mirror of
https://github.com/ROCm/jax.git
synced 2025-04-16 03:46:06 +00:00

In some environments this appears to import the config module rather than the config object.
210 lines
7.1 KiB
Python
210 lines
7.1 KiB
Python
# Copyright 2021 The JAX Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from functools import partial
|
|
import math
|
|
|
|
from absl.testing import absltest
|
|
|
|
import numpy as np
|
|
|
|
import jax
|
|
from jax import lax
|
|
from jax._src import test_util as jtu
|
|
|
|
jax.config.parse_flags_with_absl()
|
|
|
|
ignore_jit_of_pmap_warning = partial(
|
|
jtu.ignore_warning,message=".*jit-of-pmap.*")
|
|
|
|
|
|
def compute_recall(result_neighbors, ground_truth_neighbors) -> float:
|
|
"""Computes the recall of an approximate nearest neighbor search.
|
|
|
|
Args:
|
|
result_neighbors: int32 numpy array of the shape [num_queries,
|
|
neighbors_per_query] where the values are the indices of the dataset.
|
|
ground_truth_neighbors: int32 numpy array of with shape [num_queries,
|
|
ground_truth_neighbors_per_query] where the values are the indices of the
|
|
dataset.
|
|
|
|
Returns:
|
|
The recall.
|
|
"""
|
|
assert len(
|
|
result_neighbors.shape) == 2, "shape = [num_queries, neighbors_per_query]"
|
|
assert len(ground_truth_neighbors.shape
|
|
) == 2, "shape = [num_queries, ground_truth_neighbors_per_query]"
|
|
assert result_neighbors.shape[0] == ground_truth_neighbors.shape[0]
|
|
gt_sets = [set(np.asarray(x)) for x in ground_truth_neighbors]
|
|
hits = sum(len([x
|
|
for x in nn_per_q
|
|
if x.item() in gt_sets[q]])
|
|
for q, nn_per_q in enumerate(result_neighbors))
|
|
return hits / ground_truth_neighbors.size
|
|
|
|
|
|
class AnnTest(jtu.JaxTestCase):
|
|
|
|
# TODO(b/258315194) Investigate probability property when input is around
|
|
# few thousands.
|
|
@jtu.sample_product(
|
|
qy_shape=[(200, 128), (128, 128)],
|
|
db_shape=[(128, 500), (128, 3000)],
|
|
dtype=jtu.dtypes.all_floating,
|
|
k=[1, 10],
|
|
recall=[0.95],
|
|
)
|
|
def test_approx_max_k(self, qy_shape, db_shape, dtype, k, recall):
|
|
rng = jtu.rand_default(self.rng())
|
|
qy = rng(qy_shape, dtype)
|
|
db = rng(db_shape, dtype)
|
|
scores = lax.dot(qy, db)
|
|
_, gt_args = lax.top_k(scores, k)
|
|
_, ann_args = lax.approx_max_k(scores, k, recall_target=recall)
|
|
self.assertEqual(k, len(ann_args[0]))
|
|
ann_recall = compute_recall(np.asarray(ann_args), np.asarray(gt_args))
|
|
self.assertGreaterEqual(ann_recall, recall*0.9)
|
|
|
|
@jtu.sample_product(
|
|
qy_shape=[(200, 128), (128, 128)],
|
|
db_shape=[(128, 500), (128, 3000)],
|
|
dtype=jtu.dtypes.all_floating,
|
|
k=[1, 10],
|
|
recall=[0.95],
|
|
)
|
|
def test_approx_min_k(self, qy_shape, db_shape, dtype, k, recall):
|
|
rng = jtu.rand_default(self.rng())
|
|
qy = rng(qy_shape, dtype)
|
|
db = rng(db_shape, dtype)
|
|
scores = lax.dot(qy, db)
|
|
_, gt_args = lax.top_k(-scores, k)
|
|
_, ann_args = lax.approx_min_k(scores, k, recall_target=recall)
|
|
ann_recall = compute_recall(np.asarray(ann_args), np.asarray(gt_args))
|
|
self.assertGreaterEqual(ann_recall, recall*0.9)
|
|
|
|
@jtu.sample_product(
|
|
dtype=[np.float32],
|
|
shape=[(4,), (5, 5), (2, 1, 4)],
|
|
k=[1, 3],
|
|
is_max_k=[True, False],
|
|
)
|
|
def test_autodiff(self, shape, dtype, k, is_max_k):
|
|
vals = np.arange(math.prod(shape), dtype=dtype)
|
|
vals = self.rng().permutation(vals).reshape(shape)
|
|
if is_max_k:
|
|
fn = lambda vs: lax.approx_max_k(vs, k=k)[0]
|
|
else:
|
|
fn = lambda vs: lax.approx_min_k(vs, k=k)[0]
|
|
