().length());
}
}
// getrf: LU decomposition
static absl::Status Getrf_(hipStream_t stream, void** buffers,
const char* opaque, size_t opaque_len) {
auto s = UnpackDescriptor<GetrfDescriptor>(opaque, opaque_len);
JAX_RETURN_IF_ERROR(s.status());
const GetrfDescriptor& d = **s;
auto h = SolverHandlePool::Borrow(stream);
JAX_RETURN_IF_ERROR(h.status());
auto& handle = *h;
int* ipiv = static_cast<int*>(buffers[2]);
int* info = static_cast<int*>(buffers[3]);
void* workspace = buffers[4];
switch (d.type) {
case HipsolverType::F32: {
float* a = static_cast<float*>(buffers[1]);
for (int i = 0; i < d.batch; ++i) {
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
hipsolverSgetrf(handle.get(), d.m, d.n, a, d.m,
static_cast<float*>(workspace), d.lwork, ipiv, info)));
a += d.m * d.n;
ipiv += std::min(d.m, d.n);
++info;
}
break;
}
case HipsolverType::F64: {
double* a = static_cast<double*>(buffers[1]);
for (int i = 0; i < d.batch; ++i) {
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
hipsolverDgetrf(handle.get(), d.m, d.n, a, d.m,
static_cast<double*>(workspace), d.lwork, ipiv, info)));
a += d.m * d.n;
ipiv += std::min(d.m, d.n);
++info;
}
break;
}
case HipsolverType::C64: {
hipFloatComplex* a = static_cast<hipFloatComplex*>(buffers[1]);
for (int i = 0; i < d.batch; ++i) {
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
hipsolverCgetrf(handle.get(), d.m, d.n, a, d.m,
static_cast<hipFloatComplex*>(workspace), d.lwork, ipiv, info)));
a += d.m * d.n;
ipiv += std::min(d.m, d.n);
++info;
}
break;
}
case HipsolverType::C128: {
hipDoubleComplex* a = static_cast<hipDoubleComplex*>(buffers[1]);
for (int i = 0; i < d.batch; ++i) {
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(hipsolverZgetrf(
handle.get(), d.m, d.n, a, d.m,
static_cast<hipDoubleComplex*>(workspace), d.lwork, ipiv, info)));
a += d.m * d.n;
ipiv += std::min(d.m, d.n);
++info;
}
break;
}
}
return absl::OkStatus();
}
void Getrf(hipStream_t stream, void** buffers, const char* opaque,
size_t opaque_len, XlaCustomCallStatus* status) {
auto s = Getrf_(stream, buffers, opaque, opaque_len);
if (!s.ok()) {
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
s.message().length());
}
}
// geqrf: QR decomposition
static absl::Status Geqrf_(hipStream_t stream, void** buffers,
const char* opaque, size_t opaque_len) {
auto s = UnpackDescriptor<GeqrfDescriptor>(opaque, opaque_len);
JAX_RETURN_IF_ERROR(s.status());
const GeqrfDescriptor& d = **s;
auto h = SolverHandlePool::Borrow(stream);
JAX_RETURN_IF_ERROR(h.status());
auto& handle = *h;
int* info = static_cast<int*>(buffers[3]);
void* workspace = buffers[4];
switch (d.type) {
case HipsolverType::F32: {
float* a = static_cast<float*>(buffers[1]);
float* tau = static_cast<float*>(buffers[2]);
for (int i = 0; i < d.batch; ++i) {
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
hipsolverSgeqrf(handle.get(), d.m, d.n, a, d.m, tau,
static_cast<float*>(workspace), d.lwork, info)));
a += d.m * d.n;
tau += std::min(d.m, d.n);
++info;
}
break;
}
case HipsolverType::F64: {
double* a = static_cast<double*>(buffers[1]);
double* tau = static_cast<double*>(buffers[2]);
