rocm_jax/jax/experimental/shard_map.py
Junwhan Ahn c72d72c5a7 Add support for (ordered) io_callable within shard_map
This CL changes `shard_map` to propagate the tokens from/to the outer lowering context and allows `io_callable` with/without ordering to be used inside `shard_map`. As in shardable ordered effects that were recently added, ordered `io_callable` inside `shard_map` has partial ordering, where the ordering is enforced only within a device.

Also fixes a bug where `mlir.eval_dynamic_shape` fails when `ctx` already has `tokens_out` set. Since `LoweringRuleContext` allows `tokens_out` to be set only once, the `ctx.tokens_out` is cleared before it is passed to `lower_fun`, which calls `ctx.set_tokens_out` internally.

PiperOrigin-RevId: 568314239
2023-09-25 13:56:43 -07:00

1738 lines
74 KiB
Python

# Copyright 2023 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from collections.abc import Hashable, Sequence
import enum
from functools import partial
import inspect
import itertools as it
from math import prod
import operator as op
from typing import Any, Callable, Optional, TypeVar, Union
import numpy as np
import jax
import jax.numpy as jnp
from jax.sharding import NamedSharding, PartitionSpec, Mesh
from jax._src import core
from jax._src import dtypes
from jax._src import ad_util
from jax._src import callback
from jax._src import custom_derivatives
from jax._src import debugging
from jax._src import dispatch
from jax._src import linear_util as lu
from jax._src import ops
from jax._src import pjit
from jax._src import prng
from jax._src import sharding_impls
from jax._src import source_info_util
from jax._src import traceback_util
from jax._src import util
from jax._src import array
from jax._src.core import Tracer
from jax._src.api import _shared_code_pmap, _prepare_pmap
from jax._src.lax import (lax, parallel as lax_parallel, slicing,
windowed_reductions, fft, linalg, control_flow)
from jax._src.util import (HashableFunction, HashablePartial, unzip2, unzip3,
as_hashable_function, memoize, partition_list,
merge_lists, split_list)
from jax.api_util import flatten_fun_nokwargs, shaped_abstractify
from jax._src.interpreters import batching
from jax._src.interpreters import mlir
from jax._src.interpreters import partial_eval as pe
from jax._src.interpreters import pxla
from jax.interpreters import ad
from jax.tree_util import (tree_map, tree_flatten, tree_unflatten,
tree_structure, tree_leaves, keystr)
from jax._src.tree_util import (broadcast_prefix, prefix_errors, PyTreeDef,
generate_key_paths, KeyPath)
from jax.experimental.multihost_utils import (host_local_array_to_global_array,
global_array_to_host_local_array)
P = PartitionSpec
map, unsafe_map = util.safe_map, map
zip, unsafe_zip = util.safe_zip, zip
traceback_util.register_exclusion(__file__)
# API
Specs = Any # PyTree[PartitionSpec]
AxisName = Hashable
@traceback_util.api_boundary
def shard_map(f: Callable, mesh: Mesh, in_specs: Specs, out_specs: Specs,
check_rep: bool = True, auto: frozenset[AxisName] = frozenset()):
return _shard_map(f, mesh, in_specs, out_specs, check_rep, auto)
def _shard_map(f: Callable, mesh: Mesh, in_specs: Specs,
out_specs: Specs | Callable[[], Specs],
check_rep: bool, auto: frozenset[AxisName]):
if not callable(f):
raise TypeError("shard_map requires a callable for its first argument, "
f"but got {f} of type {type(f)}.")
if not isinstance(mesh, Mesh):
raise TypeError("shard_map requires a `jax.sharding.Mesh` instance for its "
f"second argument, but got {mesh} of type {type(mesh)}.")
_check_specs(SpecErrorType.input, in_specs)
if not callable(out_specs):
_check_specs(SpecErrorType.out, out_specs)
@util.wraps(f)
@traceback_util.api_boundary
def wrapped(*args):
fun = lu.wrap_init(f)
args_flat, in_tree = tree_flatten(args)
try: in_specs_flat = broadcast_prefix(in_specs, args)
except ValueError:
e, *_ = prefix_errors(in_specs, args)
raise e('shard_map in_specs') from None
_check_specs_vs_args(f, mesh, in_tree, in_specs, in_specs_flat, args_flat)
in_names_flat = tuple(map(_canonicalize_spec, in_specs_flat))
fun, out_tree = flatten_fun_nokwargs(fun, in_tree)
@memoize
def out_names_thunk():
if callable(out_specs):
out_specs_ = out_specs()
_check_specs(SpecErrorType.out, out_specs_)
else:
out_specs_ = out_specs
dummy = tree_unflatten(out_tree(), [object()] * out_tree().num_leaves)
try: out_specs_flat = broadcast_prefix(out_specs_, dummy)
except ValueError:
e, *_ = prefix_errors(out_specs_, dummy)
raise e('shard_map out_specs') from None
return tuple(map(_canonicalize_spec, out_specs_flat))
if rewrite := check_rep:
fun = _efficient_transpose_rewrite(fun, mesh, in_names_flat, out_names_thunk)
try:
out_flat = shard_map_p.bind(
fun, *args_flat, mesh=mesh, in_names=in_names_flat,
out_names_thunk=out_names_thunk, check_rep=check_rep, rewrite=rewrite,
auto=auto)
except _SpecError as e:
fails, = e.args
if not callable(out_specs):
msg = _spec_rank_error(SpecErrorType.out, f, out_tree(), out_specs, fails)
if any(fail is not no_fail and not fail.shape for fail in fails):
msg += (" In particular, for rank 0 outputs which are not constant "
"over the mesh, add at least one (singleton) axis to them so "
"that they can be concatenated using out_specs.")
raise ValueError(msg) from None
except _RepError as e:
fails, = e.args
if not callable(out_specs):
msg = _inout_rep_error(f, mesh, out_tree(), out_specs, fails)
raise ValueError(msg) from None
return tree_unflatten(out_tree(), out_flat)
return wrapped
# Internally use AxisNames = dict[int, tuple[AxisName, ...]], not PartitionSpecs
AxisNames = dict[int, tuple[AxisName, ...]] # TODO(mattjj): make it hashable
def _canonicalize_spec(spec: PartitionSpec) -> AxisNames:
if isinstance(spec, PartitionSpec):
return {i: names if isinstance(names, tuple) else (names,)
for i, names in enumerate(spec) if names is not None}
else:
return spec
# Error checking and messages
SpecErrorType = enum.Enum('SpecErrorType', ['input', 'out'])
def _check_specs(error_type: SpecErrorType, specs: Any) -> None:
if error_type == SpecErrorType.input and specs is None:
raise TypeError(
"shard_map in_specs argument must be a pytree of "
"`jax.sharding.PartitionSpec` instances, but it was None.\n"
"Instead of `in_specs=None`, did you mean `in_specs=P()`, "
"where `P = jax.sharding.PartitionSpec`?")
if all(isinstance(p, PartitionSpec) for p in tree_leaves(specs)): return
prefix = 'in' if error_type == SpecErrorType.input else 'out'
msgs = [f" {prefix}_specs{keystr(key)} is {x} of type {type(x).__name__}, "
for key, x in generate_key_paths(specs) if not isinstance(x, P)]
raise TypeError(
f"shard_map {prefix}_specs argument must be a pytree of "
f"`jax.sharding.PartitionSpec` instances, but:\n\n"
+ '\n\n'.join(msgs) + '\n\n'
f"Check the {prefix}_specs values passed to shard_map.")
class NoFail: pass
no_fail = NoFail()
def _check_specs_vs_args(
f: Callable, mesh: Mesh, in_tree: PyTreeDef, in_specs: Specs,
in_specs_flat: list[P], xs: list) -> None:
in_avals = map(shaped_abstractify, xs)
fail = [a if not len(p) <= a.ndim else no_fail
for p, a in zip(in_specs_flat, in_avals)]
if any(f is not no_fail for f in fail):
msg = _spec_rank_error(SpecErrorType.input, f, in_tree, in_specs, fail)
raise ValueError(msg)
in_names_flat = tuple(map(_canonicalize_spec, in_specs_flat))
fail = [a if any(a.shape[d] % prod(mesh.shape[n] for n in ns)
for d, ns in names.items()) else no_fail
for a, names in zip(in_avals, in_names_flat)]
if any(f is not no_fail for f in fail):
msg = _spec_divisibility_error(f, mesh, in_tree, in_specs, fail)
raise ValueError(msg)
def _spec_rank_error(
error_type: SpecErrorType, f: Callable, tree: PyTreeDef, specs: Specs,
fails: list[core.ShapedArray | NoFail]) -> str:
fun_name = getattr(f, '__name__', str(f))
if error_type == SpecErrorType.input:
prefix, base = 'in', 'args'
ba = _try_infer_args(f, tree)
else:
prefix, base = 'out', f'{fun_name}(*args)'
msgs = []
for (spec_key, spec), (fail_key, aval) in _iter_paths(tree, specs, fails):
if error_type == SpecErrorType.input and ba is not None:
arg_key, *_ = fail_key
extra = (f", where {base}[{arg_key}] is bound to {fun_name}'s "
f"parameter '{list(ba.arguments.keys())[arg_key.idx]}',")
else:
extra = ""
msgs.append(
f"* {prefix}_specs{keystr(spec_key)} is {spec} which has length "
f"{len(spec)}, but "
f"{base}{keystr(fail_key)}{extra} has shape {aval.str_short()}, "
f"which has rank {aval.ndim} (and {aval.ndim} < {len(spec)})")
assert msgs
msg = (f"shard_map applied to the function '{fun_name}' was given an "
f"{prefix}_specs entry which is too long to be compatible with the "
f"corresponding {prefix}put value from the function:\n\n"
+ '\n\n'.join(msgs) + '\n\n' +
f"Entries in {prefix}_specs must be of length no greater than the "
f"number of axes in the corresponding {prefix}put value.\n\n"
f"Either revise the spec to be shorter, or modify '{fun_name}' so "
f"that its {prefix}puts have sufficient rank.")
