George Necula 961e09e614 [shape_poly, call_tf] Some improvements for call_tf in a shape polymorphic program
This is another attempt to land a rolled-back change https://github.com/google/jax/pull/14734 (cl/514070997).
See b/272154366 for more details.

The use case for call_tf with shape polymorphism is when we have a JAX program
that calls into TF function, and we want to serialize the JAX program with
some shapes unknown. Previously this use case did not work, except in the special
case when the output shape of the called TF function returns statically known
shapes.

The idea is that we allow the user of call_tf to specify the output shape.
This can be done even in presence of shape polymorphism, by writing the
output shape as an expression in terms of the input shapes. This is what
other JAX primitives do, e.g., concat, so we are simply enabling call_tf
to get the same behavior.

This change should be enough for old-style jax2tf, but will require more
work for native serialization.

We also removed some old code that was trying to workaround some limitations
in shape inference in TF. I think that those workarounds are ugly, and I am
prepared to give error messages rather than keep that code. So far no
tests fail.

PiperOrigin-RevId: 515137407
2023-03-08 14:10:08 -08:00

1312 lines
46 KiB
Python

# Copyright 2020 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for call_tf."""
from functools import partial
from typing import Callable, Dict, Tuple
import unittest
from absl.testing import absltest
from absl.testing import parameterized
import jax
from jax import dtypes
from jax import lax
from jax import numpy as jnp
from jax._src import test_util as jtu
from jax.config import config
from jax.experimental import jax2tf
from jax.experimental.jax2tf.tests import tf_test_util
import numpy as np
try:
import tensorflow as tf # type: ignore[import]
except ImportError:
tf = None
config.parse_flags_with_absl()
def _maybe_jit(with_jit: bool, func: Callable) -> Callable:
if with_jit:
return jax.jit(func)
else:
return func
def _maybe_tf_jit(with_jit: bool, func: Callable) -> Callable:
if with_jit:
return tf.function(func, autograph=False, jit_compile=True)
else:
return func
def _named_test(**kwargs):
return dict(kwargs,
testcase_name = "_".join([f"{k}={kwargs[k]}" for k in sorted(kwargs.keys())]))
_parameterized_jit = parameterized.named_parameters(
_named_test(with_jit=with_jit)
for with_jit in [True, False])
_call_tf_non_compileable_error = "Error compiling TensorFlow function. call_tf can used in a staged context .* only with compileable functions"
_call_tf_dynamic_shape_error = "call_tf cannot call functions whose output has dynamic shape"
class CallTfTest(tf_test_util.JaxToTfTestCase):
def setUp(self):
if tf is None:
raise unittest.SkipTest("Test requires tensorflow")
# TODO(b/171320191): this line works around a missing context initialization
# bug in TensorFlow.
_ = tf.add(1, 1)
super().setUp()
@_parameterized_jit
def test_eval_scalar_arg(self, with_jit=True):
def f_tf(x):
return tf.math.sin(x)
x = 3.
res = _maybe_jit(with_jit, jax2tf.call_tf(f_tf))(x)
self.assertAllClose(jnp.sin(x), res)
@_parameterized_jit
def test_eval_scalar_res(self, with_jit=True):
x = 3.
res = _maybe_jit(with_jit, jax2tf.call_tf(lambda x: 4.))(x)
self.assertAllClose(4., res, check_dtypes=False)
@_parameterized_jit
def test_eval_numpy_arg(self, with_jit=True):
x = np.ones((2, 3), dtype=np.float32)
res = _maybe_jit(with_jit, jax2tf.call_tf(tf.math.sin))(x)
self.assertAllClose(jnp.sin(x), res)
@_parameterized_jit
def test_eval_numpy_res(self, with_jit=False):
x = np.ones((2, 3))
res = _maybe_jit(with_jit, jax2tf.call_tf(lambda _: x))(x)
self.assertAllClose(x, res)
def test_eval_numpy_no_copy(self):
if jtu.device_under_test() != "cpu":
raise unittest.SkipTest("no_copy test works only on CPU")
# For ndarray, zero-copy only works for sufficiently-aligned arrays.
x = np.ones((16, 16), dtype=np.float32)
res = jax2tf.call_tf(lambda x: x)(x)
self.assertAllClose(x, res)
self.assertTrue(np.shares_memory(x, res))
@_parameterized_jit
def test_eval_devicearray_arg(self, with_jit=False):
x = jnp.ones((2, 3), dtype=np.float32)
res = _maybe_jit(with_jit, jax2tf.call_tf(tf.math.sin))(x)
self.assertAllClose(jnp.sin(x), res)
def test_eval_devicearray_no_copy(self):
if jtu.device_under_test() != "cpu":
# TODO(necula): add tests for GPU and TPU
raise unittest.SkipTest("no_copy test works only on CPU")
# For DeviceArray zero-copy works even if not aligned
x = jnp.ones((3, 3))
res = jax2tf.call_tf(lambda x: x)(x)
self.assertAllClose(x, res)
self.assertTrue(np.shares_memory(x, res))
x = jnp.array(3.0, dtype=jnp.bfloat16)
res = jax2tf.call_tf(lambda x: x)(x)
self.assertAllClose(x, res)
# bfloat16 scalar will create a copy.
with self.assertRaises(AssertionError):
self.assertTrue(np.shares_memory(x, res))
@_parameterized_jit
def test_eval_pytree(self, with_jit=True):
def fun_tf(x: Dict, y: Tuple) -> Tuple:
return (x["first"] * x["second"], y[0] + y[1])
x = dict(first=np.float32(3.), second=np.float32(4.))
y = (np.float64(5.), np.float64(6.))
fun_jax = _maybe_jit(with_jit, jax2tf.call_tf(fun_tf))
res = fun_jax(x, y)
self.assertAllClose((np.float32(12.), np.float64(11.)), res)
def test_result_tuple(self):
x1 = np.ones(3, dtype=np.int32)
x2 = np.ones(5, dtype=np.float32)
def fun_tf():
return tf.tuple([x1, x2])
fun_jax = jax.jit(jax2tf.call_tf(fun_tf))
res = fun_jax()
self.assertAllClose(res, (x1, x2))
def test_error_non_compileable_strings(self):
# Check that in op-by-op we call a function in eager mode.
def f_tf_non_compileable(x):
return tf.strings.length(tf.strings.format("Hello {}!", [x]))
f_jax = jax2tf.call_tf(f_tf_non_compileable)
x = np.float32(0.7)
self.assertAllClose(f_tf_non_compileable(x).numpy(), f_jax(x))
with self.assertRaisesRegex(ValueError,
_call_tf_non_compileable_error):
jax.jit(f_jax)(x)
with self.assertRaisesRegex(ValueError,
_call_tf_non_compileable_error):
lax.cond(True, lambda x: f_jax(x), lambda x: f_jax(x), x)
def test_error_non_compileable_dynamic_shape(self):