for (int i = 0; i < d.batch; ++i) {
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
hipsolverDgeqrf(handle.get(), d.m, d.n, a, d.m, tau,
static_cast<double*>(workspace), d.lwork, info)));
a += d.m * d.n;
tau += std::min(d.m, d.n);
++info;
}
break;
}
case HipsolverType::C64: {
hipFloatComplex* a = static_cast<hipFloatComplex*>(buffers[1]);
hipFloatComplex* tau = static_cast<hipFloatComplex*>(buffers[2]);
for (int i = 0; i < d.batch; ++i) {
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(hipsolverCgeqrf(
handle.get(), d.m, d.n, a, d.m, tau,
static_cast<hipFloatComplex*>(workspace), d.lwork, info)));
a += d.m * d.n;
tau += std::min(d.m, d.n);
++info;
}
break;
}
case HipsolverType::C128: {
hipDoubleComplex* a = static_cast<hipDoubleComplex*>(buffers[1]);
hipDoubleComplex* tau = static_cast<hipDoubleComplex*>(buffers[2]);
for (int i = 0; i < d.batch; ++i) {
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(hipsolverZgeqrf(
handle.get(), d.m, d.n, a, d.m, tau,
static_cast<hipDoubleComplex*>(workspace), d.lwork, info)));
a += d.m * d.n;
tau += std::min(d.m, d.n);
++info;
}
break;
}
}
return absl::OkStatus();
}
void Geqrf(hipStream_t stream, void** buffers, const char* opaque,
size_t opaque_len, XlaCustomCallStatus* status) {
auto s = Geqrf_(stream, buffers, opaque, opaque_len);
if (!s.ok()) {
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
s.message().length());
}
}
// orgqr/ungqr: apply elementary Householder transformations
static absl::Status Orgqr_(hipStream_t stream, void** buffers,
const char* opaque, size_t opaque_len) {
auto s = UnpackDescriptor<OrgqrDescriptor>(opaque, opaque_len);
JAX_RETURN_IF_ERROR(s.status());
const OrgqrDescriptor& d = **s;
auto h = SolverHandlePool::Borrow(stream);
JAX_RETURN_IF_ERROR(h.status());
auto& handle = *h;
int* info = static_cast<int*>(buffers[3]);
void* workspace = buffers[4];
switch (d.type) {
case HipsolverType::F32: {
float* a = static_cast<float*>(buffers[2]);
float* tau = static_cast<float*>(buffers[1]);
for (int i = 0; i < d.batch; ++i) {
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
hipsolverSorgqr(handle.get(), d.m, d.n, d.k, a, d.m, tau,
static_cast<float*>(workspace), d.lwork, info)));
a += d.m * d.n;
tau += d.k;
++info;
}
break;
}
case HipsolverType::F64: {
double* a = static_cast<double*>(buffers[2]);
double* tau = static_cast<double*>(buffers[1]);
for (int i = 0; i < d.batch; ++i) {
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
hipsolverDorgqr(handle.get(), d.m, d.n, d.k, a, d.m, tau,
static_cast<double*>(workspace), d.lwork, info)));
a += d.m * d.n;
tau += d.k;
++info;
}
break;
}
case HipsolverType::C64: {
hipFloatComplex* a = static_cast<hipFloatComplex*>(buffers[2]);
hipFloatComplex* tau = static_cast<hipFloatComplex*>(buffers[1]);
for (int i = 0; i < d.batch; ++i) {
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(hipsolverCungqr(
handle.get(), d.m, d.n, d.k, a, d.m, tau,
static_cast<hipFloatComplex*>(workspace), d.lwork, info)));
a += d.m * d.n;
tau += d.k;
++info;
}
break;
}
case HipsolverType::C128: {