if any(not aval.ndim for _, (_, aval) in _iter_paths(tree, specs, fails)):
msg += (f"\n\nFor scalar values (rank 0), consider using an {prefix}_specs "
"entry of `P()`, where `P = jax.sharding.PartitionSpec`.")
return msg
def _spec_divisibility_error(
f: Callable, mesh: Mesh, tree: PyTreeDef, specs: Specs,
fails: list[core.ShapedArray | NoFail]) -> str:
ba = _try_infer_args(f, tree)
fun_name = getattr(f, '__name__', str(f))
msgs = []
for (spec_key, spec), (fail_key, aval) in _iter_paths(tree, specs, fails):
if ba is not None:
arg_key, *_ = fail_key
extra = (f", where args[{arg_key}] is bound to {fun_name}'s "
f"parameter '{list(ba.arguments.keys())[arg_key.idx]}',")
names = _canonicalize_spec(spec)
for d, ns in names.items():
if aval.shape[d] % prod(mesh.shape[n] for n in ns):
axis = f"axes {ns}" if len(ns) > 1 else f"axis '{ns[0]}'"
total = 'total ' if len(ns) > 1 else ''
sz = prod(mesh.shape[n] for n in ns)
msgs.append(
f"* args{keystr(fail_key)} of shape {aval.str_short()}{extra} "
f"corresponds to in_specs{keystr(spec_key)} of value {spec}, "
f"which maps array axis {d} (of size {aval.shape[d]}) to mesh "
f"{axis} (of {total}size {sz}), but {sz} does not evenly divide "
f"{aval.shape[d]}")
assert msgs
msg = (f"shard_map applied to the function '{fun_name}' was given argument "
f"arrays with axis sizes that are not evenly divisible by the "
f"corresponding mesh axis sizes:\n\n"
f"The mesh given has shape {mesh.device_ids.shape} with corresponding "
f"axis names {mesh.axis_names}.\n\n"
+ '\n\n'.join(msgs) + '\n\n' +
f"Array arguments' axis sizes must be evenly divisible by the mesh "
f"axis or axes indicated by the corresponding elements of the "
f"argument's in_specs entry. Consider checking that in_specs are "
f"correct, and if so consider changing the mesh axis sizes or else "
f"padding the input and adapting '{fun_name}' appropriately.")
return msg
def _inout_rep_error(f: Callable, mesh: Mesh, tree: PyTreeDef, specs: Specs,
fails: list[set | NoFail]) -> str:
fun_name = getattr(f, '__name__', str(f))
msgs = []
for (spec_key, spec), (fail_key, rep) in _iter_paths(tree, specs, fails):
dst = _canonicalize_spec(spec)
unmentioned = _unmentioned(mesh, dst)
if len(unmentioned) > 1:
need_rep = ','.join(map(str, unmentioned))
got_rep = ','.join(map(str, rep))
diff = ','.join(map(str, [n for n in unmentioned if n not in rep]))
msgs.append(
f"* out_specs{keystr(spec_key)} is {spec} which implies that the "
f"corresponding output value is replicated across mesh axes "
f"{{{need_rep}}}, but could only infer replication over {{{got_rep}}}, "
f"which is missing the required axes {diff}")
else:
need_rep_, = unmentioned
msgs.append(
f"* out_specs{keystr(spec_key)} is {spec} which implies that the "
f"corresponding output value is replicated across mesh axis "
f"'{need_rep_}', but could not infer replication over any axes")
assert msgs
msg = (f"shard_map applied to the function '{fun_name}' was given "
f"out_specs which require replication which can't be statically "
f"inferred given the mesh:\n\n"
f"The mesh given has shape {mesh.device_ids.shape} with corresponding "
f"axis names {mesh.axis_names}.\n\n"
+ '\n\n'.join(msgs) + '\n\n' +
"Check if these output values are meant to be replicated over those "
"mesh axes. If not, consider revising the corresponding out_specs "
"entries. If so, consider disabling the check by passing the "
"check_rep=False argument to shard_map.")
return msg
def _unmentioned(mesh: Mesh, names: AxisNames) -> list[AxisName]:
name_set = {n for ns in names.values() for n in ns}
return [n for n in mesh.axis_names if n not in name_set]
def _try_infer_args(f, tree):
dummy_args = tree_unflatten(tree, [False] * tree.num_leaves)
try:
return inspect.signature(f).bind(*dummy_args)
except (TypeError, ValueError):
return None
T = TypeVar('T')
def _iter_paths(tree: PyTreeDef, specs: Specs, fails: list[T | NoFail]
) -> list[tuple[tuple[KeyPath, P], tuple[KeyPath, T]]]:
failures = tree_unflatten(tree, fails)
failures_aug = generate_key_paths(failures)
specs_ = tree_unflatten(tree_structure(specs), generate_key_paths(specs))
leaf = lambda x: type(x) is tuple and len(x) == 2 and type(x[1]) is P
specs_aug = broadcast_prefix(specs_, failures, is_leaf=leaf)
return [((spec_key, spec), (fail_key, fail_data))
for (spec_key, spec), (fail_key, fail_data)
in zip(specs_aug, failures_aug) if fail_data is not no_fail]
# Primitive
JaxType = Any
MaybeTracer = Union[JaxType, Tracer]
class ShardMapPrimitive(core.Primitive):
multiple_results = True
def bind(self, fun: lu.WrappedFun, *args: MaybeTracer, mesh: Mesh,
in_names: tuple[AxisNames, ...],
out_names_thunk: Callable[[], tuple[AxisNames, ...]],
check_rep: bool, rewrite: bool, auto: frozenset[AxisName]
) -> Sequence[MaybeTracer]:
top_trace = core.find_top_trace(args)
fun, env_todo = process_env_traces(fun, top_trace.level, mesh, in_names,
out_names_thunk, check_rep, rewrite, auto)
@as_hashable_function(closure=out_names_thunk)
def new_out_names_thunk():
out_names = out_names_thunk()
_, xforms = env_todo()
for t in xforms:
out_names = t(out_names)
return out_names
tracers = map(top_trace.full_raise, args)
outs = top_trace.process_shard_map( # pytype: disable=attribute-error
shard_map_p, fun, tracers, mesh=mesh, in_names=in_names,
out_names_thunk=new_out_names_thunk, check_rep=check_rep,
rewrite=rewrite, auto=auto)
todos, _ = env_todo()
return map(core.full_lower, core.apply_todos(todos, outs))
def get_bind_params(self, params):
new_params = dict(params)
jaxpr = new_params.pop('jaxpr')
subfun = lu.hashable_partial(lu.wrap_init(core.eval_jaxpr), jaxpr, ())
axes = new_params.pop('out_names')
new_params['out_names_thunk'] = HashableFunction(lambda: axes, closure=axes)
return [subfun], new_params
shard_map_p = ShardMapPrimitive('shard_map')
@lu.transformation_with_aux
def process_env_traces(level: int, mesh, in_names, out_names_thunk, check_rep,
rewrite, auto, *args: Any):
outs = yield args, {}
todos, out_names_transforms = [], []
while True:
tracers = [x for x in outs if isinstance(x, core.Tracer)
and (level is None or x._trace.level > level)]
if tracers:
ans = max(tracers, key=op.attrgetter('_trace.level'))
else:
break
trace = ans._trace.main.with_cur_sublevel()
outs = map(trace.full_raise, outs)
outs, (todo, xform) = trace.post_process_shard_map(
outs, mesh, in_names, out_names_thunk, check_rep, rewrite, auto)
todos.append(todo)
out_names_transforms.append(xform)
yield outs, (tuple(todos), tuple(out_names_transforms))
# Staging
def _shard_map_staging(
trace: pe.DynamicJaxprTrace, prim: core.Primitive, f: lu.WrappedFun,
in_tracers: Sequence[pe.DynamicJaxprTracer], *, mesh: Mesh,
in_names: tuple[AxisNames, ...],
out_names_thunk: Callable[[], tuple[AxisNames, ...]],
check_rep: bool,
rewrite: bool,
auto: frozenset,
) -> Sequence[pe.DynamicJaxprTracer]:
in_avals = [t.aval for t in in_tracers]
in_avals_ = map(partial(_shard_aval, mesh), in_names, in_avals)
main = trace.main
with core.new_sublevel(), core.extend_axis_env_nd(mesh.shape.items()):
jaxpr, genavals, consts = pe.trace_to_subjaxpr_dynamic(f, main, in_avals_)
out_avals_ = map(_check_shapedarray, genavals)
_check_names(out_names_thunk(), out_avals_)
in_rep = map(partial(_in_names_to_rep, mesh), in_names)
if check_rep:
out_rep = _check_rep(mesh, jaxpr, in_rep)
_check_reps(mesh, out_names_thunk(), out_rep)
out_avals = map(partial(_unshard_aval, mesh), out_names_thunk(), out_avals_)
source_info = source_info_util.current()