# Check that in op-by-op we call a function in eager mode.
def f_tf_non_compileable(x):
return tf.cond(x[0], lambda: x[1:], lambda: x)
f_jax = jax2tf.call_tf(f_tf_non_compileable)
x = np.array([True, False], dtype=np.bool_)
self.assertAllClose(f_tf_non_compileable(x), f_jax(x)) # Works in eager mode
with self.assertRaisesRegex(ValueError, _call_tf_dynamic_shape_error):
jax.jit(f_jax)(x)
def test_error_bad_result_tensorarray(self):
# Call a function that returns a tf.TensorArray. This should be detected
# early on. If we don't the function is actually compileable but returns
# a tuple instead of a single result.
def fun_tf():
ta = tf.TensorArray(tf.int32, size=0, dynamic_size=True)
ta = ta.unstack([0, 1, 2, 3, 4])
return ta
with self.assertRaisesRegex(ValueError,
"The called TF function returns a result that is not convertible to JAX"):
fun_jax = jax.jit(jax2tf.call_tf(fun_tf))
fun_jax()
def test_error_bad_result_string(self):
def fun_tf():
return tf.constant("foo")
# Now under jit, should fail because the function is not compileable
with self.assertRaisesRegex(ValueError,
"The called TF function returns a result that is not convertible to JAX"):
fun_jax = jax.jit(jax2tf.call_tf(fun_tf))
fun_jax()
@_parameterized_jit
def test_control_flow(self, with_jit=True):
def times_5_tf(x):
# Multiply x * 5 using a loop
c = lambda i, acc: tf.less(i, 5)
b = lambda i, acc: (tf.add(i, 1), tf.add(acc, x))
_, acc = tf.while_loop(c, b, [tf.constant(0), tf.constant(0.)])
return acc
def fun_jax(x):
# Calls times_5_tf 3 times in a loop
def body(_, acc):
return jax2tf.call_tf(times_5_tf)(acc)
return lax.fori_loop(0, 3, body, x)
x = np.float32(3.)
res = _maybe_jit(with_jit, fun_jax)(x)
self.assertAllClose(np.float32(x * 5 * 5 * 5), res)
@parameterized.named_parameters(
dict(
testcase_name=f"_{dtype.__name__}{'_jit' if with_jit else ''}",
dtype=dtype,
with_jit=with_jit)
for dtype in set(jtu.dtypes.all) - {np.bool_}
for with_jit in [True, False])
def test_dtypes(self, dtype=np.int32, with_jit=True):
def fun_tf(x):
# AddV2 supports more types
return tf.raw_ops.AddV2(x=x, y=tf.constant(3, dtype=dtype))
def fun_jax(x):
return jax2tf.call_tf(fun_tf)(x) + x
x = np.ones((3,), dtype=dtype)
res = _maybe_jit(with_jit, fun_jax)(x)
self.assertAllClose(dtype(2 * x + 3), res)
@_parameterized_jit
def test_bool(self, with_jit=False):
def fun_tf(x, y):
return tf.math.logical_and(x, y)
x = np.array([True, False, True, False], dtype=np.bool_)
y = np.array([True, True, False, False], dtype=np.bool_)
res = _maybe_jit(with_jit, jax2tf.call_tf(fun_tf))(x, y)
self.assertAllClose(
np.array([True, False, False, False], dtype=np.bool_), res)
@_parameterized_jit
def test_x64_input(self, with_jit=True):
def f_tf(x):
return tf.math.sin(x)
x = 5. # TF interprets this as f64
res_call_tf = _maybe_jit(with_jit, jax2tf.call_tf(f_tf))(x)
res_jax = jnp.sin(x)
self.assertAllClose(res_call_tf, res_jax)
@_parameterized_jit
def test_x64_output(self, with_jit=True):
def f_tf(x):
return (tf.constant(3., tf.float64), x)
x = np.float32(5.)
res_call_tf = _maybe_jit(with_jit, jax2tf.call_tf(f_tf))(x)
res_jax = (3., x)
self.assertAllClose(res_call_tf, res_jax)
res_call_tf_jit = jax.jit(jax2tf.call_tf(f_tf))(x)
self.assertAllClose(res_call_tf_jit, res_jax)
@_parameterized_jit
def test_with_var_read(self, with_jit=True):
# The variable is placed on the default TF device.
outer_var_array = np.array([3., 4.], dtype=np.float32)
outer_var = tf.Variable(outer_var_array)
def fun_tf(x):
return x * outer_var + 1.
x = np.array([2., 5.,], dtype=np.float32)
res = _maybe_jit(with_jit, jax2tf.call_tf(fun_tf))(x)
self.assertAllClose(x * outer_var_array + 1., res, check_dtypes=False)
@_parameterized_jit
def test_with_var_read_x64(self, with_jit=True):
outer_var_array = np.array([3., 4.], dtype=np.float64)
outer_var = tf.Variable(outer_var_array)
def fun_tf(x):
return x * tf.cast(outer_var, x.dtype) + 1.
x = np.array([2., 5.,], dtype=np.float32)
res = _maybe_jit(with_jit, jax2tf.call_tf(fun_tf))(x)
self.assertAllClose(x * outer_var_array + 1., res, check_dtypes=False)
def test_with_var_different_shape(self):
# See https://github.com/google/jax/issues/6050
v = tf.Variable((4., 2.), dtype=tf.float32)
def tf_func(x):
return v + x
x = np.float32(123.)
tf_out = tf_func(x)
jax_func = jax.jit(jax2tf.call_tf(tf_func))
jax_out = jax_func(x)
self.assertAllClose(tf_out, jax_out, check_dtypes=False)
@_parameterized_jit
def test_with_var_write_error(self, with_jit=True):
if with_jit:
raise unittest.SkipTest("variable writes not yet working")
outer_var = tf.Variable(3., dtype=np.float32)
def fun_tf(x):
outer_var.assign(tf.constant(4.))
return x * outer_var + 1.
x = np.float32(2.)
res = _maybe_jit(with_jit, jax2tf.call_tf(fun_tf))(x)
self.assertAllClose(x * 4. + 1, res, check_dtypes=False)
@_parameterized_jit
def test_with_tensor_capture(self, with_jit=True):
outer_tensor = tf.constant(3., dtype=np.float32)
def fun_tf(x):
return x * outer_tensor + 1.
x = np.float32(2.)
res = _maybe_jit(with_jit, jax2tf.call_tf(fun_tf))(x)
self.assertAllClose(x * 3. + 1., res, check_dtypes=False)
@_parameterized_jit
def test_with_tensor_capture_x64(self, with_jit=True):
outer_tensor = tf.constant(3., dtype=np.float64)
def fun_tf(x):
return x * tf.cast(outer_tensor * 3.14, tf.float32) + 1.
