rocm_jax/jax/_src/prng.py

585 lines
20 KiB
Python

# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from typing import Callable, Iterator, NamedTuple, Sequence
import warnings
import numpy as np
from jax import lax
from jax import core
from jax import numpy as jnp
from jax import tree_util
from jax.config import config
from jax.dtypes import float0
from jax.interpreters import batching
from jax.interpreters import xla
from jax._src.api import jit, vmap
from jax._src.lib import xla_client
from jax._src.lib import cuda_prng
from jax._src.numpy.lax_numpy import (
_canonicalize_tuple_index, _eliminate_deprecated_list_indexing,
_expand_bool_indices, _register_stackable)
from jax._src.lib import hip_prng
import jax._src.pretty_printer as pp
from jax._src.util import canonicalize_axis, prod
UINT_DTYPES = {
8: jnp.uint8, 16: jnp.uint16, 32: jnp.uint32, 64: jnp.uint64} # type: ignore[has-type]
# -- PRNG implementation interface --
class PRNGImpl(NamedTuple):
"""Specifies PRNG key shape and operations.
A PRNG implementation is determined by a key type ``K`` and a
collection of functions that operate on such keys. The key type
``K`` is an array type with element type uint32 and shape specified
by ``key_shape``. The type signature of each operations is::
seed :: int[] -> K
fold_in :: K -> int[] -> K
split[n] :: K -> K[n]
random_bits[shape, bit_width] :: K -> uint<bit_width>[shape]
A PRNG implementation is adapted to an array-like object of keys
``K`` by the ``PRNGKeyArray`` class, which should be created via the
``seed_with_impl`` function.
"""
key_shape: core.Shape
seed: Callable
split: Callable
random_bits: Callable
fold_in: Callable
def pprint(self):
return (pp.text(f"{self.__class__.__name__}:") +
pp.nest(2, pp.group(pp.brk() + pp.join(pp.brk(), [
pp.text(f"{k} = {v}") for k, v in self._asdict().items()
]))))
# -- PRNG key arrays --
def _is_prng_key_data(impl, keys: jnp.ndarray) -> bool:
ndim = len(impl.key_shape)
try:
return (keys.ndim >= 1 and
keys.shape[-ndim:] == impl.key_shape and
(keys.dtype == np.uint32 or keys.dtype == float0))
except AttributeError:
return False
@tree_util.register_pytree_node_class
class PRNGKeyArray:
"""An array whose elements are PRNG keys.
This class lifts the definition of a PRNG, provided in the form of a
``PRNGImpl``, into an array-like pytree class. Instances of this
class behave like an array whose base elements are keys, hiding the
fact that keys are typically arrays (of ``uint32`` dtype) themselves.
PRNGKeyArrays are also restricted relative to JAX arrays in that
they do not expose arithmetic operations. They instead expose
wrapper methods around the PRNG implementation functions (``split``,
``random_bits``, ``fold_in``).
"""
impl: PRNGImpl
_keys: jnp.ndarray
def __init__(self, impl, key_data: jnp.ndarray):
# key_data might be a placeholder python `object` or `bool`
# instead of a jnp.ndarray due to tree_unflatten
if (type(key_data) not in [object, bool] and
not _is_prng_key_data(impl, key_data)):
raise TypeError(
f'Invalid PRNG key data {key_data} for PRNG implementation {impl}')
self.impl = impl
self._keys = key_data
def tree_flatten(self):
return (self._keys,), self.impl
def unsafe_raw_array(self):
"""Access the raw numerical array that carries underlying key data.
Returns:
A uint32 JAX array whose leading dimensions are ``self.shape``.