out_tracers = [pe.DynamicJaxprTracer(trace, a, source_info) for a in out_avals]
invars = map(trace.getvar, in_tracers)
constvars = map(trace.getvar, map(trace.instantiate_const, consts))
outvars = map(trace.makevar, out_tracers)
in_names_staged = ({},) * len(consts) + tuple(in_names) # type: ignore
with core.extend_axis_env_nd(mesh.shape.items()):
jaxpr = pe.convert_constvars_jaxpr(jaxpr)
params = dict(mesh=mesh, in_names=in_names_staged,
out_names=tuple(out_names_thunk()), jaxpr=jaxpr,
check_rep=check_rep, rewrite=rewrite, auto=auto)
eqn = pe.new_jaxpr_eqn([*constvars, *invars], outvars, prim, params,
jaxpr.effects, source_info)
trace.frame.add_eqn(eqn)
return out_tracers
pe.DynamicJaxprTrace.process_shard_map = _shard_map_staging
Val = Any
# TODO(mattjj): caching
def _replication_rewrite_match(
mesh: Mesh, jaxpr: core.ClosedJaxpr, in_rep: Sequence[set[AxisName]],
out_rep_dst: Sequence[set[AxisName]],
) -> core.ClosedJaxpr:
f = lu.wrap_init(partial(_rep_rewrite, mesh, jaxpr, in_rep))
f = _match_rep(f, mesh, out_rep_dst)
with core.extend_axis_env_nd(mesh.shape.items()):
jaxpr_, _, consts = pe.trace_to_jaxpr_dynamic(f, jaxpr.in_avals)
return core.ClosedJaxpr(jaxpr_, consts)
@lu.transformation
def _match_rep(mesh: Mesh, out_rep_dst: Sequence[set[AxisName]], *args):
out_vals, out_reps = yield args, {}
_check_reps2(mesh, out_rep_dst, out_reps)
out_vals = [pbroadcast(x, tuple(n for n in src if n not in dst)) if src - dst
else x for x, src, dst in zip(out_vals, out_reps, out_rep_dst)]
yield out_vals
def _rep_rewrite(
mesh: Mesh, jaxpr_: core.ClosedJaxpr,
in_rep: Sequence[set[AxisName]], *args: Val,
) -> tuple[tuple[Val], tuple[set[AxisName]]]:
jaxpr, consts = jaxpr_.jaxpr, jaxpr_.consts
env: dict[core.Var, tuple[Val, set[AxisName]]] = {}
def read(x: core.Atom) -> tuple[Val, set[AxisName]]:
return env[x] if isinstance(x, core.Var) else (x.val, set(mesh.axis_names))
def write(v: core.Var, val: Val, rep: set[AxisName]) -> None:
env[v] = (val, rep)
map(write, jaxpr.constvars, consts, [set(mesh.axis_names)] * len(consts))
map(write, jaxpr.invars, args, in_rep)
for e in jaxpr.eqns:
rule = _rewrite_rules.get(e.primitive, partial(_rule_missing, e.primitive))
in_vals, in_reps = unzip2(map(read, e.invars))
out_vals, out_reps = rule(mesh, in_reps, *in_vals, **e.params)
map(write, e.outvars, out_vals, out_reps)
out_vals, out_reps = unzip2(map(read, jaxpr.outvars))
return out_vals, out_reps
def _rule_missing(prim: core.Primitive, *_, **__):
raise NotImplementedError(
f"No replication rule for {prim}. As a workaround, pass the "
"`check_rep=False` argument to `shard_map`. To get this fixed, open an "
"issue at https://github.com/google/jax/issues")
def _replication_rewrite_nomatch(
mesh: Mesh, jaxpr: core.ClosedJaxpr, in_rep: Sequence[set[AxisName]],
) -> tuple[core.ClosedJaxpr, list[set[AxisName]]]:
f = lu.wrap_init(partial(_rep_rewrite, mesh, jaxpr, in_rep))
f, out_rep = _grab_out_rep(f)
with core.extend_axis_env_nd(mesh.shape.items()):
jaxpr_, _, consts = pe.trace_to_jaxpr_dynamic(f, jaxpr.in_avals)
return core.ClosedJaxpr(jaxpr_, consts), list(out_rep())
@lu.transformation_with_aux
def _grab_out_rep(*args):
yield (yield args, {})
def _check_shapedarray(aval: core.AbstractValue) -> core.ShapedArray:
assert isinstance(aval, core.ShapedArray)
return aval
def _shard_aval(mesh: Mesh, names: AxisNames, aval: core.AbstractValue
) -> core.AbstractValue:
if isinstance(aval, core.ShapedArray):
return aval.update(tuple(sz // prod(mesh.shape[n] for n in names.get(i, ()))
for i, sz in enumerate(aval.shape)))
else:
raise NotImplementedError # TODO(mattjj): add table with handlers
def _unshard_aval(mesh: Mesh, names: AxisNames, aval: core.AbstractValue
) -> core.AbstractValue:
if isinstance(aval, core.ShapedArray):
return aval.update(tuple(sz * prod(mesh.shape[n] for n in names.get(i, ()))
for i, sz in enumerate(aval.shape)),
named_shape={k: v for k, v in aval.named_shape.items()
if k not in mesh.shape})
else:
raise NotImplementedError # TODO(mattjj): add table with handlers
# Type-checking
def _shard_map_typecheck(_, *in_atoms, jaxpr, mesh, in_names, out_names,
check_rep, rewrite, auto):
del auto # TODO(mattjj,parkers): check
for v, x, in_name in zip(jaxpr.invars, in_atoms, in_names):
if not core.typecompat(v.aval, _shard_aval(mesh, in_name, x.aval)):
raise core.JaxprTypeError("shard_map argument avals not compatible with "
"jaxpr binder avals and in_names")
with core.extend_axis_env_nd(tuple(mesh.shape.items())):
core.check_jaxpr(jaxpr)
if check_rep:
in_rep = map(partial(_in_names_to_rep, mesh), in_names)
out_rep = _check_rep(mesh, jaxpr, in_rep)
for rep, dst in zip(out_rep, out_names):
if not _valid_repeats(mesh, rep, dst):
raise core.JaxprTypeError("shard_map can't prove output is "
"sufficiently replicated")
out_avals_sharded = [x.aval for x in jaxpr.outvars]
out_avals = map(partial(_unshard_aval, mesh), out_names, out_avals_sharded)
return out_avals, jaxpr.effects
core.custom_typechecks[shard_map_p] = _shard_map_typecheck
def _in_names_to_rep(mesh: Mesh, names: AxisNames) -> set[AxisName]:
return set(mesh.axis_names) - {n for ns in names.values() for n in ns}
def _check_rep(mesh: Mesh, jaxpr: core.Jaxpr, in_rep: Sequence[set[AxisName]],
) -> Sequence[set[AxisName]]:
env: dict[core.Var, set[AxisName]] = {}
def read(x: core.Atom) -> set[AxisName]:
return env[x] if type(x) is core.Var else set(mesh.axis_names)
def write(v: core.Var, val: set[AxisName]) -> None:
env[v] = val
map(write, jaxpr.constvars, [set(mesh.axis_names)] * len(jaxpr.constvars))
map(write, jaxpr.invars, in_rep)
last_used = core.last_used(jaxpr)
for e in jaxpr.eqns:
rule = _check_rules.get(e.primitive, partial(_rule_missing, e.primitive))
out_rep = rule(mesh, *map(read, e.invars), **e.params)
if e.primitive.multiple_results:
out_rep = [out_rep] * len(e.outvars) if type(out_rep) is set else out_rep
map(write, e.outvars, out_rep)
else:
write(e.outvars[0], out_rep)
core.clean_up_dead_vars(e, env, last_used)
return map(read, jaxpr.outvars)
def _valid_repeats(mesh: Mesh, rep: set[AxisName], dst: AxisNames) -> bool:
return set(_unmentioned(mesh, dst)).issubset(rep)
# Lowering
def _shard_map_lowering(ctx, *in_nodes, jaxpr, mesh, in_names, out_names,
check_rep, rewrite, auto):
del check_rep, rewrite
in_avals_ = [v.aval for v in jaxpr.invars]
out_avals_ = [x.aval for x in jaxpr.outvars]
in_nodes_ = map(partial(_xla_shard, ctx, mesh, auto), in_names, ctx.avals_in,
in_avals_, in_nodes)
new_axis_context = sharding_impls.SPMDAxisContext(
mesh, frozenset(mesh.axis_names)
)
sub_ctx = ctx.module_context.replace(axis_context=new_axis_context)
with core.extend_axis_env_nd(tuple(mesh.shape.items())):
out_nodes_, tokens_out = mlir._call_lowering(
"shmap_body", (), jaxpr, None, sub_ctx, in_avals_, out_avals_,
ctx.tokens_in, *in_nodes_, dim_var_values=ctx.dim_var_values,
arg_names=map(_pspec_mhlo_attrs, in_names, in_avals_),
result_names=map(_pspec_mhlo_attrs, out_names, out_avals_))
ctx.set_tokens_out(tokens_out)
return map(partial(_xla_unshard, ctx, mesh, auto), out_names, out_avals_,
ctx.avals_out, out_nodes_)
mlir.register_lowering(shard_map_p, _shard_map_lowering)
def _xla_shard(ctx: mlir.LoweringRuleContext, mesh, auto, names,
aval_in, aval_out, x):
manual_proto = pxla.manual_proto(aval_in, frozenset(mesh.axis_names) - auto, mesh)
axes = {name: i for i, ns in names.items() for name in ns}
shard_proto = NamedSharding(