x = np.float32(2.)
res = _maybe_jit(with_jit, jax2tf.call_tf(fun_tf))(x)
self.assertAllClose(x * 3. * 3.14 + 1., res, check_dtypes=False)
@_parameterized_jit
def test_with_value_capture(self, with_jit=True):
outer_val = np.array(3., dtype=np.float32)
def fun_tf(x):
return x * outer_val + 1.
x = np.float32(2.)
res = _maybe_jit(with_jit, jax2tf.call_tf(fun_tf))(x)
self.assertAllClose(x * 3. + 1., res, check_dtypes=False)
@_parameterized_jit
def test_with_multiple_capture(self, with_jit=True):
if jtu.device_under_test() == "gpu":
raise unittest.SkipTest("Test fails on GPU")
v2 = tf.Variable(2., dtype=np.float32)
v3 = tf.Variable(3., dtype=np.float32)
t4 = tf.constant(4., dtype=np.float32)
t5 = tf.constant(5., dtype=np.float32)
def fun_tf(x):
return (x * v3 + t4 + v2) * v3 + t5
x = np.float32(2.)
res = _maybe_jit(with_jit, jax2tf.call_tf(fun_tf))(x)
self.assertAllClose((x * 3. + 4. + 2.) * 3. + 5., res, check_dtypes=False)
@_parameterized_jit
def test_grad(self, with_jit=False):
x = np.float32(3.)
res = _maybe_jit(with_jit, jax.grad(jax2tf.call_tf(tf.math.sin)))(x)
self.assertAllClose(np.cos(x), res)
@_parameterized_jit
def test_grad_pytree(self, with_jit=False):
def fun_tf(x: Dict, y: Tuple) -> Tuple:
return x["first"] * x["second"] + 3. * y[0] + 4. * y[1]
x = dict(first=np.float32(3.), second=np.float32(4.))
y = (np.float32(5.), np.float32(6.))
grad_x = _maybe_jit(with_jit, jax.grad(jax2tf.call_tf(fun_tf)))(x, y)
self.assertAllClose(
dict(first=np.float32(4.), second=np.float32(3.)), grad_x)
def test_grad_nested(self):
# We embed the call_tf function in a larger function whose gradient we take
# It is relevant here that the cotangents flowing through the call_tf
# function are not scalars.
b = np.array([[11., 12., 13.], [21., 22., 23.]], dtype=np.float32) # [2, 3]
c = np.array([[31., 32.], [41., 42.], [51., 52.], [61., 62.]], dtype=np.float32) # [4, 2]
x_dict = dict(b=b, c=c) # b:[2, 3], c=[4, 2]
# res: dict(r:[4, 3], s:[4, 2])
def f_tf(x_dict):
return dict(r=tf.matmul(x_dict["c"], x_dict["b"]), s=7. * x_dict["c"])
@jax.jit # To recognize it in jaxpr
def f_jax(x_dict):
return dict(r=jnp.matmul(x_dict["c"], x_dict["b"]), s=7. * x_dict["c"])
def loss(functional, x_dict):
prediction = functional(x_dict) # r:[4, 3], s:[4, 2]
weights = np.array([1., 2., 3., 4.], dtype=np.float32) # [4]
weighted_pred = jnp.matmul(weights, prediction["r"]) # [3]
return jnp.sum(weighted_pred) + 4. * jnp.sum(prediction["s"])
g_fun_with_tf = jax.grad(partial(loss, jax2tf.call_tf(f_tf)))
g_fun_with_jax = jax.grad(partial(loss, f_jax))
g_tf = g_fun_with_tf(x_dict)
g_jax = g_fun_with_jax(x_dict)
self.assertAllClose(g_jax, g_tf)
def test_grad_int_argument(self):
# Similar to https://github.com/google/jax/issues/6975
# state is a pytree that contains an integer and a boolean.
# The function returns an integer and a boolean.
def f(param, state, x):
return param * x, state
param = np.array([0.7, 0.9], dtype=np.float32)
state = dict(array=np.float32(1.), counter=7, truth=True)
x = np.float32(3.)
# tf.function is important, without it the bug does not appear
f_call_tf = jax2tf.call_tf(f)
g_call_tf = jax.grad(lambda *args: jnp.sum(f_call_tf(*args)[0]))(param, state, x)
g = jax.grad(lambda *args: jnp.sum(f(*args)[0]))(param, state, x)
self.assertAllClose(g_call_tf, g)
def test_grad_int_argument_unused(self):
batch_size = 5
inputs = np.ones((batch_size, 3), dtype=np.float32)
rng = np.array([1, 2], dtype=np.uint32)
params = np.float32(.5)
# rng is integer, unused
def jax_model(params, rng, inputs):
return jnp.ones([batch_size, 2], dtype=jnp.float32)
tf_model = jax2tf.convert(jax_model, with_gradient=True)
def _loss_fn(inference_fn, params, rng, inputs):
prediction = inference_fn(params, rng, inputs)
return jnp.mean(prediction)
jax_loss_fn = partial(_loss_fn, jax_model)
jax_grad = jax.grad(jax_loss_fn)(params, rng, inputs)
paramsv = tf.Variable(params)
with tf.GradientTape() as tape:
tf_prediction = tf_model(paramsv, rng, inputs)
tf_loss = tf.reduce_mean(tf_prediction)
tf_grad = tape.gradient(tf_loss, paramsv)
self.assertAllClose(jax_grad, tf_grad.numpy())
call_tf_loss_fn = partial(_loss_fn, jax2tf.call_tf(tf_model))
call_tf_grad = jax.grad(call_tf_loss_fn)(params, rng, inputs)
self.assertAllClose(jax_grad, call_tf_grad)
def test_grad_with_float0_result(self):
# Gradient over integer-argument functions, with float0 result
def f_jax(x, y): # x is an int, y is a float; res is a (int, float)
return (2 * x, 2 * x + y * y)
def f_tf(x, y):
# TF needs explicit casts
return (2 * x, tf.cast(2 * x, dtype=y.dtype) + y * y)
def wrapper(functional, x, y): # x: i32
return jnp.sum(2. * functional(3 * x, 4. * y)[1])
grad_g = jax.grad(partial(wrapper, f_jax),
allow_int=True, argnums=(0, 1))
grad_g_call_tf = jax.grad(partial(wrapper, jax2tf.call_tf(f_tf)),
allow_int=True, argnums=(0, 1))
x = np.int32(2)
y = np.float32(3.)