"""
return self._keys
@classmethod
def tree_unflatten(cls, impl, keys):
keys, = keys
return cls(impl, keys)
@property
def dtype(self):
# TODO(frostig): remove after deprecation window
if config.jax_enable_custom_prng:
raise AttributeError("'PRNGKeyArray' has no attribute 'dtype'")
else:
warnings.warn(
'deprecated `dtype` attribute of PRNG key arrays', FutureWarning)
return np.uint32
@property
def shape(self):
# TODO(frostig): simplify once we always enable_custom_prng
if config.jax_enable_custom_prng:
return self._shape
else:
warnings.warn(
'deprecated `shape` attribute of PRNG key arrays. In a future version '
'of JAX this attribute will be removed or its value may change.',
FutureWarning)
return self._keys.shape
@property
def _shape(self):
base_ndim = len(self.impl.key_shape)
return self._keys.shape[:-base_ndim]
@property
def ndim(self):
return len(self.shape)
def _is_scalar(self):
base_ndim = len(self.impl.key_shape)
return self._keys.ndim == base_ndim
def __len__(self):
if self._is_scalar():
raise TypeError('len() of unsized object')
return len(self._keys)
def __iter__(self) -> Iterator['PRNGKeyArray']:
if self._is_scalar():
raise TypeError('iteration over a 0-d single PRNG key')
return (PRNGKeyArray(self.impl, k) for k in iter(self._keys))
def __getitem__(self, idx) -> 'PRNGKeyArray':
base_ndim = len(self.impl.key_shape)
ndim = self._keys.ndim - base_ndim
indexable_shape = self.impl.key_shape[:ndim]
idx = _eliminate_deprecated_list_indexing(idx)
idx = _expand_bool_indices(idx, indexable_shape)
idx = _canonicalize_tuple_index(ndim, idx, array_name='PRNGKeyArray')
return PRNGKeyArray(self.impl, self._keys[idx])
def _fold_in(self, data: int) -> 'PRNGKeyArray':
return PRNGKeyArray(self.impl, self.impl.fold_in(self._keys, data))
def _random_bits(self, bit_width, shape) -> jnp.ndarray:
return self.impl.random_bits(self._keys, bit_width, shape)
def _split(self, num: int) -> 'PRNGKeyArray':
return PRNGKeyArray(self.impl, self.impl.split(self._keys, num))
def reshape(self, newshape, order=None):
reshaped_keys = jnp.reshape(self._keys, (*newshape, -1), order=order)
return PRNGKeyArray(self.impl, reshaped_keys)
def concatenate(self, key_arrs, axis):
axis = canonicalize_axis(axis, self.ndim)
arrs = [self._keys, *[k._keys for k in key_arrs]]
return PRNGKeyArray(self.impl, jnp.concatenate(arrs, axis))
def broadcast_to(self, shape):
new_shape = (*shape, *self.impl.key_shape)
return PRNGKeyArray(self.impl, jnp.broadcast_to(self._keys, new_shape))
def expand_dims(self, dimensions: Sequence[int]):
# follows lax.expand_dims, not jnp.expand_dims, so dimensions is a sequence
ndim_out = self.ndim + len(set(dimensions))
dimensions = [canonicalize_axis(d, ndim_out) for d in dimensions]
return PRNGKeyArray(self.impl, lax.expand_dims(self._keys, dimensions))
def __repr__(self):
arr_shape = self._shape
pp_keys = pp.text('shape = ') + pp.text(str(arr_shape))
pp_impl = pp.text('impl = ') + self.impl.pprint()
return str(pp.group(
pp.text('PRNGKeyArray:') +
pp.nest(2, pp.brk() + pp_keys + pp.brk() + pp_impl)))
def seed_with_impl(impl: PRNGImpl, seed: int) -> PRNGKeyArray:
return PRNGKeyArray(impl, impl.seed(seed))
_register_stackable(PRNGKeyArray)
# -- threefry2x32 PRNG implementation --
def _is_threefry_prng_key(key: jnp.ndarray) -> bool:
try:
return key.shape == (2,) and key.dtype == np.uint32
except AttributeError:
return False
def threefry_seed(seed: int) -> jnp.ndarray:
"""Create a single raw threefry PRNG key given an integer seed.
Args:
seed: a 64- or 32-bit integer used as the value of the key.
Returns:
The PRNG key contents, modeled as an array of shape (2,) and dtype
uint32. The key is constructed from a 64-bit seed by effectively
bit-casting to a pair of uint32 values (or from a 32-bit seed by
first padding out with zeros).