mesh, sharding_impls.array_mapping_to_axis_resources(axes) # type: ignore
)._to_xla_hlo_sharding(aval_in.ndim)
if dtypes.issubdtype(aval_in.dtype, dtypes.extended):
shard_proto = aval_in.dtype._rules.physical_hlo_sharding(aval_in, shard_proto)
unspecified = set(range(aval_in.ndim)) if auto else set()
sx = mlir.wrap_with_sharding_op(ctx, x, aval_in, shard_proto.to_proto(), # type: ignore
unspecified_dims=unspecified)
return [mlir.wrap_with_full_to_shard_op(ctx, sx, aval_out, manual_proto, set())]
def _xla_unshard(ctx: mlir.LoweringRuleContext, mesh, auto, names,
aval_in, aval_out, xs):
x, = xs
manual_proto = pxla.manual_proto(aval_in, frozenset(mesh.axis_names) - auto, mesh)
sx = mlir.wrap_with_sharding_op(ctx, x, aval_in, manual_proto, unspecified_dims=set())
axes = {name: i for i, ns in names.items() for name in ns}
shard_proto = NamedSharding(
mesh, sharding_impls.array_mapping_to_axis_resources(axes) # type: ignore
)._to_xla_hlo_sharding(aval_out.ndim)
if dtypes.issubdtype(aval_out.dtype, dtypes.extended):
shard_proto = aval_out.dtype._rules.physical_hlo_sharding(aval_out, shard_proto)
unspecified = set(range(aval_out.ndim)) if auto else set()
return mlir.wrap_with_shard_to_full_op(ctx, sx, aval_out, shard_proto.to_proto(),
unspecified) # type: ignore
def _pspec_mhlo_attrs(names: AxisNames, aval: core.AbstractValue) -> str:
if isinstance(aval, core.ShapedArray):
return str(map(names.get, range(aval.ndim)))
return ''
# Eager evaluation
def _shard_map_impl(trace, prim, fun, args, *, mesh, in_names, out_names_thunk,
check_rep, rewrite, auto):
if auto: raise NotImplementedError
del prim, auto
args = map(partial(_unmatch_spec, mesh), in_names, args)
in_rep = map(partial(_in_names_to_rep, mesh), in_names)
with core.new_base_main(ShardMapTrace, mesh=mesh, check=check_rep) as main:
with core.new_sublevel(), core.extend_axis_env_nd(mesh.shape.items(), main):
t = main.with_cur_sublevel()
in_tracers = map(partial(ShardMapTracer, t), in_rep, args)
ans = fun.call_wrapped(*in_tracers)
out_tracers = map(t.full_raise, ans)
outs_, out_rep = unzip2((t.val, t.rep) for t in out_tracers)
del main, t, in_tracers, ans, out_tracers
out_avals = [core.mapped_aval(x.shape[0], 0, core.get_aval(x)) for x in outs_]
_check_names(out_names_thunk(), out_avals) # pytype: disable=wrong-arg-types
if check_rep:
_check_reps(mesh, out_names_thunk(), out_rep)
return map(partial(_match_spec, mesh, check_rep), out_rep, out_names_thunk(),
outs_)
core.EvalTrace.process_shard_map = _shard_map_impl
def _names_to_pspec(names: AxisNames) -> PartitionSpec:
ndmin = max(names) + 1 if names else 0
return PartitionSpec(*(names.get(i) for i in range(ndmin)))
def _unmatch_spec(mesh: Mesh, src: AxisNames, x: JaxType) -> JaxType:
with core.eval_context():
return jax.jit(HashablePartial(_unmatch, mesh, tuple(src.items())))(x)
def _unmatch(mesh, src_tup, x):
src = _names_to_pspec(dict(src_tup))
dst = P(mesh.axis_names)
return shard_map(_add_singleton, mesh, (src,), dst, check_rep=False)(x)
def _check_names(names: Sequence[AxisNames], avals: Sequence[core.ShapedArray]
) -> None:
fail = [a if n and not max(n) < a.ndim else no_fail
for n, a in zip(names, avals)]
if any(f is not no_fail for f in fail): raise _SpecError(fail)
class _SpecError(Exception): pass
def _check_reps(mesh, names, reps):
fail = [r if not _valid_repeats(mesh, r, n) else no_fail
for n, r in zip(names, reps)]
if any(f is not no_fail for f in fail): raise _RepError(fail)
class _RepError(Exception): pass
def _check_reps2(mesh, reps_dest, reps):
fail = [src if not dst.issubset(src) else no_fail
for dst, src in zip(reps_dest, reps)]
if any(f is not no_fail for f in fail): raise _RepError(fail)
def _match_spec(mesh: Mesh, check_rep: bool,
rep: set[AxisName], dst: AxisNames, x: JaxType) -> JaxType:
fn = HashablePartial(_match, mesh, check_rep, tuple(dst.items()))
with core.eval_context():
return jax.jit(fn)(x)
def _match(mesh, check_rep, dst_tup, x):
src = P(mesh.axis_names)
dst = _names_to_pspec(dict(dst_tup))
# TODO put back (?) needed for rep checking in eager? for now test rewrite
return shard_map(_rem_singleton, mesh, (src,), dst, check_rep=False)(x)
def _rem_singleton(x): return x.reshape(x.shape[1:])
def _add_singleton(x): return x.reshape(1, *x.shape)
class ShardMapTrace(core.Trace):
mesh: Mesh
check: bool
def __init__(self, *args, mesh, check):
super().__init__(*args)
self.mesh = mesh
self.check = check
def pure(self, val):
val_ = _unmatch_spec(self.mesh, {}, val)
return ShardMapTracer(self, set(self.mesh.axis_names), val_)
def sublift(self, tracer):
return ShardMapTracer(self, tracer.rep, tracer.val)
def process_primitive(self, prim, tracers, params):
in_vals, in_rep = unzip2((t.val, t.rep) for t in tracers)
eager_rule = eager_rules.get(prim)
if eager_rule:
out_vals = eager_rule(self.mesh, *in_vals, **params)
else:
f = HashablePartial(_prim_applier, prim, tuple(params.items()), self.mesh)
with core.eval_context(), jax.disable_jit(False):
out_vals = jax.jit(f)(*in_vals)
rep_rule = _check_rules.get(prim, partial(_rule_missing, prim))
out_rep = rep_rule(self.mesh, *in_rep, **params) if self.check else set()
if prim.multiple_results:
out_rep = [out_rep] * len(out_vals) if type(out_rep) is set else out_rep
return map(partial(ShardMapTracer, self), out_rep, out_vals)
return ShardMapTracer(self, out_rep, out_vals)
def process_call(self, call_primitive, fun, tracers, params):
raise NotImplementedError(
f"Eager evaluation of `{call_primitive}` inside a `shard_map` isn't "
"yet supported. Put a `jax.jit` around the `shard_map`-decorated "
"function, and open a feature request at "
"https://github.com/google/jax/issues !")
def process_map(self, map_primitive, fun, tracers, params):
raise NotImplementedError(
"Eager evaluation of `pmap` inside a `shard_map` isn't yet supported."
"Put a `jax.jit` around the `shard_map`-decorated function, and open "
"a feature request at https://github.com/google/jax/issues !")
def process_custom_jvp_call(self, prim, fun, jvp, tracers, *, symbolic_zeros):
raise NotImplementedError(
"Eager evaluation of a `custom_jvp` inside a `shard_map` isn't yet "
"supported. "
"Put a `jax.jit` around the `shard_map`-decorated function, and open "
"a feature request at https://github.com/google/jax/issues !")
def post_process_custom_jvp_call(self, out_tracers, _):
raise NotImplementedError(
"Eager evaluation of a `custom_jvp` inside a `shard_map` isn't yet "
"supported. "
"Put a `jax.jit` around the `shard_map`-decorated function, and open "
"a feature request at https://github.com/google/jax/issues !")
def process_custom_vjp_call(self, prim, fun, fwd, bwd, tracers, out_trees,
symbolic_zeros):
raise NotImplementedError(
"Eager evaluation of a `custom_vjp` inside a `shard_map` isn't yet "
"supported. "
"Put a `jax.jit` around the `shard_map`-decorated function, and open "
"a feature request at https://github.com/google/jax/issues !")
def post_process_custom_vjp_call(self, out_tracers, _):
raise NotImplementedError(
"Eager evaluation of a `custom_vjp` inside a `shard_map` isn't yet "
"supported. "
"Put a `jax.jit` around the `shard_map`-decorated function, and open "
"a feature request at https://github.com/google/jax/issues !")
def process_axis_index(self, frame):
raise NotImplementedError(
"Eager evaluation of an `axis_index` inside a `shard_map` isn't yet "
"supported. "
"Put a `jax.jit` around the `shard_map`-decorated function, and open "
"a feature request at https://github.com/google/jax/issues !")
