236 lines
6.9 KiB
Python

# Copyright 2018 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from jax import lax
import jax.numpy as jnp
from jax._src.lax.lax import _const as _lax_const
from jax._src.numpy.util import promote_args_inexact
from jax._src.typing import Array, ArrayLike
from jax.scipy.special import gammaln, xlogy, gammainc, gammaincc
def logpdf(x: ArrayLike, a: ArrayLike, loc: ArrayLike = 0, scale: ArrayLike = 1) -> Array:
r"""Gamma log probability distribution function.
JAX implementation of :obj:`scipy.stats.gamma` ``logpdf``.
The Gamma probability distribution is given by
.. math::
f(x, a) = \frac{1}{\Gamma(a)}x^{a-1}e^{-x}
Where :math:`\Gamma(a)` is the :func:`~jax.scipy.special.gamma` function.
It is defined for :math:`x \ge 0` and :math:`a > 0`.
Args:
x: arraylike, value at which to evaluate the PDF
a: arraylike, distribution shape parameter
loc: arraylike, distribution offset parameter
scale: arraylike, distribution scale parameter
Returns:
array of logpdf values.
See Also:
- :func:`jax.scipy.stats.gamma.cdf`
- :func:`jax.scipy.stats.gamma.pdf`
- :func:`jax.scipy.stats.gamma.sf`
- :func:`jax.scipy.stats.gamma.logcdf`
- :func:`jax.scipy.stats.gamma.logsf`
"""
x, a, loc, scale = promote_args_inexact("gamma.logpdf", x, a, loc, scale)
ok = lax.ge(x, loc)
one = _lax_const(x, 1)
y = jnp.where(ok, lax.div(lax.sub(x, loc), scale), one)
log_linear_term = lax.sub(xlogy(lax.sub(a, one), y), y)
shape_terms = lax.add(gammaln(a), lax.log(scale))
log_probs = lax.sub(log_linear_term, shape_terms)
return jnp.where(ok, log_probs, -jnp.inf)
def pdf(x: ArrayLike, a: ArrayLike, loc: ArrayLike = 0, scale: ArrayLike = 1) -> Array:
r"""Gamma probability distribution function.
JAX implementation of :obj:`scipy.stats.gamma` ``pdf``.
The Gamma probability distribution is given by
.. math::
f(x, a) = \frac{1}{\Gamma(a)}x^{a-1}e^{-x}
Where :math:`\Gamma(a)` is the :func:`~jax.scipy.special.gamma` function.
It is defined for :math:`x \ge 0` and :math:`a > 0`.
Args:
x: arraylike, value at which to evaluate the PDF
a: arraylike, distribution shape parameter
loc: arraylike, distribution offset parameter
scale: arraylike, distribution scale parameter
Returns:
array of pdf values.
See Also:
- :func:`jax.scipy.stats.gamma.cdf`
- :func:`jax.scipy.stats.gamma.sf`
- :func:`jax.scipy.stats.gamma.logcdf`
- :func:`jax.scipy.stats.gamma.logpdf`
- :func:`jax.scipy.stats.gamma.logsf`
"""
return lax.exp(logpdf(x, a, loc, scale))
def cdf(x: ArrayLike, a: ArrayLike, loc: ArrayLike = 0, scale: ArrayLike = 1) -> Array:
r"""Gamma cumulative distribution function.
JAX implementation of :obj:`scipy.stats.gamma` ``cdf``.
The cdf is defined as
.. math::
f_{cdf}(x, a) = \int_{-\infty}^x f_{pdf}(y, a)\mathrm{d}y
where :math:`f_{pdf}` is the probability density function,
:func:`jax.scipy.stats.gamma.pdf`.
Args:
x: arraylike, value at which to evaluate the CDF
a: arraylike, distribution shape parameter
loc: arraylike, distribution offset parameter
scale: arraylike, distribution scale parameter
Returns:
array of cdf values.