g_jax = grad_g(x, y)
g_call_tf = grad_g_call_tf(x, y)
self.assertEqual(g_jax[0].dtype, dtypes.float0)
self.assertEqual(g_call_tf[0].dtype, dtypes.float0)
self.assertAllClose(g_jax[1], g_call_tf[1])
@_parameterized_jit
def test_grad_custom(self, with_jit=False):
@tf.custom_gradient
def func_square_tf(x):
# Like x ** 2, but with custom grad 3. * x
def grad(dy, variables=None):
# dy, = dys
return 3. * x * dy,
return x * x, grad
x = np.float32(4.)
grad_x = _maybe_jit(with_jit, jax.grad(jax2tf.call_tf(func_square_tf)))(x)
self.assertAllClose(np.float32(3.) * x, grad_x)
@parameterized.named_parameters(
dict(
testcase_name=f"_{degree=}{'_jit' if with_jit else ''}",
degree=degree,
with_jit=with_jit)
for degree in [1, 2, 3, 4]
for with_jit in [True, False])
def test_higher_order_grad(self, degree=2, with_jit=False):
def fun_tf(x):
return 2. * x * x * x
def fun_jax(x):
return 3. * _maybe_jit(with_jit, jax2tf.call_tf(fun_tf))(x)
def fun_jax_pure(x):
return 3. * fun_tf(x)
grad_jax = fun_jax
grad_jax_pure = fun_jax_pure
for _ in range(degree):
grad_jax = jax.grad(grad_jax)
grad_jax_pure = jax.grad(grad_jax_pure)
res_jax = grad_jax(np.float32(5.))
print(f"Grad of {degree} degree is {res_jax}")
self.assertAllClose(res_jax, grad_jax_pure(np.float32(5.)))
def test_pmap(self):
print(f"Running test_pmap on {jax.local_device_count()} devices")
def plus_2_tf(x):
return tf.math.add(2., x)
def fun_jax(x):
return np.float32(3.) * jax2tf.call_tf(plus_2_tf)(x)
x = np.arange(jax.local_device_count(), dtype=np.float32)
res = jax.pmap(fun_jax)(x)
self.assertAllClose(np.float32(3. * (x + 2)), res)
def test_function_compile_time_constant_inputs(self):
# Call a function for which shape inference does not give an output
# shape.
x = np.array([1, 2, 3], dtype=np.int32)
def fun_tf(x): # x:i32[3]
# Indexing with a dynamic slice makes the TF shape inference return
# a partially known shape.
end_idx = x[1]
res = x[0:end_idx]
return res
# Call in eager mode. Should work!
res1 = jax2tf.call_tf(fun_tf)(x)
self.assertAllClose(x[0:x[1]], res1)
# Now under jit, should fail because the function is not compileable
with self.assertRaisesRegex(ValueError, _call_tf_dynamic_shape_error):
fun_jax = jax.jit(jax2tf.call_tf(fun_tf))
fun_jax(x)
def test_experimental_get_compiler_ir_design_doc(self):
# Not a test of call_tf, but more of how experimental_get_compiler_ir works.
# Examples are from the design doc.
# Constant slice. This is the common case.
x = np.zeros((10,), dtype=np.int32)
def fun_tf(x):
begin = 0
return x[begin:5]
hlo = tf.function(fun_tf, jit_compile=True, autograph=False).experimental_get_compiler_ir(x)()
self.assertIn("(arg0.1: s32[10]) -> s32[5]", hlo)
# Non-constant slice, but compile-time constant depending only on values.
x = np.zeros((10,), dtype=np.int32)
# Non-constant slice, but compile-time constant depending only on shapes.
x = np.zeros((10,), dtype=np.int32)
def fun_tf(x):
begin = tf.shape(x)[0] - 2 # begin is a compile-time constant, even if x is not
return x[begin:]
hlo = tf.function(fun_tf, jit_compile=True, autograph=False).experimental_get_compiler_ir(x)()
self.assertIn("(arg0.1: s32[10]) -> s32[2]", hlo)
# Capture a variable
outer_var = tf.Variable(np.array([3.], dtype=np.float32))
x = np.array([2., 3., 4.], dtype=np.float32)
def fun_tf(x):
return x * tf.broadcast_to(outer_var, x.shape) + 1.
hlo = tf.function(fun_tf, jit_compile=True, autograph=False).experimental_get_compiler_ir(x)()
self.assertIn("(arg0.1: f32[3], arg1.2: f32[1]) -> f32[3]", hlo)
# Capture a constant
outer_ct = np.array([3.], dtype=np.float32)
x = np.array([2., 3., 4.], dtype=np.float32)
def fun_tf(x):
return x * tf.broadcast_to(outer_ct, x.shape) + 1.
hlo = tf.function(fun_tf, jit_compile=True, autograph=False).experimental_get_compiler_ir(x)()
self.assertIn("(arg0.1: f32[3]) -> f32[3]", hlo)
# Call get_compiler_ir in a function context
x = np.array([2., 3., 4.], dtype=np.float32)
def fun_tf_outer(x):
x_const = tf.constant(0, shape=x.shape, dtype=x.dtype)
_ = tf.function(tf.math.sin, jit_compile=True, autograph=False).experimental_get_compiler_ir(x_const)()
# TODO(b/193754660)
# with self.assertRaisesRegex(
# TypeError, "An op outside of the function building code is being passed"):
# tf.function(fun_tf_outer)(x)
#
# with self.assertRaisesRegex(
# TypeError, "An op outside of the function building code is being passed"):
# tf.function(fun_tf_outer, jit_compile=True)(x)
# Call get_concrete_function in a graph context
def fun_tf_outer_2(x):
_ = tf.function(tf.math.sin, jit_compile=True).get_concrete_function(tf.TensorSpec(x.shape, x.dtype))
return x
# Outside of a function context, this works.
_ = tf.function(fun_tf_outer_2)(x)
_ = tf.function(fun_tf_outer_2, jit_compile=True)(x)
def test_repro_193754660(self):
# Try to reproduce b/193754660. I can't.
# We have to have tf.function(jax2tf.convert(jax2tf.call_tf(f_tf))).
# The get_compiler_ir will indeed fail for f_tf. Then we try to use
# shape inference for f_tf.
# I thought to use a f_tf that uses an op without shape inference, e.g.,
# tfxla.gather. If we wash it through a saved_model I expect that shape
# inference would not work on it. Instead, shape inference works!!!
x = np.array([0, 1, 2, 3, 4, 5], dtype=np.int32)
def f_jax(x):
return x[1]
f_tf = jax2tf.convert(f_jax)
f_tf_rt, _ = tf_test_util.SaveAndLoadFunction(f_tf, input_args=[x])
f_jax2 = jax2tf.call_tf(f_tf_rt)
f_tf2 = jax2tf.convert(f_jax2)
res = tf.function(f_tf2, autograph=False)(x)
self.assertAllClose(res.numpy(), f_jax(x))
def test_effectful(self):
if not config.jax_array:
raise unittest.SkipTest("Test not intended to work without jax.Array")
x = np.ones((3,), dtype=np.float32)
lower_effect = jax.jit(jax2tf.call_tf(tf.math.sin, has_side_effects=True)).lower(x)
self.assertNotEmpty(lower_effect._lowering.compile_args["unordered_effects"])
lower_no_effect = jax.jit(jax2tf.call_tf(tf.math.sin, has_side_effects=False)).lower(x)
self.assertEmpty(lower_no_effect._lowering.compile_args["unordered_effects"])
def test_module_documentation(self):
def cos_tf(x):
return tf.math.cos(x)
# Compute cos with TF and sin with JAX
def cos_tf_sin_jax(x):
return jax.numpy.sin(jax2tf.call_tf(cos_tf)(x))
# Calls `cos_tf` in TF eager mode
x = np.float32(1.)