class ShardMapTracer(core.Tracer):
rep: set[AxisName]
val: JaxType
def __init__(self, trace, rep, val):
self._trace = trace
self.rep = rep
self.val = val
@property
def aval(self):
aval = core.get_aval(self.val)
if (isinstance(aval, core.ConcreteArray) and
self.rep == set(self._trace.mesh.axis_names)):
with core.eval_context():
return core.get_aval(self.val[0])
else:
aval = core.raise_to_shaped(aval)
return core.mapped_aval(self._trace.mesh.size, 0, aval)
def full_lower(self) -> ShardMapTracer:
return self
def __str__(self) -> str:
with core.eval_context():
blocks = list(self.val)
mesh = self._trace.mesh
axis_names = f"({', '.join(map(str, mesh.axis_names))},)"
return '\n'.join(
f"On {device} at mesh coordinates {axis_names} = {idx}:\n{block}\n"
for (idx, device), block in zip(np.ndenumerate(mesh.devices), blocks))
def _prim_applier(prim, params_tup, mesh, *args):
def apply(*args):
outs = prim.bind(*map(_rem_singleton, args), **dict(params_tup))
return tree_map(_add_singleton, outs)
spec = P(mesh.axis_names)
return shard_map(apply, mesh, spec, spec, False)(*args)
eager_rules: dict[core.Primitive, Callable] = {}
# TODO(mattjj): working around an apparent XLA or PjRt bug, remove eventually
def _debug_callback_eager_rule(mesh, *args, callback: Callable[..., Any],
effect: debugging.DebugEffect):
del effect
with core.eval_context():
all_blocks = zip(*map(list, args))
for (idx, device), blocks in zip(np.ndenumerate(mesh.devices), all_blocks):
callback(*blocks)
return []
eager_rules[debugging.debug_callback_p] = _debug_callback_eager_rule
def _device_put_eager_rule(mesh, x, *, src, device):
del mesh, src
if device is None:
return x
else:
raise ValueError("device_put with explicit device not allowed within "
f"shard_map-decorated functions, but got device {device}")
eager_rules[dispatch.device_put_p] = _device_put_eager_rule
# New primitives for efficient transposition
# psum2_p is like psum_p except has a different transpose, so mostly copied:
psum2_p = core.AxisPrimitive('psum2')
psum2_p.multiple_results = True
psum2_p.def_impl(lax_parallel.psum_p.impl)
psum2_p.def_effectful_abstract_eval(lax_parallel.psum_p.abstract_eval)
mlir.register_lowering(psum2_p, mlir._lowerings[lax_parallel.psum_p])
batching.primitive_batchers[psum2_p] = partial(lax_parallel._reduction_batcher, psum2_p)
batching.axis_primitive_batchers[psum2_p] = \
partial(lax_parallel._batched_reduction_collective, psum2_p,
lambda v, axis_size: axis_size * v)
core.axis_substitution_rules[psum2_p] = \
partial(lax_parallel._subst_all_names_in_param, 'axes')
def _psum2_transpose_rule(cts, *args, axes, axis_index_groups):
del args
return pbroadcast_p.bind(*cts, axes=axes, axis_index_groups=axis_index_groups)
ad.deflinear2(psum2_p, _psum2_transpose_rule)
# pbroadcast_p is exactly the transpose of psum2_p
def pbroadcast(x, axis_name):
axes = (axis_name,) if not isinstance(axis_name, tuple) else axis_name
xs, treedef = tree_flatten(x)
ys = pbroadcast_p.bind(*xs, axes=axes, axis_index_groups=None)
return tree_unflatten(treedef, ys)
pbroadcast_p = core.AxisPrimitive('pbroadcast')
pbroadcast_p.multiple_results = True
pbroadcast_p.def_impl(lambda *args, axes, axis_index_groups: args)
pbroadcast_p.def_abstract_eval(lambda *args, axes, axis_index_groups: args)
mlir.register_lowering(pbroadcast_p, lambda ctx, *x, axes, axis_index_groups: x)
def _pbroadcast_batcher(vals_in, dims_in, *, axes, axis_index_groups):
if any(type(axis) is int for axis in axes): raise NotImplementedError
vals_out = pbroadcast_p.bind(*vals_in, axes=axes,
axis_index_groups=axis_index_groups)
return vals_out, dims_in
batching.primitive_batchers[pbroadcast_p] = _pbroadcast_batcher
def _pbroadcast_axis_batcher(size, name, trace_type, vals_in, dims_in, *, axes,
groups):
raise NotImplementedError # vmap with axis name involved in this primitive
batching.axis_primitive_batchers[pbroadcast_p] = _pbroadcast_axis_batcher
core.axis_substitution_rules[pbroadcast_p] = \
partial(lax_parallel._subst_all_names_in_param, 'axes')
ad.deflinear2(pbroadcast_p,
lambda cts, *_, axes, axis_index_groups:
psum2_p.bind(*cts, axes=axes, axis_index_groups=axis_index_groups))
# Rewrite rules and static replication checking for efficient transposition
_rewrite_rules: dict[core.Primitive, Callable] = {}
register_rewrite = lambda prim: lambda r: _rewrite_rules.setdefault(prim, r)
register_standard_rewrite = lambda prim: \
_rewrite_rules.setdefault(prim, partial(_standard_rewrite_rule, prim))
register_norewrite = lambda p: \
_rewrite_rules.setdefault(p, partial(_no_rewrite, p, _check_rules[p]))
_check_rules: dict[core.Primitive, Callable] = {}
register_check = lambda prim: lambda rule: _check_rules.setdefault(prim, rule)
register_standard_check = \
lambda prim: _check_rules.setdefault(prim, partial(_standard_check, prim))
def _no_rewrite(prim, rule, mesh, in_rep, *args, **params):
out_vals = prim.bind(*args,**params)
out_rep = rule(mesh, *in_rep, **params)
if prim.multiple_results:
out_rep_ = out_rep if type(out_rep) is list else [out_rep] * len(out_vals)
else:
out_vals, out_rep_ = [out_vals], [out_rep]
return out_vals, out_rep_
def _standard_rewrite_rule(prim, mesh, in_rep, *args, **params):
# The standard rewrite inserts pbroadcasts but doesn't change the primitive.
out_rep_ = set.intersection(*in_rep) if in_rep else set(mesh.axis_names)
args_ = [pbroadcast(x, tuple(n for n in src if n not in out_rep_))
if src - out_rep_ else x for x, src in zip(args, in_rep)]
out_vals_ = prim.bind(*args_, **params)
out_rep = [out_rep_] * len(out_vals_) if prim.multiple_results else [out_rep_]
out_vals = [out_vals_] if not prim.multiple_results else out_vals_
return out_vals, out_rep
def _standard_check(prim, mesh, *in_rep, **__):
# The standard check require args' and outputs' replications to be the same.
if in_rep and not in_rep[:-1] == in_rep[1:]:
raise Exception(f"Primitive {prim} requires argument replication types "
f"to match, but got {in_rep}. Please open an issue at "
"https://github.com/google/jax/issues")
return in_rep[0] if in_rep else set(mesh.axis_names)
def register_standard_collective(prim):
register_check(prim)(partial(_standard_collective_check, prim))
register_rewrite(prim)(partial(_standard_collective_rewrite, prim))
def _standard_collective_check(prim, mesh, x_rep, *, axis_name, **params):
# The standard collective check is varying -> varying over axis_name.
del mesh, params
if axis_name in x_rep:
raise Exception(f"Collective {prim} must be applied to a device-varying "
f"replication type, but got {x_rep} for collective acting "
f"over axis name {axis_name}. Please open an issue at "
"https://github.com/google/jax/issues")
return x_rep
def _standard_collective_rewrite(prim, mesh, in_rep, x, axis_name, **params):
# The standard collective rewrite may insert a pbroadcast on the input.
if type(axis_name) is tuple: raise NotImplementedError # TODO
if params.get('axis_index_groups') is not None: raise NotImplementedError
x_rep, = in_rep
if axis_name in in_rep:
x = pbroadcast(x, (axis_name,))
out_val = prim.bind(x, axis_name=axis_name, **params)
return [out_val], [x_rep - {axis_name}]
for o in it.chain(lax.__dict__.values(), slicing.__dict__.values(),
windowed_reductions.__dict__.values(), fft.__dict__.values(),
linalg.__dict__.values(), ops.__dict__.values(),
ad_util.__dict__.values(), prng.__dict__.values()):
if isinstance(o, core.Primitive):
register_standard_check(o)
register_standard_rewrite(o)
@register_check(lax_parallel.psum_p)
def _psum_check(_, *in_rep, axes, axis_index_groups):
assert False # should be rewritten away
@register_rewrite(lax_parallel.psum_p)
def _psum_rewrite(_, in_rep, *args, axes, axis_index_groups):