See Also:
- :func:`jax.scipy.stats.gamma.pdf`
- :func:`jax.scipy.stats.gamma.sf`
- :func:`jax.scipy.stats.gamma.logcdf`
- :func:`jax.scipy.stats.gamma.logpdf`
- :func:`jax.scipy.stats.gamma.logsf`
"""
x, a, loc, scale = promote_args_inexact("gamma.cdf", x, a, loc, scale)
return gammainc(
a,
lax.clamp(
_lax_const(x, 0),
lax.div(lax.sub(x, loc), scale),
_lax_const(x, jnp.inf),
)
)
def logcdf(x: ArrayLike, a: ArrayLike, loc: ArrayLike = 0, scale: ArrayLike = 1) -> Array:
r"""Gamma log cumulative distribution function.
JAX implementation of :obj:`scipy.stats.gamma` ``logcdf``.
The cdf is defined as
.. math::
f_{cdf}(x, a) = \int_{-\infty}^x f_{pdf}(y, a)\mathrm{d}y
where :math:`f_{pdf}` is the probability density function,
:func:`jax.scipy.stats.gamma.pdf`.
Args:
x: arraylike, value at which to evaluate the CDF
a: arraylike, distribution shape parameter
loc: arraylike, distribution offset parameter
scale: arraylike, distribution scale parameter
Returns:
array of logcdf values.
See Also:
- :func:`jax.scipy.stats.gamma.cdf`
- :func:`jax.scipy.stats.gamma.pdf`
- :func:`jax.scipy.stats.gamma.sf`
- :func:`jax.scipy.stats.gamma.logpdf`
- :func:`jax.scipy.stats.gamma.logsf`
"""
return lax.log(cdf(x, a, loc, scale))
def sf(x: ArrayLike, a: ArrayLike, loc: ArrayLike = 0, scale: ArrayLike = 1) -> Array:
r"""Gamma survival function.
JAX implementation of :obj:`scipy.stats.gamma` ``sf``.
The survival function is defined as
.. math::
f_{sf}(x, k) = 1 - f_{cdf}(x, k)
where :math:`f_{cdf}(x, k)` is the cumulative distribution function,
:func:`jax.scipy.stats.gamma.cdf`.
Args:
x: arraylike, value at which to evaluate the SF
a: arraylike, distribution shape parameter
loc: arraylike, distribution offset parameter
scale: arraylike, distribution scale parameter
Returns:
array of sf values.
See Also:
- :func:`jax.scipy.stats.gamma.cdf`
- :func:`jax.scipy.stats.gamma.pdf`
- :func:`jax.scipy.stats.gamma.logcdf`
- :func:`jax.scipy.stats.gamma.logpdf`
- :func:`jax.scipy.stats.gamma.logsf`
"""
x, a, loc, scale = promote_args_inexact("gamma.sf", x, a, loc, scale)
y = lax.div(lax.sub(x, loc), scale)
return jnp.where(lax.lt(y, _lax_const(y, 0)), 1, gammaincc(a, y))
def logsf(x: ArrayLike, a: ArrayLike, loc: ArrayLike = 0, scale: ArrayLike = 1) -> Array:
r"""Gamma log survival function.
JAX implementation of :obj:`scipy.stats.gamma` ``logsf``.
The survival function is defined as
.. math::
f_{sf}(x, k) = 1 - f_{cdf}(x, k)
where :math:`f_{cdf}(x, k)` is the cumulative distribution function,
:func:`jax.scipy.stats.gamma.cdf`.
Args:
x: arraylike, value at which to evaluate the SF
a: arraylike, distribution shape parameter
loc: arraylike, distribution offset parameter
scale: arraylike, distribution scale parameter
Returns:
array of logsf values.
See Also:
- :func:`jax.scipy.stats.gamma.cdf`
- :func:`jax.scipy.stats.gamma.pdf`
- :func:`jax.scipy.stats.gamma.sf`
- :func:`jax.scipy.stats.gamma.logcdf`
- :func:`jax.scipy.stats.gamma.logpdf`
"""
return lax.log(sf(x, a, loc, scale))