jtu.check_grads(fn, (vals,), 2, ["fwd", "rev"], eps=1e-2)
|
|
|
|
|
|
@jtu.sample_product(
|
|
qy_shape=[(200, 128), (128, 128)],
|
|
db_shape=[(2048, 128)],
|
|
dtype=jtu.dtypes.all_floating,
|
|
k=[1, 10],
|
|
recall=[0.9, 0.95],
|
|
)
|
|
def test_pmap(self, qy_shape, db_shape, dtype, k, recall):
|
|
num_devices = jax.device_count()
|
|
rng = jtu.rand_default(self.rng())
|
|
qy = rng(qy_shape, dtype)
|
|
db = rng(db_shape, dtype)
|
|
db_size = db.shape[0]
|
|
gt_scores = lax.dot_general(qy, db, (([1], [1]), ([], [])))
|
|
_, gt_args = lax.top_k(-gt_scores, k) # negate the score to get min-k
|
|
db_per_device = db_size//num_devices
|
|
sharded_db = db.reshape(num_devices, db_per_device, 128)
|
|
db_offsets = np.arange(num_devices, dtype=np.int32) * db_per_device
|
|
def parallel_topk(qy, db, db_offset):
|
|
scores = lax.dot_general(qy, db, (([1],[1]),([],[])))
|
|
ann_vals, ann_args = lax.approx_min_k(
|
|
scores,
|
|
k=k,
|
|
reduction_dimension=1,
|
|
recall_target=recall,
|
|
reduction_input_size_override=db_size,
|
|
aggregate_to_topk=False)
|
|
return (ann_vals, ann_args + db_offset)
|
|
# shape = qy_size, num_devices, approx_dp
|
|
ann_vals, ann_args = jax.pmap(
|
|
parallel_topk,
|
|
in_axes=(None, 0, 0),
|
|
out_axes=(1, 1))(qy, sharded_db, db_offsets)
|
|
# collapse num_devices and approx_dp
|
|
ann_vals = lax.collapse(ann_vals, 1, 3)
|
|
ann_args = lax.collapse(ann_args, 1, 3)
|
|
ann_vals, ann_args = lax.sort_key_val(ann_vals, ann_args, dimension=1)
|
|
ann_args = lax.slice_in_dim(ann_args, start_index=0, limit_index=k, axis=1)
|
|
ann_recall = compute_recall(np.asarray(ann_args), np.asarray(gt_args))
|
|
self.assertGreater(ann_recall, recall)
|
|
|
|
|
|
def test_vmap_before(self):
|
|
batch = 4
|
|
qy_size = 128
|
|
db_size = 1024
|
|
feature_dim = 32
|
|
k = 10
|
|
rng = jtu.rand_default(self.rng())
|
|
qy = rng([batch, qy_size, feature_dim], np.float32)
|
|
db = rng([batch, db_size, feature_dim], np.float32)
|
|
recall = 0.95
|
|
|
|
# Create ground truth
|
|
gt_scores = lax.dot_general(qy, db, (([2], [2]), ([0], [0])))
|
|
_, gt_args = lax.top_k(gt_scores, k)
|
|
gt_args = lax.reshape(gt_args, [qy_size * batch, k])
|
|
|
|
# test target
|
|
def approx_max_k(qy, db):
|
|
scores = qy @ db.transpose()
|
|
return lax.approx_max_k(scores, k)
|
|
_, ann_args = jax.vmap(approx_max_k, (0, 0))(qy, db)
|
|
ann_args = lax.reshape(ann_args, [qy_size * batch, k])
|
|
ann_recall = compute_recall(np.asarray(ann_args), np.asarray(gt_args))
|
|
self.assertGreater(ann_recall, recall)
|
|
|
|
|
|
def test_vmap_after(self):
|
|
batch = 4
|
|
qy_size = 128
|
|
db_size = 1024
|
|
feature_dim = 32
|
|
k = 10
|
|
rng = jtu.rand_default(self.rng())
|
|
qy = rng([qy_size, feature_dim, batch], np.float32)
|
|
db = rng([db_size, feature_dim, batch], np.float32)
|
|
recall = 0.95
|
|
|
|
# Create ground truth
|
|
gt_scores = lax.dot_general(qy, db, (([1], [1]), ([2], [2])))
|
|
_, gt_args = lax.top_k(gt_scores, k)
|
|
gt_args = lax.transpose(gt_args, [2, 0, 1])
|
|
gt_args = lax.reshape(gt_args, [qy_size * batch, k])
|
|
|
|
# test target
|
|
def approx_max_k(qy, db):
|
|
scores = qy @ db.transpose()
|
|
return lax.approx_max_k(scores, k)
|
|
_, ann_args = jax.vmap(approx_max_k, (2, 2))(qy, db)
|
|
ann_args = lax.transpose(ann_args, [2, 0, 1])
|
|
ann_args = lax.reshape(ann_args, [qy_size * batch, k])
|
|
ann_recall = compute_recall(np.asarray(ann_args), np.asarray(gt_args))
|
|
self.assertGreater(ann_recall, recall)
|
|
|
|
if __name__ == "__main__":
|
|
absltest.main(testLoader=jtu.JaxTestLoader())
|