"""
# Avoid overflowerror in X32 mode by first converting ints to int64.
# This breaks JIT invariance for large ints, but supports the common
# use-case of instantiating with Python hashes in X32 mode.
if isinstance(seed, int):
seed_arr = jnp.asarray(np.int64(seed))
else:
seed_arr = jnp.asarray(seed)
if seed_arr.shape:
raise TypeError(f"PRNG key seed must be a scalar; got {seed!r}.")
if not np.issubdtype(seed_arr.dtype, np.integer):
raise TypeError(f"PRNG key seed must be an integer; got {seed!r}")
convert = lambda k: lax.reshape(lax.convert_element_type(k, np.uint32), [1])
k1 = convert(lax.shift_right_logical(seed_arr, lax._const(seed_arr, 32)))
k2 = convert(jnp.bitwise_and(seed_arr, np.uint32(0xFFFFFFFF)))
return lax.concatenate([k1, k2], 0)
def _make_rotate_left(dtype):
if not jnp.issubdtype(dtype, np.integer):
raise TypeError("_rotate_left only accepts integer dtypes.")
nbits = np.array(jnp.iinfo(dtype).bits, dtype)
def _rotate_left(x, d):
if lax.dtype(d) != dtype:
d = lax.convert_element_type(d, dtype)
if lax.dtype(x) != dtype:
x = lax.convert_element_type(x, dtype)
return lax.shift_left(x, d) | lax.shift_right_logical(x, nbits - d)
return _rotate_left
def _bit_stats(bits):
"""This is a debugging function to compute the statistics of bit fields."""
return np.array([list(map(int, np.binary_repr(x, 64))) for x in bits]).mean(0)
### hash function and split
def _threefry2x32_abstract_eval(*args):
if any(a.dtype != jnp.uint32 for a in args):
raise TypeError("Arguments to threefry2x32 must have uint32 type, got {}"
.format(args))
if all(isinstance(arg, core.ShapedArray) for arg in args):
shape = lax._broadcasting_shape_rule(*args)
named_shape = core.join_named_shapes(*(a.named_shape for a in args))
aval = core.ShapedArray(shape, jnp.dtype(jnp.uint32), named_shape=named_shape)
else:
aval = core.UnshapedArray(jnp.dtype(jnp.uint32))
return (aval,) * 2
rotate_left = _make_rotate_left(np.uint32)
def apply_round(v, rot):
v = v[:]
v[0] = v[0] + v[1]
v[1] = rotate_left(v[1], rot)
v[1] = v[0] ^ v[1]
return v
def rotate_list(xs):
return xs[1:] + xs[:1]
def rolled_loop_step(i, state):
x, ks, rotations = state
for r in rotations[0]:
x = apply_round(x, r)
new_x = [x[0] + ks[0], x[1] + ks[1] + jnp.asarray(i + 1, dtype=np.uint32)]
return new_x, rotate_list(ks), rotate_list(rotations)
def _threefry2x32_lowering(key1, key2, x1, x2, use_rolled_loops=True):
"""Apply the Threefry 2x32 hash.
Args:
keypair: a pair of 32bit unsigned integers used for the key.
count: an array of dtype uint32 used for the counts.
Returns:
An array of dtype uint32 with the same shape as `count`.
"""
x = [x1, x2]
rotations = [np.array([13, 15, 26, 6], dtype=np.uint32),
np.array([17, 29, 16, 24], dtype=np.uint32)]
ks = [key1, key2, key1 ^ key2 ^ np.uint32(0x1BD11BDA)]
x[0] = x[0] + ks[0]
x[1] = x[1] + ks[1]
if use_rolled_loops:
x, _, _ = lax.fori_loop(0, 5, rolled_loop_step, (x, rotate_list(ks), rotations))
else:
for r in rotations[0]:
x = apply_round(x, r)
x[0] = x[0] + ks[1]
x[1] = x[1] + ks[2] + np.uint32(1)
for r in rotations[1]:
x = apply_round(x, r)
x[0] = x[0] + ks[2]
x[1] = x[1] + ks[0] + np.uint32(2)
for r in rotations[0]:
x = apply_round(x, r)
x[0] = x[0] + ks[0]
x[1] = x[1] + ks[1] + np.uint32(3)
for r in rotations[1]:
x = apply_round(x, r)
x[0] = x[0] + ks[1]
x[1] = x[1] + ks[2] + np.uint32(4)
for r in rotations[0]:
x = apply_round(x, r)
x[0] = x[0] + ks[2]
x[1] = x[1] + ks[0] + np.uint32(5)
return tuple(x)
def _threefry2x32_gpu_translation_rule(ctx, avals_in, avals_out, k1, k2, x1,
x2):
aval_out, _ = avals_out