# Replace the psum with psum2, insert pbroadcasts on input, replicated output.
if axis_index_groups is not None: raise NotImplementedError
axes = (axes,) if not isinstance(axes, tuple) else axes
out_rep = [r | set(axes) for r in in_rep] # TODO determinism (and elsewhere)
args_ = [pbroadcast(x, tuple(n for n in src if n not in dst))
if src - dst else x for x, src, dst in zip(args, in_rep, out_rep)]
out_val = psum2_p.bind(*args_, axes=axes, axis_index_groups=axis_index_groups)
return out_val, out_rep
@register_check(psum2_p)
def _psum2_check(_, *in_rep, axes, axis_index_groups):
assert type(axes) is tuple
if any(set(axes) & r for r in in_rep):
raise Exception("Collective psum must be applied to a device-varying "
f"replication type, but got {in_rep} for collective acting "
f"over axis name {axes}. Please open an issue at "
"https://github.com/google/jax/issues")
return [r | set(axes) for r in in_rep]
register_norewrite(psum2_p)
@register_check(pbroadcast_p)
def _pbroadcast_check(_, *in_rep, axes, axis_index_groups):
assert type(axes) is tuple
if not all(set(axes) & r for r in in_rep):
raise Exception("Collective pbroadcast must be applied to a "
"non-device-varying "
f"replication type, but got {in_rep} for collective acting "
f"over axis name {axes}. Please open an issue at "
"https://github.com/google/jax/issues")
return [r - set(axes) for r in in_rep]
register_norewrite(pbroadcast_p)
register_standard_collective(lax_parallel.all_gather_p)
register_standard_collective(lax_parallel.all_to_all_p)
register_standard_collective(lax_parallel.ppermute_p)
register_standard_collective(lax_parallel.reduce_scatter_p)
@register_check(lax_parallel.axis_index_p)
def _axis_index_check(mesh, *, axis_name):
axis_name = (axis_name,) if not type(axis_name) is tuple else axis_name
return set(mesh.shape) - set(axis_name)
register_norewrite(lax_parallel.axis_index_p)
@register_rewrite(pjit.pjit_p)
def _pjit_rewrite(mesh, in_rep, *args, jaxpr, **kwargs):
jaxpr_, out_rep = _replication_rewrite_nomatch(mesh, jaxpr, in_rep)
out_vals = pjit.pjit_p.bind(*args, jaxpr=jaxpr_, **kwargs)
return out_vals, out_rep
@register_check(pjit.pjit_p)
def _pjit_check(mesh, *in_rep, jaxpr, **kwargs):
return _check_rep(mesh, jaxpr.jaxpr, in_rep)
@register_check(core.call_p)
def _core_call_check(mesh, *in_rep, call_jaxpr, **kwargs):
return _check_rep(mesh, call_jaxpr, in_rep)
@register_check(debugging.debug_callback_p)
def _debug_callback_rule(mesh, *in_rep, **_):
return []
register_norewrite(debugging.debug_callback_p)
@register_check(callback.pure_callback_p)
def _pure_callback_rule(mesh, *_, result_avals, **__):
return [set()] * len(result_avals)
register_norewrite(callback.pure_callback_p)
@register_check(callback.io_callback_p)
def _io_callback_rule(mesh, *_, result_avals, **__):
return [set()] * len(result_avals)
register_norewrite(callback.io_callback_p)
@register_check(dispatch.device_put_p)
def _device_put_rule(mesh, x, **_):
return x
register_norewrite(dispatch.device_put_p)
@register_check(ad.custom_lin_p)
def _custom_lin_rule(mesh, *_, out_avals, **__):
return [set()] * len(out_avals)
register_norewrite(ad.custom_lin_p)
@register_check(control_flow.loops.scan_p)
def _scan_check(mesh, *in_rep, jaxpr, num_consts, num_carry, **_):
_, carry_rep_in, _ = split_list(in_rep, [num_consts, num_carry])
out_rep = _check_rep(mesh, jaxpr.jaxpr, in_rep)
carry_rep_out, _ = split_list(out_rep, [num_carry])
if not carry_rep_in == carry_rep_out:
raise Exception("Scan carry input and output got mismatched replication "
f"types {carry_rep_in} and {carry_rep_out}. Please open an "
"issue at https://github.com/google/jax/issues")
return out_rep
@register_rewrite(control_flow.loops.scan_p)
def _scan_rewrite(mesh, in_rep, *args, jaxpr, num_consts, num_carry, **params):
const_rep, carry_rep_in, xs_rep = split_list(in_rep, [num_consts, num_carry])
for _ in range(1 + num_carry):
in_rep_ = [*const_rep, *carry_rep_in, *xs_rep]
_, out_rep = _replication_rewrite_nomatch(mesh, jaxpr, in_rep_)
carry_rep_out, ys_rep = split_list(out_rep, [num_carry])
carry_rep_out = map(op.and_, carry_rep_in, carry_rep_out)
if carry_rep_in == carry_rep_out:
break
else:
carry_rep_in = carry_rep_out
else:
assert False, 'Fixpoint not reached'
args = [pbroadcast(x, tuple(n for n in src if n not in dst))
if src - dst else x for x, src, dst in zip(args, in_rep, in_rep_)]
out_rep = [*carry_rep_out, *ys_rep]
jaxpr_ = _replication_rewrite_match(mesh, jaxpr, in_rep_, out_rep)
out_vals = control_flow.loops.scan_p.bind(
*args, jaxpr=jaxpr_, num_consts=num_consts, num_carry=num_carry, **params)
return out_vals, out_rep
@register_rewrite(core.closed_call_p)
def _closed_call_rewrite(mesh, in_rep, *args, call_jaxpr, **kwargs):
new_jaxpr, out_rep = _replication_rewrite_nomatch(mesh, call_jaxpr, in_rep)
out_vals = core.closed_call_p.bind(*args, jaxpr=new_jaxpr, **kwargs)
return out_vals, out_rep
@register_check(core.closed_call_p)
def _closed_call_check(mesh, *in_rep, call_jaxpr, **kwargs):
return _check_rep(mesh, call_jaxpr.jaxpr, in_rep)
@register_check(custom_derivatives.custom_jvp_call_p)
def _custom_jvp_call_check(mesh, *in_rep, call_jaxpr, jvp_jaxpr_thunk,
num_consts, symbolic_zeros):
return _check_rep(mesh, call_jaxpr.jaxpr, in_rep)
@register_rewrite(custom_derivatives.custom_vjp_call_jaxpr_p)
def _custom_vjp_call_jaxpr_rewrite(
mesh, in_rep, *args, fun_jaxpr, fwd_jaxpr_thunk, bwd, num_consts, out_trees,
symbolic_zeros):
if symbolic_zeros:
msg = "Please open an issue at https://github.com/google/jax/issues !"
raise NotImplementedError(msg)
fun_jaxpr_, out_rep = _replication_rewrite_nomatch(mesh, fun_jaxpr, in_rep)
_, in_rep_ = split_list(in_rep, [num_consts])
out_rep2 = []
@pe._memoize
def fwd_jaxpr_thunk_(*zeros):
fwd_jaxpr = core.ClosedJaxpr(*fwd_jaxpr_thunk(*zeros))
fwd_jaxpr_, out_rep = _replication_rewrite_nomatch(mesh, fwd_jaxpr, in_rep_)
out_rep2.append(out_rep)
return fwd_jaxpr_.jaxpr, fwd_jaxpr_.consts
bwd_ = _rewrite_bwd(bwd, mesh, lambda: out_rep2[0], in_rep_)
outs = custom_derivatives.custom_vjp_call_jaxpr_p.bind(
*args, fun_jaxpr=fun_jaxpr_, fwd_jaxpr_thunk=fwd_jaxpr_thunk_, bwd=bwd_,
num_consts=num_consts, out_trees=out_trees, symbolic_zeros=symbolic_zeros)
out_rep = out_rep2[0] if out_rep2 else out_rep
return outs, out_rep
@register_check(custom_derivatives.custom_vjp_call_jaxpr_p)
def _custom_vjp_call_jaxpr_check(mesh, *in_rep, fun_jaxpr, **_):
return _check_rep(mesh, fun_jaxpr.jaxpr, in_rep)
del _check_rules[lax.tie_p]
@register_check(lax.tie_p)
def _tie_check(mesh, x_rep, y_rep):
return x_rep
register_norewrite(lax.tie_p)
# Batching
def _shard_map_batch(
trace: batching.BatchTrace, prim: core.Primitive, fun: lu.WrappedFun,
in_tracers: Sequence[batching.BatchTracer], mesh: Mesh,
in_names: tuple[AxisNames, ...],
out_names_thunk: Callable[[], tuple[AxisNames, ...]],
check_rep: bool,
rewrite: bool,
auto: frozenset) -> Sequence[batching.BatchTracer]:
in_vals, in_dims = unzip2((t.val, t.batch_dim) for t in in_tracers)
if all(bdim is batching.not_mapped for bdim in in_dims):
return prim.bind(fun, *in_vals, mesh=mesh, in_names=in_names,
out_names_thunk=out_names_thunk, check_rep=check_rep,
rewrite=rewrite, auto=auto)
if any(isinstance(d, batching.RaggedAxis) for d in in_dims):
raise NotImplementedError
fun, out_dims = batching.batch_subtrace(fun, trace.main, tuple(in_dims))
new_in_names = [{ax + (d is not batching.not_mapped and d <= ax): names[ax] # type: ignore
for ax in names} for names, d in zip(in_names, in_dims)]
spmd_axis_name = trace.spmd_axis_name
if spmd_axis_name is not None:
new_in_names = [{**ns, d:spmd_axis_name} if d is not batching.not_mapped # type: ignore
else ns for ns, d in zip(new_in_names, in_dims)]
@as_hashable_function(closure=out_names_thunk)
def new_out_names_thunk():
return _batch_out_names(spmd_axis_name, out_dims(), out_names_thunk())
new_params = dict(mesh=mesh, in_names=new_in_names,
out_names_thunk=new_out_names_thunk, check_rep=check_rep,
rewrite=rewrite, auto=auto)
out_vals = prim.bind(fun, *in_vals, **new_params)