hipDoubleComplex* a = static_cast<hipDoubleComplex*>(buffers[2]);
hipDoubleComplex* tau = static_cast<hipDoubleComplex*>(buffers[1]);
for (int i = 0; i < d.batch; ++i) {
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(hipsolverZungqr(
handle.get(), d.m, d.n, d.k, a, d.m, tau,
static_cast<hipDoubleComplex*>(workspace), d.lwork, info)));
a += d.m * d.n;
tau += d.k;
++info;
}
break;
}
}
return absl::OkStatus();
}
void Orgqr(hipStream_t stream, void** buffers, const char* opaque,
size_t opaque_len, XlaCustomCallStatus* status) {
auto s = Orgqr_(stream, buffers, opaque, opaque_len);
if (!s.ok()) {
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
s.message().length());
}
}
// Symmetric (Hermitian) eigendecomposition, QR algorithm: syevd/heevd
static absl::Status Syevd_(hipStream_t stream, void** buffers,
const char* opaque, size_t opaque_len) {
auto s = UnpackDescriptor<SyevdDescriptor>(opaque, opaque_len);
JAX_RETURN_IF_ERROR(s.status());
const SyevdDescriptor& d = **s;
auto h = SolverHandlePool::Borrow(stream);
JAX_RETURN_IF_ERROR(h.status());
auto& handle = *h;
hipsolverEigMode_t jobz = HIPSOLVER_EIG_MODE_VECTOR;
int* info = static_cast<int*>(buffers[3]);
void* work = buffers[4];
switch (d.type) {
case HipsolverType::F32: {
float* a = static_cast<float*>(buffers[1]);
float* w = static_cast<float*>(buffers[2]);
for (int i = 0; i < d.batch; ++i) {
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
hipsolverSsyevd(handle.get(), jobz, d.uplo, d.n, a, d.n, w,
static_cast<float*>(work), d.lwork, info)));
a += d.n * d.n;
w += d.n;
++info;
}
break;
}
case HipsolverType::F64: {
double* a = static_cast<double*>(buffers[1]);
double* w = static_cast<double*>(buffers[2]);
for (int i = 0; i < d.batch; ++i) {
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
hipsolverDsyevd(handle.get(), jobz, d.uplo, d.n, a, d.n, w,
static_cast<double*>(work), d.lwork, info)));
a += d.n * d.n;
w += d.n;
++info;
}
break;
}
case HipsolverType::C64: {
hipFloatComplex* a = static_cast<hipFloatComplex*>(buffers[1]);
float* w = static_cast<float*>(buffers[2]);
for (int i = 0; i < d.batch; ++i) {
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
hipsolverCheevd(handle.get(), jobz, d.uplo, d.n, a, d.n, w,
static_cast<hipFloatComplex*>(work), d.lwork, info)));
a += d.n * d.n;
w += d.n;
++info;
}
break;
}
case HipsolverType::C128: {
hipDoubleComplex* a = static_cast<hipDoubleComplex*>(buffers[1]);
double* w = static_cast<double*>(buffers[2]);
for (int i = 0; i < d.batch; ++i) {
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(hipsolverZheevd(
handle.get(), jobz, d.uplo, d.n, a, d.n, w,
static_cast<hipDoubleComplex*>(work), d.lwork, info)));
a += d.n * d.n;
w += d.n;
++info;
}
break;
}
}
return absl::OkStatus();
}
void Syevd(hipStream_t stream, void** buffers, const char* opaque,
size_t opaque_len, XlaCustomCallStatus* status) {
auto s = Syevd_(stream, buffers, opaque, opaque_len);
if (!s.ok()) {
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
s.message().length());
}
}
// Symmetric (Hermitian) eigendecomposition, Jacobi algorithm: syevj/heevj
// Supports batches of matrices up to size 32.