k1_aval, k2_aval, x1_aval, x2_aval = avals_in
rank = len(aval_out.shape)
if 0 in aval_out.shape:
zeros = xla_client.ops.Broadcast(
xla_client.ops.Constant(ctx.builder, np.array(0, np.uint32)),
aval_out.shape)
return [zeros, zeros]
def _broadcast(x, aval):
return xla_client.ops.BroadcastInDim(
x, aval_out.shape, tuple(range(rank - len(aval.shape), rank)))
if cuda_prng:
return xla.xla_destructure(
ctx.builder,
cuda_prng.threefry2x32(
ctx.builder, (_broadcast(k1, k1_aval), _broadcast(k2, k2_aval)),
(_broadcast(x1, x1_aval), _broadcast(x2, x2_aval))))
else:
return xla.xla_destructure(
ctx.builder,
hip_prng.threefry2x32(
ctx.builder, (_broadcast(k1, k1_aval), _broadcast(k2, k2_aval)),
(_broadcast(x1, x1_aval), _broadcast(x2, x2_aval))))
threefry2x32_p = core.Primitive("threefry2x32")
threefry2x32_p.multiple_results = True
threefry2x32_p.def_impl(partial(xla.apply_primitive, threefry2x32_p))
threefry2x32_p.def_abstract_eval(_threefry2x32_abstract_eval)
batching.defbroadcasting(threefry2x32_p)
xla.register_translation(threefry2x32_p, xla.lower_fun(
partial(_threefry2x32_lowering, use_rolled_loops=False),
multiple_results=True, new_style=True))
xla.register_translation(threefry2x32_p, xla.lower_fun(
partial(_threefry2x32_lowering, use_rolled_loops=True),
multiple_results=True, new_style=True), platform='cpu')
if cuda_prng:
xla.register_translation(threefry2x32_p, _threefry2x32_gpu_translation_rule,
platform='gpu')
if hip_prng:
xla.register_translation(threefry2x32_p, _threefry2x32_gpu_translation_rule,
platform='gpu')
@partial(jit, inline=True)
def threefry_2x32(keypair, count):
"""Apply the Threefry 2x32 hash.
Args:
keypair: a pair of 32bit unsigned integers used for the key.
count: an array of dtype uint32 used for the counts.
Returns:
An array of dtype uint32 with the same shape as `count`.
"""
key1, key2 = keypair
if not lax.dtype(key1) == lax.dtype(key2) == lax.dtype(count) == np.uint32:
msg = "threefry_2x32 requires uint32 arguments, got {}"
raise TypeError(msg.format([lax.dtype(x) for x in [key1, key2, count]]))
try:
odd_size = count.size % 2
except core.InconclusiveDimensionOperation as e:
msg = ("jax.random functions have limited support for shape polymorphism. "
"In particular, the product of the known dimensions must be even.")
raise core.InconclusiveDimensionOperation(msg) from e
if odd_size:
x = list(jnp.split(jnp.concatenate([count.ravel(), np.uint32([0])]), 2))
else:
x = list(jnp.split(count.ravel(), 2))
x = threefry2x32_p.bind(key1, key2, x[0], x[1])
out = jnp.concatenate(x)
assert out.dtype == np.uint32
return lax.reshape(out[:-1] if odd_size else out, count.shape)
def threefry_split(key: jnp.ndarray, num: int) -> jnp.ndarray:
return _threefry_split(key, int(num)) # type: ignore
@partial(jit, static_argnums=(1,), inline=True)
def _threefry_split(key, num) -> jnp.ndarray:
counts = lax.iota(np.uint32, num * 2)
return lax.reshape(threefry_2x32(key, counts), (num, 2))
def threefry_fold_in(key: jnp.ndarray, data: int) -> jnp.ndarray:
return _threefry_fold_in(key, jnp.uint32(data))
@partial(jit, inline=True)
def _threefry_fold_in(key, data):
return threefry_2x32(key, threefry_seed(data))
@partial(jit, static_argnums=(1, 2), inline=True)
def threefry_random_bits(key: jnp.ndarray, bit_width, shape):
"""Sample uniform random bits of given width and shape using PRNG key."""
if not _is_threefry_prng_key(key):
raise TypeError("threefry_random_bits got invalid prng key.")
if bit_width not in (8, 16, 32, 64):
raise TypeError("requires 8-, 16-, 32- or 64-bit field width.")