make_tracer = partial(batching.BatchTracer, trace,
source_info=source_info_util.current())
return map(make_tracer, out_vals, out_dims())
batching.BatchTrace.process_shard_map = _shard_map_batch
def _shard_map_batch_post_process(trace, out_tracers, mesh, in_names,
out_names_thunk, check_rep, rewrite, auto):
del mesh, in_names, out_names_thunk, check_rep, rewrite, auto
vals, dims, srcs = unzip3((t.val, t.batch_dim, t.source_info)
for t in out_tracers)
m = trace.main
def todo(vals):
trace = m.with_cur_sublevel()
return map(partial(batching.BatchTracer, trace), vals, dims, srcs)
out_names_transform = partial(_batch_out_names, trace.spmd_axis_name, dims)
return vals, (todo, out_names_transform)
batching.BatchTrace.post_process_shard_map = _shard_map_batch_post_process
def _batch_out_names(spmd_axis_name, dims, out_names):
out_names_ = [{ax + (d is not batching.not_mapped and d <= ax): names[ax]
for ax in names} for names, d in zip(out_names, dims)]
if spmd_axis_name is not None:
out_names_ = [{**ns, d:spmd_axis_name} if d is not batching.not_mapped
else ns for ns, d in zip(out_names_, dims)]
return out_names_
# Autodiff
def _shard_map_jvp(trace, shard_map_p, f, tracers, mesh, in_names,
out_names_thunk, check_rep, rewrite, auto):
primals, tangents = unzip2((t.primal, t.tangent) for t in tracers)
which_nz = [ type(t) is not ad.Zero for t in tangents]
tangents = [t if type(t) is not ad.Zero else None for t in tangents]
args, in_tree = tree_flatten((primals, tangents))
f_jvp = ad.jvp_subtrace(f, trace.main)
f_jvp, which_nz_out = ad.nonzero_tangent_outputs(f_jvp)
tangent_in_names = [ax for ax, nz in zip(in_names, which_nz) if nz]
@as_hashable_function(closure=out_names_thunk)
def new_out_names_thunk():
out_ax = out_names_thunk()
return (*out_ax, *(ax for ax, nz in zip(out_ax, which_nz_out()) if nz))
params = dict(mesh=mesh, in_names=(*in_names, *tangent_in_names),
out_names_thunk=new_out_names_thunk, check_rep=check_rep,
rewrite=rewrite, auto=auto)
f_jvp, out_tree = ad.traceable(f_jvp, in_tree)
result = shard_map_p.bind(f_jvp, *args, **params)
primal_out, tangent_out = tree_unflatten(out_tree(), result)
tangent_out = [ad.Zero(core.get_aval(p).at_least_vspace()) if t is None else t
for p, t in zip(primal_out, tangent_out)]
return [ad.JVPTracer(trace, p, t) for p, t in zip(primal_out, tangent_out)]
ad.JVPTrace.process_shard_map = _shard_map_jvp
def _shard_map_jvp_post_process(trace, out_tracers, mesh, in_names,
out_names_thunk, check_rep, rewrite, auto):
del mesh, in_names, out_names_thunk, check_rep, rewrite, auto
primals, tangents = unzip2((t.primal, t.tangent) for t in out_tracers)
out, treedef = tree_flatten((primals, tangents))
tangents_nz = [type(t) is not ad.Zero for t in tangents]
m = trace.main
def todo(x):
primals, tangents = tree_unflatten(treedef, x)
return map(partial(ad.JVPTracer, m.with_cur_sublevel()), primals, tangents)
def out_names_transform(out_names):
return (*out_names, *(n for n, nz in zip(out_names, tangents_nz) if nz))
return out, (todo, out_names_transform)
ad.JVPTrace.post_process_shard_map = _shard_map_jvp_post_process
def _shard_map_partial_eval(trace, shard_map_p, f, tracers, mesh, in_names,
out_names_thunk, check_rep, rewrite, auto):
in_pvals = [t.pval for t in tracers]
in_knowns, in_avals, in_consts = pe.partition_pvals(in_pvals)
unk_in_names, known_in_names = pe.partition_list(in_knowns, in_names)
in_avals_sharded = map(partial(_shard_aval, mesh), unk_in_names, in_avals)
f = pe.trace_to_subjaxpr_nounits(f, trace.main, False)
f = _promote_scalar_residuals(f)
f_known, aux = pe.partial_eval_wrapper_nounits(
f, (*in_knowns,), (*in_avals_sharded,))
@as_hashable_function(closure=out_names_thunk)
def known_out_names():
out_knowns, _, jaxpr, _ = aux()
_, out_known_names = pe.partition_list(out_knowns, out_names_thunk())
assert not any(not v.aval.shape for v in jaxpr.constvars)
res_names = ({0: (*mesh.axis_names,)},) * len(jaxpr.constvars)
return (*out_known_names, *res_names)
known_params = dict(mesh=mesh, in_names=(*known_in_names,),
out_names_thunk=known_out_names, check_rep=check_rep,
rewrite=rewrite, auto=auto)
out = shard_map_p.bind(f_known, *in_consts, **known_params)
out_knowns, out_avals_sharded, jaxpr, env = aux()
out_consts, res = split_list(out, [len(out) - len(jaxpr.constvars)])
with core.extend_axis_env_nd(mesh.shape.items()):
jaxpr = pe.convert_constvars_jaxpr(jaxpr)
unk_out_names, _ = pe.partition_list(out_knowns, out_names_thunk())
unk_in_names = (({0: (*mesh.axis_names,)},) * len(res) + ({},) * len(env)
+ (*unk_in_names,))
const_tracers = map(trace.new_instantiated_const, res)
env_tracers = map(trace.full_raise, env)
unk_arg_tracers = [t for t in tracers if not t.is_known()]
unk_params = dict(mesh=mesh, in_names=unk_in_names,
out_names=unk_out_names, jaxpr=jaxpr, check_rep=False,
rewrite=rewrite, auto=auto)
out_avals = map(partial(_unshard_aval, mesh), unk_out_names, out_avals_sharded)
out_tracers = [pe.JaxprTracer(trace, pe.PartialVal.unknown(a), None)
for a in out_avals]
eqn = pe.new_eqn_recipe((*const_tracers, *env_tracers, *unk_arg_tracers), # type: ignore[arg-type]
out_tracers, shard_map_p, unk_params,
jaxpr.effects, source_info_util.current())
for t in out_tracers: t.recipe = eqn
return pe.merge_lists(out_knowns, out_tracers, out_consts)
pe.JaxprTrace.process_shard_map = _shard_map_partial_eval
def _shard_map_partial_eval_post_process(
trace, tracers, mesh, in_names, out_names_thunk, check_rep, rewrite, auto):
del check_rep
unk_tracers = [t for t in tracers if not t.is_known()]
jaxpr, res, env = pe.tracers_to_jaxpr([], unk_tracers)
jaxpr, res = _promote_scalar_residuals_jaxpr(jaxpr, res)
out_knowns, out_avals_, consts = pe.partition_pvals([t.pval for t in tracers])
out = [*consts, *res]
main = trace.main
with core.extend_axis_env_nd(mesh.shape.items()):
jaxpr_ = pe.convert_constvars_jaxpr(jaxpr)
def todo(out):
trace = main.with_cur_sublevel()
out_consts, res = split_list(out, [len(out) - len(jaxpr.constvars)])
const_tracers = map(trace.new_instantiated_const, res)
env_tracers = map(trace.full_raise, env)
staged_in_names = ({0: (*mesh.axis_names,)},) * len(res) + ({},) * len(env)
staged_params = dict(jaxpr=jaxpr_, mesh=mesh, in_names=staged_in_names,
out_names=(*out_names_unknown,), check_rep=False,
rewrite=rewrite, auto=auto)
out_avals = map(partial(_unshard_aval, mesh), out_names_unknown, out_avals_)
out_tracers = [pe.JaxprTracer(trace, pe.PartialVal.unknown(a), None)
for a in out_avals]
name_stack = trace._current_truncated_name_stack()
source = source_info_util.current().replace(name_stack=name_stack)
eqn = pe.new_eqn_recipe((*const_tracers, *env_tracers), out_tracers,
shard_map_p, staged_params, jaxpr.effects, source)
for t in out_tracers: t.recipe = eqn
return merge_lists(out_knowns, out_tracers, out_consts)
def out_names_transform(out_names):
nonlocal out_names_unknown
out_names_unknown, out_names_known = partition_list(out_knowns, out_names)
return (*out_names_known,) + ({0: (*mesh.axis_names,)},) * len(jaxpr.constvars)
out_names_unknown: list | None = None
return out, (todo, out_names_transform)
pe.JaxprTrace.post_process_shard_map = _shard_map_partial_eval_post_process
@lu.transformation
def _promote_scalar_residuals(*args, **kwargs):
jaxpr, (out_pvals, out_consts, env) = yield args, kwargs
jaxpr, out_consts = _promote_scalar_residuals_jaxpr(jaxpr, out_consts)
yield jaxpr, (out_pvals, out_consts, env)
def _promote_scalar_residuals_jaxpr(jaxpr, res):
which = [isinstance(v.aval, core.ShapedArray) and not v.aval.shape
for v in jaxpr.constvars]
res_ = [jax.lax.broadcast(x, (1,)) if s else x for x, s in zip(res, which)]
@lu.wrap_init
def fun(*args):
res = [_rem_singleton(x) if s else x for x, s in zip(res_, which)]
return core.eval_jaxpr(jaxpr, res, *args)
jaxpr, _, res = pe.trace_to_jaxpr_dynamic(fun, [v.aval for v in jaxpr.invars])
return jaxpr, res
def _shard_map_transpose(out_cts, *args, jaxpr, mesh, in_names, out_names,
check_rep, rewrite, auto):
mb_div = lambda x, y: x / y if y != 1 else x