cos_tf_sin_jax(x)
# Compiles `cos_tf` using TF and embeds the XLA computation into the JAX
# XLA computation (containing `sin`). The XLA compiler may even be able to
# fuse through JAX-TF computations.
jax.jit(cos_tf_sin_jax)(x)
# Uses TF gradient for `cos_tf` and JAX gradient for `sin`
jax.grad(cos_tf_sin_jax)(x)
print(jax.make_jaxpr(cos_tf_sin_jax)(x))
print(jax.xla_computation(cos_tf_sin_jax)(x).as_hlo_text())
def test_tf_gather(self):
"""tf_gather gradient output is tf.IndexSlices."""
operand = jnp.array(np.random.uniform(size=(100, 128)))
indices = jnp.array(np.random.randint(low=0, high=100, size=(4000,)))
@tf.function(jit_compile=True, autograph=False)
def fun_tf(operand, indices):
return tf.experimental.numpy.std(tf.gather(operand, indices))
fun_jax = jax2tf.call_tf(fun_tf)
grad_fun_jax = jax.grad(fun_jax)
grad_res = grad_fun_jax(operand, indices)
self.assertEqual(grad_res.shape, (100, 128))
class RoundTripToJaxTest(tf_test_util.JaxToTfTestCase):
"Reloading output of jax2tf into JAX with call_tf"
def setUp(self):
if tf is None:
raise unittest.SkipTest("Test requires tensorflow")
# TODO(b/171320191): this line works around a missing context initialization
# bug in TensorFlow.
_ = tf.add(1, 1)
super().setUp()
def test_simple(self):
f_jax = jnp.sin
f_jax_rt = jax2tf.call_tf(jax2tf.convert(f_jax))
x = np.float32(0.7)
self.assertAllClose(f_jax(x), f_jax_rt(x))
def test_pytree(self):
def f_jax(x): # x: dict(a=f32, b=f32)
return dict(a=x["a"]+1., b=x)
x = dict(a=0.7, b=0.8)
f_jax_rt = jax2tf.call_tf(jax2tf.convert(f_jax))
self.assertAllClose(f_jax(x), f_jax_rt(x))
def test_custom_grad(self):
@jax.custom_vjp
def f(x):
return x * x
# f_fwd: a -> (b, residual)
def f_fwd(x):
return f(x), np.float32(3.) * x
# f_bwd: (residual, CT b) -> [CT a]
def f_bwd(residual, ct_b):
return residual * ct_b,
f.defvjp(f_fwd, f_bwd)
f_rt = jax2tf.call_tf(jax2tf.convert(f, with_gradient=True))
x = np.float32(0.7)
self.assertAllClose(f(x), f_rt(x))
self.assertAllClose(jax.grad(f)(x), jax.grad(f_rt)(x))
def test_shape_poly(self):
f_jax = jnp.sin
f_jax_rt = jax2tf.call_tf(jax2tf.convert(f_jax,
polymorphic_shapes=["(b, ...)"]))
x = np.array([0.7, 0.8], dtype=np.float32)
self.assertAllClose(f_jax(x), f_jax_rt(x))
def test_saved_model_simple(self):
x = np.array([0.7, 0.8], dtype=np.float32)
def f_jax(x):
return jnp.sin(x)
f_tf = jax2tf.convert(f_jax)
restored_tf, _ = tf_test_util.SaveAndLoadFunction(f_tf, input_args=[x])
restored_jax = jax2tf.call_tf(restored_tf)
self.assertAllClose(f_jax(x), restored_jax(x))
def test_saved_model_variables(self):
param = np.array([1., 2.], dtype=np.float32)
x = np.array([0.7, 0.8], dtype=np.float32)
def f_jax(param, x):
return jnp.sin(x) + jnp.cos(param)
param_v = tf.Variable(param)
f_tf = jax2tf.convert(f_jax)
_, restored_model = tf_test_util.SaveAndLoadFunction(
lambda x: f_tf(param_v, x),
input_args=[x],
variables=[param_v])
restored_jax = jax2tf.call_tf(restored_model.f)
self.assertAllClose(f_jax(param, x), restored_jax(x))
self.assertAllClose(f_jax(param, x), jax.jit(restored_jax)(x))
def test_saved_model_shape_poly(self):
tracing_count = 0
x = np.array([0.7, 0.8], dtype=np.float32)
def f_jax(x):
nonlocal tracing_count
tracing_count += 1
return jnp.sin(x)
f_tf = jax2tf.convert(f_jax, polymorphic_shapes=["(b, ...)"])
res_jax = f_jax(x)
self.assertEqual(1, tracing_count)