absl::Status Syevj_(hipStream_t stream, void** buffers, const char* opaque,
size_t opaque_len) {
auto s = UnpackDescriptor<SyevjDescriptor>(opaque, opaque_len);
JAX_RETURN_IF_ERROR(s.status());
const SyevjDescriptor& d = **s;
auto h = SolverHandlePool::Borrow(stream);
JAX_RETURN_IF_ERROR(h.status());
auto& handle = *h;
hipsolverSyevjInfo_t params;
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(hipsolverCreateSyevjInfo(&params)));
std::unique_ptr<void, void (*)(hipsolverSyevjInfo_t)> params_cleanup(
params, [](hipsolverSyevjInfo_t p) { hipsolverDestroySyevjInfo(p); });
hipsolverEigMode_t jobz = HIPSOLVER_EIG_MODE_VECTOR;
int* info = static_cast<int*>(buffers[3]);
void* work = buffers[4];
if (d.batch == 1) {
switch (d.type) {
case HipsolverType::F32: {
float* a = static_cast<float*>(buffers[1]);
float* w = static_cast<float*>(buffers[2]);
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(hipsolverSsyevj(
handle.get(), jobz, d.uplo, d.n, a, d.n, w,
static_cast<float*>(work), d.lwork, info, params)));
break;
}
case HipsolverType::F64: {
double* a = static_cast<double*>(buffers[1]);
double* w = static_cast<double*>(buffers[2]);
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(hipsolverDsyevj(
handle.get(), jobz, d.uplo, d.n, a, d.n, w,
static_cast<double*>(work), d.lwork, info, params)));
break;
}
case HipsolverType::C64: {
hipFloatComplex* a = static_cast<hipFloatComplex*>(buffers[1]);
float* w = static_cast<float*>(buffers[2]);
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(hipsolverCheevj(
handle.get(), jobz, d.uplo, d.n, a, d.n, w,
static_cast<hipFloatComplex*>(work), d.lwork, info, params)));
break;
}
case HipsolverType::C128: {
hipDoubleComplex* a = static_cast<hipDoubleComplex*>(buffers[1]);
double* w = static_cast<double*>(buffers[2]);
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(hipsolverZheevj(
handle.get(), jobz, d.uplo, d.n, a, d.n, w,
static_cast<hipDoubleComplex*>(work), d.lwork, info, params)));
break;
}
}
} else {
switch (d.type) {
case HipsolverType::F32: {
float* a = static_cast<float*>(buffers[1]);
float* w = static_cast<float*>(buffers[2]);
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(hipsolverSsyevjBatched(
handle.get(), jobz, d.uplo, d.n, a, d.n, w,
static_cast<float*>(work), d.lwork, info, params, d.batch)));
break;
}
case HipsolverType::F64: {
double* a = static_cast<double*>(buffers[1]);
double* w = static_cast<double*>(buffers[2]);
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(hipsolverDsyevjBatched(
handle.get(), jobz, d.uplo, d.n, a, d.n, w,
static_cast<double*>(work), d.lwork, info, params, d.batch)));
break;
}
case HipsolverType::C64: {
hipFloatComplex* a = static_cast<hipFloatComplex*>(buffers[1]);
float* w = static_cast<float*>(buffers[2]);
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(hipsolverCheevjBatched(
handle.get(), jobz, d.uplo, d.n, a, d.n, w,
static_cast<hipFloatComplex*>(work), d.lwork, info, params, d.batch)));
break;
}
case HipsolverType::C128: {
hipDoubleComplex* a = static_cast<hipDoubleComplex*>(buffers[1]);
double* w = static_cast<double*>(buffers[2]);
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
hipsolverZheevjBatched(handle.get(), jobz, d.uplo, d.n, a, d.n, w,
static_cast<hipDoubleComplex*>(work),
d.lwork, info, params, d.batch)));
break;
}
}
}
return absl::OkStatus();
}
void Syevj(hipStream_t stream, void** buffers, const char* opaque,