shape = core.as_named_shape(shape)
for name, size in shape.named_items:
real_size = lax.psum(1, name)
if real_size != size:
raise ValueError(f"The shape of axis {name} was specified as {size}, "
f"but it really is {real_size}")
axis_index = lax.axis_index(name)
key = threefry_fold_in(key, axis_index)
size = prod(shape.positional)
# Compute ceil(bit_width * size / 32) in a way that is friendly to shape
# polymorphism
max_count, r = divmod(bit_width * size, 32)
if r > 0:
max_count += 1
if core.is_constant_dim(max_count):
nblocks, rem = divmod(max_count, jnp.iinfo(np.uint32).max)
else:
nblocks, rem = 0, max_count
if not nblocks:
bits = threefry_2x32(key, lax.iota(np.uint32, rem))
else:
keys = threefry_split(key, nblocks + 1)
subkeys, last_key = keys[:-1], keys[-1]
blocks = vmap(threefry_2x32, in_axes=(0, None))(subkeys, lax.iota(np.uint32, jnp.iinfo(np.uint32).max))
last = threefry_2x32(last_key, lax.iota(np.uint32, rem))
bits = lax.concatenate([blocks.ravel(), last], 0)
dtype = UINT_DTYPES[bit_width]
if bit_width == 64:
bits = [lax.convert_element_type(x, dtype) for x in jnp.split(bits, 2)]
bits = lax.shift_left(bits[0], dtype(32)) | bits[1]
elif bit_width in [8, 16]:
# this is essentially bits.view(dtype)[:size]
bits = lax.bitwise_and(
np.uint32(np.iinfo(dtype).max),
lax.shift_right_logical(
lax.broadcast(bits, (1,)),
lax.mul(
np.uint32(bit_width),
lax.broadcasted_iota(np.uint32, (32 // bit_width, 1), 0)
)
)
)
bits = lax.reshape(bits, (np.uint32(max_count * 32 // bit_width),), (1, 0))
bits = lax.convert_element_type(bits, dtype)[:size]
return lax.reshape(bits, shape)
threefry_prng_impl = PRNGImpl(
key_shape=(2,),
seed=threefry_seed,
split=threefry_split,
random_bits=threefry_random_bits,
fold_in=threefry_fold_in)
# -- RngBitGenerator PRNG implementation --
# This code is experimental!
# https://www.tensorflow.org/xla/operation_semantics#rngbitgenerator
# Notice that the RngBitGenerator operations are not guaranteed to be
# stable/deterministic across backends or compiler versions. Correspondingly, we
# reserve the right to change any of these implementations at any time!
def _rbg_seed(seed: int) -> jnp.ndarray:
halfkey = threefry_seed(seed)
return jnp.concatenate([halfkey, halfkey])
def _rbg_split(key: jnp.ndarray, num: int) -> jnp.ndarray:
return vmap(_threefry_split, (0, None), 1)(key.reshape(2, 2), num).reshape(num, 4)
def _rbg_fold_in(key: jnp.ndarray, data: int) -> jnp.ndarray:
return vmap(_threefry_fold_in, (0, None), 0)(key.reshape(2, 2), data).reshape(4)
def _rbg_random_bits(key: jnp.ndarray, bit_width: int, shape: Sequence[int]
) -> jnp.ndarray:
if not key.shape == (4,) and key.dtype == jnp.dtype('uint32'):
raise TypeError("_rbg_random_bits got invalid prng key.")
if bit_width not in (8, 16, 32, 64):
raise TypeError("requires 8-, 16-, 32- or 64-bit field width.")
_, bits = lax.rng_bit_generator(key, shape, dtype=UINT_DTYPES[bit_width])
return bits
rbg_prng_impl = PRNGImpl(
key_shape=(4,),
seed=_rbg_seed,
split=_rbg_split,
random_bits=_rbg_random_bits,
fold_in=_rbg_fold_in)
def _unsafe_rbg_split(key: jnp.ndarray, num: int) -> jnp.ndarray:
# treat 10 iterations of random bits as a 'hash function'
_, keys = lax.rng_bit_generator(key, (10 * num, 4), dtype='uint32')
return keys[::10]
def _unsafe_rbg_fold_in(key: jnp.ndarray, data: int) -> jnp.ndarray:
_, random_bits = lax.rng_bit_generator(_rbg_seed(data), (10, 4), dtype='uint32')
return key ^ random_bits[-1]
unsafe_rbg_prng_impl = PRNGImpl(
key_shape=(4,),
seed=_rbg_seed,
split=_unsafe_rbg_split,
random_bits=_rbg_random_bits,
fold_in=_unsafe_rbg_fold_in)