# Will trace twice, it seems. Once to get the result signature, and once again
# for the actual saving.
restored_f, _ = tf_test_util.SaveAndLoadFunction(
f_tf, input_signature=[tf.TensorSpec([None], x.dtype)])
self.assertGreaterEqual(tracing_count, 2)
tracing_count = 0
f_jax_rt = jax2tf.call_tf(restored_f)
self.assertAllClose(res_jax, f_jax_rt(x))
# Ensure that restored_f works at other batch size as well
y = np.concatenate([x, x])
self.assertEqual(0, tracing_count)
res_jax_y = f_jax(y)
self.assertEqual(1, tracing_count)
# No more tracing for f_jax_rt
self.assertAllClose(res_jax_y, f_jax_rt(y))
self.assertEqual(1, tracing_count)
def test_custom_grad_saved_model(self):
@jax.custom_vjp
def f(x):
return x * x
# f_fwd: a -> (b, residual)
def f_fwd(x):
return f(x), np.float32(3.) * x
# f_bwd: (residual, CT b) -> [CT a]
def f_bwd(residual, ct_b):
return residual * ct_b,
f.defvjp(f_fwd, f_bwd)
def g(x):
return jnp.sum(f(x))
g_tf, _ = tf_test_util.SaveAndLoadFunction(
jax2tf.convert(g, with_gradient=True),
input_signature=[tf.TensorSpec(shape=(1,), dtype=tf.float32)],
)
g_rt = jax2tf.call_tf(g_tf)
x = np.array([0.7], dtype=np.float32)
self.assertAllClose(g(x), g_rt(x))
self.assertAllClose(jax.grad(g)(x), jax.grad(g_rt)(x))
def test_without_gradient_saved_model(self):
# Explicitly with_gradient=False
f_jax = jnp.sum
x = np.array([0.7, 0.8], dtype=np.float32)
f_tf, _ = tf_test_util.SaveAndLoadFunction(
jax2tf.convert(f_jax, with_gradient=False),
input_args=[x])
f_rt = jax2tf.call_tf(f_tf)
self.assertAllClose(f_jax(x), f_rt(x))
with self.assertRaisesRegex(Exception,
"Gradient explicitly disabled.*jax2tf-converted function does not support gradients. Use `with_gradient` parameter to enable gradients"):
jax.grad(f_rt)(x)
def test_saved_model_no_gradients(self):
# Save without gradients
f_jax = jnp.sum
x = np.array([0.7, 0.8], dtype=np.float32)
f_tf, _ = tf_test_util.SaveAndLoadFunction(
jax2tf.convert(f_jax, with_gradient=True), input_args=[x],
save_gradients=False)
f_rt = jax2tf.call_tf(f_tf)
self.assertAllClose(f_jax(x), f_rt(x))
# TODO: clean this up b/191117111: it should fail with a clear error
# The following results in a confusing error:
# TypeError: tf.Graph captured an external symbolic tensor.
with self.assertRaises(TypeError):
_ = jax.grad(f_rt)(x)
def test_call_tf_under_function_context(self):
def fun_jax(x, y):
z = jax2tf.call_tf(tf.math.sin)(x) + jnp.cos(y)
return z
x = np.array([-1.0, 0.0, 1.0], dtype=np.float32)
y = np.array([-0.5, 0.0, 0.5], dtype=np.float32)
converted_fun = tf.function(
jax2tf.convert(fun_jax, experimental_native_lowering=True)
)
expected = np.sin(x) + np.cos(y)
res = tf.function(converted_fun, jit_compile=True, autograph=False)(x, y)
self.assertAllClose(expected, res.numpy(), atol=1e-5, rtol=1e-5)
@parameterized.named_parameters(
dict(
testcase_name=f"_{dtype.__name__}",
dtype=dtype,
)
for dtype in set(jtu.dtypes.all_floating)
)
def test_all_floating_input_gradient(self, dtype):
def tf_f(x):
res = tf.math.sin(x)
return tf.reduce_sum(res)
jax_f = jax2tf.call_tf(tf_f)
tf_f_rt = jax2tf.convert(jax_f)
x = jnp.array([5.0, 6.0, 7.0]).astype(dtype)
def assert_all_close_support_bfloat16(baseline, candidate):
def conversion(x):
# convert scalar to array and bfloat16 to float32
# to support self.assertAllClose numpy array comparision.
if x.shape == tf.TensorShape([]):
x = tf.convert_to_tensor([x])
if dtype == jnp.float16:
x = tf.cast(x, tf.float32)
return x
baseline = jax.tree_util.tree_map(conversion, baseline)
candidate = jax.tree_util.tree_map(conversion, candidate)
self.assertAllClose(baseline, candidate)
# Eager mode
assert_all_close_support_bfloat16(tf_f(x), tf_f_rt(x))
# Compiled function mode
assert_all_close_support_bfloat16(
tf.function(tf_f)(x), tf.function(tf_f_rt)(x)
)
# Compiled fucntion mode with jit_compiled=True
assert_all_close_support_bfloat16(
tf.function(tf_f, jit_compile=True)(x),
tf.function(tf_f_rt, jit_compile=True)(x),
)
# RoundTrip test for the gradient
grad_fun_jax = jax.grad(jax2tf.call_tf(tf_f))
grad_fun_jax_rt = jax2tf.call_tf(jax2tf.convert(grad_fun_jax))
# Eager mode
assert_all_close_support_bfloat16(grad_fun_jax(x), grad_fun_jax_rt(x))
# Jit mode
assert_all_close_support_bfloat16(
jax.jit(grad_fun_jax)(x), jax.jit(grad_fun_jax_rt)(x)
)
@parameterized.named_parameters(
dict(
testcase_name=f"_{dtype.__name__}",
dtype=dtype,
)
for dtype in set(jtu.dtypes.complex)
)
def test_complex_input_gradient(self, dtype):
def tf_f(x):
res = tf.math.sin(x)
return tf.reduce_sum(res)
x = jnp.array([(5.0 + 4.0j), (6.0 + 3.0j), (7.0 + 8.0j)]).astype(dtype)
jax_f = jax2tf.call_tf(tf_f)
tf_f_rt = jax2tf.convert(jax_f)
# Eager mode
self.assertAllClose(tf_f(x), tf_f_rt(x))
# tf.function context
self.assertAllClose(tf.function(tf_f)(x), tf.function(tf_f_rt)(x))
# tf.function context with jit_compiled=True
self.assertAllClose(
tf.function(tf_f, jit_compile=True)(x),
tf.function(tf_f_rt, jit_compile=True)(x),
)
# RoundTrip test for the gradient
grad_fun_jax = jax.grad(jax2tf.call_tf(tf_f), holomorphic=True)
grad_fun_jax_rt = jax2tf.call_tf(jax2tf.convert(grad_fun_jax))
# Eager mode
self.assertAllClose(grad_fun_jax(x), grad_fun_jax_rt(x))
# Jit mode
self.assertAllClose(jax.jit(grad_fun_jax)(x), jax.jit(grad_fun_jax_rt)(x))
class RoundTripToTfTest(tf_test_util.JaxToTfTestCase):
"Reloading output of call_tf into TF with jax2tf."
def setUp(self):
if tf is None:
raise unittest.SkipTest("Test requires tensorflow")