size_t opaque_len, XlaCustomCallStatus* status) {
auto s = Syevj_(stream, buffers, opaque, opaque_len);
if (!s.ok()) {
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
s.message().length());
}
}
// Singular value decomposition using QR algorithm: gesvd
static absl::Status Gesvd_(hipStream_t stream, void** buffers,
const char* opaque, size_t opaque_len) {
auto s = UnpackDescriptor<GesvdDescriptor>(opaque, opaque_len);
JAX_RETURN_IF_ERROR(s.status());
const GesvdDescriptor& d = **s;
auto h = SolverHandlePool::Borrow(stream);
JAX_RETURN_IF_ERROR(h.status());
auto& handle = *h;
int* info = static_cast<int*>(buffers[5]);
void* work = buffers[6];
switch (d.type) {
case HipsolverType::F32: {
float* a = static_cast<float*>(buffers[1]);
float* s = static_cast<float*>(buffers[2]);
float* u = static_cast<float*>(buffers[3]);
float* vt = static_cast<float*>(buffers[4]);
for (int i = 0; i < d.batch; ++i) {
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(
hipsolverSgesvd(handle.get(), d.jobu, d.jobvt, d.m, d.n, a, d.m, s,
u, d.m, vt, d.n, static_cast<float*>(work), d.lwork,
/*rwork=*/nullptr, info)));
a += d.m * d.n;
s += std::min(d.m, d.n);
u += d.m * d.m;
vt += d.n * d.n;
++info;
}
break;
}
case HipsolverType::F64: {
double* a = static_cast<double*>(buffers[1]);
double* s = static_cast<double*>(buffers[2]);
double* u = static_cast<double*>(buffers[3]);
double* vt = static_cast<double*>(buffers[4]);
for (int i = 0; i < d.batch; ++i) {
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(hipsolverDgesvd(
handle.get(), d.jobu, d.jobvt, d.m, d.n, a, d.m, s, u, d.m, vt, d.n,
static_cast<double*>(work), d.lwork,
/*rwork=*/nullptr, info)));
a += d.m * d.n;
s += std::min(d.m, d.n);
u += d.m * d.m;
vt += d.n * d.n;
++info;
}
break;
}
case HipsolverType::C64: {
hipFloatComplex* a = static_cast<hipFloatComplex*>(buffers[1]);
float* s = static_cast<float*>(buffers[2]);
hipFloatComplex* u = static_cast<hipFloatComplex*>(buffers[3]);
hipFloatComplex* vt = static_cast<hipFloatComplex*>(buffers[4]);
for (int i = 0; i < d.batch; ++i) {
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(hipsolverCgesvd(
handle.get(), d.jobu, d.jobvt, d.m, d.n, a, d.m, s, u, d.m, vt, d.n,
static_cast<hipFloatComplex*>(work), d.lwork, /*rwork=*/nullptr, info)));
a += d.m * d.n;
s += std::min(d.m, d.n);
u += d.m * d.m;
vt += d.n * d.n;
++info;
}
break;
}
case HipsolverType::C128: {
hipDoubleComplex* a = static_cast<hipDoubleComplex*>(buffers[1]);
double* s = static_cast<double*>(buffers[2]);
hipDoubleComplex* u = static_cast<hipDoubleComplex*>(buffers[3]);
hipDoubleComplex* vt = static_cast<hipDoubleComplex*>(buffers[4]);
for (int i = 0; i < d.batch; ++i) {
JAX_RETURN_IF_ERROR(JAX_AS_STATUS(hipsolverZgesvd(
handle.get(), d.jobu, d.jobvt, d.m, d.n, a, d.m, s, u, d.m, vt, d.n,
static_cast<hipDoubleComplex*>(work), d.lwork,
/*rwork=*/nullptr, info)));
a += d.m * d.n;
s += std::min(d.m, d.n);
u += d.m * d.m;
vt += d.n * d.n;
++info;
}
break;
}
}
return absl::OkStatus();
}
void Gesvd(hipStream_t stream, void** buffers, const char* opaque,
size_t opaque_len, XlaCustomCallStatus* status) {
auto s = Gesvd_(stream, buffers, opaque, opaque_len);
if (!s.ok()) {
XlaCustomCallStatusSetFailure(status, std::string(s.message()).c_str(),
s.message().length());
}
}
// TODO(rocm): add Gesvdj_ apis when support from hipsolver is ready
} // namespace jax