# TODO(b/171320191): this line works around a missing context initialization
# bug in TensorFlow.
_ = tf.add(1, 1)
super().setUp()
def test_alternate(self):
# Alternate sin/cos with sin in TF and cos in JAX
f_tf_inner = tf.math.sin
def f_jax(x_jax):
y_jax = jnp.cos(x_jax)
z_jax = jax2tf.call_tf(f_tf_inner)(y_jax)
return jnp.cos(z_jax)
def f_tf_outer(x_tf):
y_tf = tf.math.sin(x_tf)
z_tf = jax2tf.convert(f_jax)(y_tf)
return tf.math.sin(z_tf)
x = np.float32(0.7)
self.assertAllClose(np.sin(np.cos(np.sin(np.cos(np.sin(x))))),
f_tf_outer(x).numpy())
xv = tf.Variable(x)
with tf.GradientTape() as tape:
res = f_tf_outer(xv)
g_tf = tape.gradient(res, xv)
_, gf = tf_test_util.ComputeTfValueAndGrad(f_tf_outer, (x,))
# Eager
expected_res = np.sin(np.cos(np.sin(np.cos(np.sin(x)))))
self.assertAllClose(expected_res, f_tf_outer(x).numpy())
# Gradient
expected_grad = (np.cos(np.cos(np.sin(np.cos(np.sin(x))))) *
np.sin(np.sin(np.cos(np.sin(x)))) *
np.cos(np.cos(np.sin(x))) *
np.sin(np.sin(x)) *
np.cos(x))
self.assertAllClose(expected_grad, g_tf.numpy())
# Graph
self.assertAllClose(expected_res,
tf.function(f_tf_outer, autograph=False)(x).numpy())
# Compiled
self.assertAllClose(expected_res,
tf.function(f_tf_outer, autograph=False,
jit_compile=True)(x).numpy())
def test_saved_model(self):
x = np.array([.7, .8], dtype=np.float32)
def fun_tf(x):
return tf.math.sin(x)
def fun_jax(x):
return jax2tf.call_tf(fun_tf)(x)
# Now convert and save to SavedModel
fun_tf_rt = jax2tf.convert(fun_jax)
res = fun_tf_rt(x)
self.assertAllClose(np.sin(x), res.numpy())
res = tf.function(fun_tf_rt, autograph=False)(x)
self.assertAllClose(np.sin(x), res.numpy())
res = tf.function(fun_tf_rt, jit_compile=True, autograph=False)(x)
self.assertAllClose(np.sin(x), res.numpy())
reloaded_f, _ = tf_test_util.SaveAndLoadFunction(
fun_tf_rt, input_args=[x])
res = reloaded_f(x)
self.assertAllClose(np.sin(x), res.numpy())
def test_saved_model_polymorphic_input_static_output(self):
x = np.array([.7, .8], dtype=np.float32)
def fun_tf(x):
return tf.math.reduce_sum(tf.math.sin(x))
def fun_jax(x):
return jax2tf.call_tf(fun_tf)(x)
# Now convert and save to SavedModel
fun_tf_rt = jax2tf.convert(fun_jax)
res = fun_tf_rt(x)
self.assertAllClose(fun_tf(x), res.numpy())
res = tf.function(fun_tf_rt, autograph=False)(x)
self.assertAllClose(fun_tf(x), res.numpy())
res = tf.function(fun_tf_rt, jit_compile=True, autograph=False)(x)
self.assertAllClose(fun_tf(x), res.numpy())
reloaded_f, _ = tf_test_util.SaveAndLoadFunction(
fun_tf_rt, input_args=[x])
res = reloaded_f(x)
self.assertAllClose(fun_tf(x), res.numpy())
def test_function_dynamic_shape(self):
# Call a function for which shape inference does not give an output
# shape.
x = np.array([-1, 0, 1], dtype=np.int32)
def fun_tf(x): # x:i32[3]
# The shape depends on the value of x
return tf.cond(x[0] >= 0, lambda: x, lambda: x[1:])
# Call in eager mode. Should work!
res1 = jax2tf.call_tf(fun_tf)(x)
expected = x[1:]
self.assertAllClose(expected, res1, check_dtypes=False)
# Now under jit, should fail because the function is not compileable
with self.assertRaisesRegex(ValueError, _call_tf_dynamic_shape_error):
fun_jax = jax.jit(jax2tf.call_tf(fun_tf))
fun_jax(x)
# TODO(necula): this should work in op-by-op mode, but it fails because
# jax2tf.convert does abstract evaluation.
with self.assertRaisesRegex(ValueError, _call_tf_dynamic_shape_error):
fun_tf_rt = jax2tf.convert(jax2tf.call_tf(fun_tf))
fun_tf_rt(x)
@_parameterized_jit
def test_shape_poly_static_output_shape(self, with_jit=True):
if config.jax2tf_default_experimental_native_lowering:
raise unittest.SkipTest("TODO(b/268386622): call_tf with shape polymorphism and native lowering.")
x = np.array([0.7, 0.8], dtype=np.float32)
def fun_tf(x):
return tf.math.reduce_sum(tf.math.sin(x))
fun_jax = jax2tf.call_tf(fun_tf)
fun_tf_rt = _maybe_tf_jit(with_jit,
jax2tf.convert(fun_jax, polymorphic_shapes=["b, ..."]))
self.assertAllClose(fun_tf(x), fun_tf_rt(x))
@_parameterized_jit
def test_shape_poly(self, with_jit=False):
if config.jax2tf_default_experimental_native_lowering:
raise unittest.SkipTest("TODO(b/268386622): call_tf with shape polymorphism and native lowering.")
x = np.array([7, 8, 9, 10], dtype=np.float32)
def fun_jax(x):
y = jax2tf.call_tf(tf.math.sin,
output_shape_dtype=jax.ShapeDtypeStruct(x.shape, x.dtype))(x)
z = jnp.cos(y)
w = jax2tf.call_tf(lambda z: tf.concat([z, z], axis=0),
output_shape_dtype=jax.ShapeDtypeStruct((2 * z.shape[0],), z.dtype))(z)
assert w.shape[0] == 2 * x.shape[0]
return w
fun_tf_rt = _maybe_tf_jit(with_jit,
jax2tf.convert(fun_jax, polymorphic_shapes=["b, ..."]))
res_tf = fun_tf_rt(x)
self.assertAllClose(fun_jax(x), res_tf)
@_parameterized_jit
def test_shape_poly_pytree_result(self, with_jit=True):
if config.jax2tf_default_experimental_native_lowering:
raise unittest.SkipTest("TODO(b/268386622): call_tf with shape polymorphism and native lowering.")
x = np.array([7, 8, 9, 10], dtype=np.float32)
def fun_jax(x):
# Returns a tuple
y = jax2tf.call_tf(lambda x: (x, tf.concat([x, x], axis=0)),
output_shape_dtype=(jax.ShapeDtypeStruct(x.shape, x.dtype),
jax.ShapeDtypeStruct((2 * x.shape[0],), x.dtype)))(x)
assert y[0].shape[0] == x.shape[0]
assert y[1].shape[0] == 2 * x.shape[0]
return y
fun_tf_rt = _maybe_tf_jit(with_jit,
jax2tf.convert(fun_jax, polymorphic_shapes=["b, ..."]))
res_tf = fun_tf_rt(x)
self.assertAllClose(fun_jax(x), res_tf)
@_parameterized_jit
def test_shape_poly_error_no_output_shape_dtype(self, with_jit=True):
x = np.array([7, 8, 9, 10], dtype=np.float32)
def fun_jax(x):
return jax2tf.call_tf(tf.math.sin)(x)
fun_tf_rt = _maybe_tf_jit(with_jit,
jax2tf.convert(fun_jax, polymorphic_shapes=["b, ..."]))
with self.assertRaisesRegex(ValueError, _call_tf_dynamic_shape_error):
fun_tf_rt(x)
@_parameterized_jit
def test_shape_poly_error_mismatch_output_shape_dtype_tree(self, with_jit=False):
x = np.array([7, 8, 9, 10], dtype=np.float32)
def fun_jax(x):
return jax2tf.call_tf(tf.math.sin,
output_shape_dtype=(jax.ShapeDtypeStruct(x.shape, x.dtype),
jax.ShapeDtypeStruct(x.shape, x.dtype)))(x)
fun_tf_rt = _maybe_tf_jit(with_jit,
jax2tf.convert(fun_jax, polymorphic_shapes=["b, ..."]))
with self.assertRaisesRegex(
ValueError,
"The pytree of the TensorFlow function results does not match the pytree of the declared output_shape_dtype"):
fun_tf_rt(x)
@parameterized.named_parameters(
_named_test(with_jit=with_jit, kind=kind)
for with_jit in [True, False]
for kind in ["bad_rank", "bad_dim", "bad_dtype", "bad_dtype_x64"])
def test_shape_poly_error_mismatch_output_shape_dtype(self, with_jit=False, kind="bad_rank"):
x = np.array([7, 8, 9, 10], dtype=np.float32)
if kind == "bad_rank":
def fun_jax(x):
return jax2tf.call_tf(lambda x: x,
# Wrong shape rank
output_shape_dtype=jax.ShapeDtypeStruct((), x.dtype))(x)
elif kind == "bad_dim":
def fun_jax(x):
bad_shape = (5 + x.shape[0],)
y = jax2tf.call_tf(lambda x: x,
# Wrong dimension
output_shape_dtype=jax.ShapeDtypeStruct(bad_shape, x.dtype))(x)
# JAX will believe that the following is Ok, leading to downstream error in TF
return y + jnp.ones(bad_shape, dtype=x.dtype)
elif kind == "bad_dtype":
def fun_jax(x):
return jax2tf.call_tf(lambda x: x,
output_shape_dtype=jax.ShapeDtypeStruct(x.shape, np.int32))(x)
elif kind == "bad_dtype_x64":
def fun_jax(x):
return jax2tf.call_tf(lambda x: x * np.float64(3.),
output_shape_dtype=jax.ShapeDtypeStruct(x.shape, np.float64))(x)
else:
assert False
expect_ex = ValueError
expect_error = r"The shapes or dtypes returned by the TensorFlow function do not match the declared output_shape_dtype"
# Call without shape polymorphism
fun_tf_rt = _maybe_tf_jit(with_jit, jax2tf.convert(fun_jax))
with self.assertRaisesRegex(expect_ex, expect_error):
fun_tf_rt(x)
# Now with shape polymorphism
if kind == "bad_dim" and with_jit:
# TODO: in jit more the error pops up later, at AddV2
expect_error = "Dimensions must be equal, but are 4 and 9 for .* AddV2"
if kind == "bad_dim" and config.jax2tf_default_experimental_native_lowering:
# TODO(b/268386622): call_tf with shape polymorphism and native lowering.
expect_error = "Error compiling TensorFlow function. call_tf can used .* only with compileable functions with static output shapes"
fun_tf_rt = _maybe_tf_jit(with_jit,
jax2tf.convert(fun_jax, polymorphic_shapes=["b, ..."]))
with self.assertRaisesRegex(expect_ex, expect_error):
fun_tf_rt(x)
def test_inner_native_lowering(self):
# Two nested jax2tf, the inner one being with native lowering
x = np.ones((3,), dtype=np.float32)
def f_inner_jax(x):
return jnp.sin(x)
def f_outer_jax(x):
f_inner_tf = jax2tf.convert(f_inner_jax, experimental_native_lowering=True)
return jnp.cos(jax2tf.call_tf(f_inner_tf)(x))
f_outer_tf = tf.function(
jax2tf.convert(f_outer_jax, experimental_native_lowering=False),
autograph=False)
f_outer_graph = str(f_outer_tf.get_concrete_function(tf.convert_to_tensor(x)).graph.as_graph_def())
# Quick way to check that there is an XlaCallModule op, and a Cos op, but no Sin op
self.assertIn('op: "Cos"', f_outer_graph)
self.assertIn('op: "XlaCallModule"', f_outer_graph)
self.assertNotIn('op: "Sin"', f_outer_graph)
@parameterized.named_parameters(
_named_test(f2_function=f2_function, f2_saved_model=f2_saved_model,
f4_function=f4_function, f4_saved_model=f4_saved_model)
for f2_function in [True, False]
for f2_saved_model in [True, False]
for f4_function in [True, False]
for f4_saved_model in [True, False])
def test_several_round_trips(self,
f2_function=False, f2_saved_model=False,
f4_function=False, f4_saved_model=False):
x = np.array(.7, dtype=np.float32)
# f(n)(x) = 2. * x^n
def f(n):
def fn(x):
acc = np.array(2., dtype=x.dtype)
for i in range(n):
acc *= x
return acc
return fn
f2_tf = lambda x: x * jax2tf.convert(f(1))(x)
if f2_function:
f2_tf = tf.function(f2_tf, autograph=False)
if f2_saved_model:
f2_tf, _ = tf_test_util.SaveAndLoadFunction(f2_tf, input_args=[x])
self.assertAllClose(f(2)(x), f2_tf(x).numpy())
_, (g_f2_ft,) = tf_test_util.ComputeTfValueAndGrad(f2_tf, [x])
self.assertAllClose(jax.grad(f(2))(x), g_f2_ft.numpy())
f3_jax = lambda x: x * jax2tf.call_tf(f2_tf)(x)
self.assertAllClose(f(3)(x), f3_jax(x))
self.assertAllClose(f(3)(x), jax.jit(f3_jax)(x))
self.assertAllClose(jax.grad(f(3))(x), jax.grad(f3_jax)(x))
f4_tf = lambda x: x * jax2tf.convert(f3_jax)(x)
self.assertAllClose(f(4)(x), f4_tf(x).numpy())
_, (g_f4_ft,) = tf_test_util.ComputeTfValueAndGrad(f4_tf, [x])
self.assertAllClose(jax.grad(f(4))(x), g_f4_ft.numpy())
if f4_function:
f4_tf = tf.function(f4_tf, autograph=False)
if f4_saved_model:
f4_tf, _ = tf_test_util.SaveAndLoadFunction(f4_tf, input_args=[x])
self.assertAllClose(f(4)(x), f4_tf(x).numpy())
_, (g_f4_ft,) = tf_test_util.ComputeTfValueAndGrad(f4_tf, [x])
self.assertAllClose(jax.grad(f(4))(x), g_f4_ft.numpy())
if __name__ == "__main__":
absltest.main(testLoader=jtu.JaxTestLoader())