out_cts = [ad.Zero(_shard_aval(mesh, ns, x.aval)) if type(x) is ad.Zero
else x if rewrite
else mb_div(x, prod(map(mesh.shape.get, _unmentioned(mesh, ns))))
for ns, x in zip(out_names, out_cts)]
args = [x if type(x) is not ad.UndefinedPrimal else
ad.UndefinedPrimal(_shard_aval(mesh, ns, x.aval))
for ns, x in zip(in_names, args)]
all_args, in_tree = tree_flatten((out_cts, args))
@lu.wrap_init
def fun_trans(out_cts, args):
res, undefs = partition_list(map(ad.is_undefined_primal, args), args)
jaxpr_known, jaxpr_unknown, _, _ = pe.partial_eval_jaxpr_nounits(
pe.close_jaxpr(jaxpr), map(ad.is_undefined_primal, args), False)
res_reshaped = core.jaxpr_as_fun(jaxpr_known)(*res)
out = ad.backward_pass(
jaxpr_unknown.jaxpr, (), False, (), (*res_reshaped, *undefs), out_cts
)
out = [ad.Zero(_unshard_aval(mesh, ns, x.aval)) if type(x) is ad.Zero
else x if rewrite else jax.lax.psum(x, tuple(_unmentioned(mesh, ns)))
for ns, x in zip(in_names, out)]
return out
fun_trans, nz_arg_cts = ad.nonzero_outputs(fun_trans)
fun_trans_flat, out_tree = flatten_fun_nokwargs(fun_trans, in_tree)
new_in_names = \
[n for n, x in zip(out_names, out_cts) if type(x) is not ad.Zero] + \
[n for n, x in zip(in_names, args) if type(x) is not ad.UndefinedPrimal]
def new_out_names_thunk():
return tuple(names for names, nz in zip(in_names, nz_arg_cts()) if nz)
out_flat = shard_map_p.bind(
fun_trans_flat, *all_args, mesh=mesh, in_names=tuple(new_in_names),
out_names_thunk=new_out_names_thunk, check_rep=check_rep, rewrite=rewrite,
auto=auto)
return tree_unflatten(out_tree(), out_flat)
ad.primitive_transposes[shard_map_p] = _shard_map_transpose
def _shard_map_axis_subst(params, subst, traverse):
if 'jaxpr' not in params:
return params
if not traverse:
return params
def shadowed_subst(name):
return (name,) if name in params['mesh'].shape else subst(name)
with core.extend_axis_env_nd(params['mesh'].shape.items()):
new_jaxpr = core.subst_axis_names_jaxpr(params['jaxpr'], shadowed_subst)
return dict(params, jaxpr=new_jaxpr)
core.axis_substitution_rules[shard_map_p] = _shard_map_axis_subst
# Remat
def _partial_eval_jaxpr_custom_rule(
saveable: Callable[..., pe.RematCases_], unks_in: Sequence[bool],
inst_in: Sequence[bool], eqn: core.JaxprEqn
) -> tuple[core.JaxprEqn, core.JaxprEqn, Sequence[bool], Sequence[bool],
list[core.Var]]:
jaxpr, mesh = eqn.params['jaxpr'], eqn.params['mesh']
with core.extend_axis_env_nd(mesh.shape.items()):
jaxpr_known, jaxpr_staged, unks_out, inst_out, num_res = \
pe.partial_eval_jaxpr_custom(jaxpr, unks_in, inst_in, False, False, saveable)
jaxpr_known, jaxpr_staged = _add_reshapes(num_res, jaxpr_known, jaxpr_staged)
ins_known, _ = partition_list(unks_in, eqn.invars)
out_binders_known, _ = partition_list(unks_out, eqn.outvars)
_, ins_staged = partition_list(inst_in, eqn.invars)
_, out_binders_staged = partition_list(inst_out, eqn.outvars)
newvar = core.gensym([jaxpr_known, jaxpr_staged])
params_known, params_staged = _pe_custom_params(
unks_in, inst_in, map(op.not_, unks_out), inst_out, num_res,
dict(eqn.params, jaxpr=jaxpr_known), dict(eqn.params, jaxpr=jaxpr_staged))
residuals = [newvar(_unshard_aval(mesh, {0: (*mesh.axis_names,)}, var.aval))
for var in jaxpr_staged.invars[:num_res]]
eqn_known = pe.new_jaxpr_eqn(ins_known, [*out_binders_known, *residuals],
eqn.primitive, params_known, jaxpr_known.effects,
eqn.source_info)
eqn_staged = pe.new_jaxpr_eqn([*residuals, *ins_staged], out_binders_staged,
eqn.primitive, params_staged,
jaxpr_staged.effects, eqn.source_info)
assert len(eqn_staged.invars) == len(jaxpr_staged.invars)
new_inst = [x for x, inst in zip(eqn.invars, inst_in)
if type(x) is core.Var and not inst]
return eqn_known, eqn_staged, unks_out, inst_out, new_inst + residuals
pe.partial_eval_jaxpr_custom_rules[shard_map_p] = \
_partial_eval_jaxpr_custom_rule
def _add_reshapes(num_res, jaxpr_known, jaxpr_staged):
if not num_res: return jaxpr_known, jaxpr_staged
assert not jaxpr_known.constvars and not jaxpr_staged.constvars
@lu.wrap_init
def known(*args):
out = core.eval_jaxpr(jaxpr_known, (), *args)
out_known, res = split_list(out, [len(out) - num_res])
return [*out_known, *map(_add_singleton, res)]
avals_in = [v.aval for v in jaxpr_known.invars]
jaxpr_known, _, () = pe.trace_to_jaxpr_dynamic(known, avals_in)
@lu.wrap_init
def staged(*args):
res_, ins = split_list(args, [num_res])
res = map(_rem_singleton, res_)
return core.eval_jaxpr(jaxpr_staged, (), *res, *ins)
res_avals = [v.aval for v in jaxpr_known.outvars[-num_res:]]
avals_in = [*res_avals, *[v.aval for v in jaxpr_staged.invars[num_res:]]]
jaxpr_staged, _, () = pe.trace_to_jaxpr_dynamic(staged, avals_in)
return jaxpr_known, jaxpr_staged
def _pe_custom_params(unks_in, inst_in, kept_outs_known, kept_outs_staged,
num_res, params_known, params_staged):
# prune inputs to jaxpr_known according to unks_in
mesh = params_known['mesh']
in_names_known, _ = partition_list(unks_in, params_known['in_names'])
_, out_names_known = partition_list(kept_outs_known, params_known['out_names'])
out_names_known = out_names_known + [{0: (*mesh.axis_names,)}] * num_res
new_params_known = dict(params_known, in_names=tuple(in_names_known),
out_names=tuple(out_names_known))
# added num_res new inputs to jaxpr_staged, pruning according to inst_in
_, in_names_staged = partition_list(inst_in, params_staged['in_names'])
in_names_staged = [{0: (*mesh.axis_names,)}] * num_res + in_names_staged
_, out_names_staged = partition_list(kept_outs_staged, params_staged['out_names'])
new_params_staged = dict(params_staged, in_names=tuple(in_names_staged),
out_names=tuple(out_names_staged), check_rep=False)
return new_params_known, new_params_staged
# DCE
# TODO(mattjj): de-duplicate with pe.dce_jaxpr_call_rule, and/or _pmap_dce_rule?
def _shard_map_dce(used_outputs: list[bool], eqn: core.JaxprEqn
) -> tuple[list[bool], core.JaxprEqn | None]:
with core.extend_axis_env_nd(eqn.params['mesh'].shape.items()):
jaxpr, used_inputs = pe.dce_jaxpr(eqn.params['jaxpr'], used_outputs)
if not any(used_inputs) and not any(used_outputs) and not jaxpr.effects:
return used_inputs, None
else:
_, in_names = partition_list(used_inputs, eqn.params['in_names'])
_, out_names = partition_list(used_outputs, eqn.params['out_names'])
new_params = dict(eqn.params, jaxpr=jaxpr, in_names=tuple(in_names),
out_names=tuple(out_names))
new_eqn = pe.new_jaxpr_eqn(
[v for v, used in zip(eqn.invars, used_inputs) if used],
[x for x, used in zip(eqn.outvars, used_outputs) if used],
eqn.primitive, new_params, jaxpr.effects, eqn.source_info)
return used_inputs, new_eqn
pe.dce_rules[shard_map_p] = _shard_map_dce
# Implementing pmap in terms of shard_map
def pmap(f, axis_name=None, *, in_axes=0, out_axes=0,
static_broadcasted_argnums=(), devices=None, backend=None,
axis_size=None, donate_argnums=(), global_arg_shapes=None):
devices = tuple(devices) if devices is not None else devices
axis_name, static_broadcasted_tuple, donate_tuple = _shared_code_pmap(
f, axis_name, static_broadcasted_argnums, donate_argnums, in_axes, out_axes)
def infer_params(*args, **kwargs):
p = _prepare_pmap(f, in_axes, out_axes, static_broadcasted_tuple,
donate_tuple, devices, backend, axis_size, args, kwargs)
for arg in p.flat_args:
dispatch.check_arg(arg)
mesh = Mesh(_get_devices(p, backend), (axis_name,))
_pmapped, in_specs, out_specs = _cached_shard_map(
p.flat_fun, mesh, p.in_axes_flat, p.out_axes_thunk, axis_name)
flat_global_args = host_local_array_to_global_array(
p.flat_args, mesh, list(in_specs))
jitted_f = jax.jit(
_pmapped,
donate_argnums=(i for i, val in enumerate(p.donated_invars) if val))
return jitted_f, flat_global_args, p.out_tree, mesh, out_specs
def wrapped(*args, **kwargs):
(jitted_f, flat_global_args, out_tree, mesh,
out_specs) = infer_params(*args, **kwargs)
with jax.spmd_mode('allow_all'):
outs = jitted_f(*flat_global_args)
outs = global_array_to_host_local_array(outs, mesh, out_specs())
return tree_unflatten(out_tree(), outs)
def lower(*args, **kwargs):
jitted_f, _, _, _, _ = infer_params(*args, **kwargs)
with jax.spmd_mode('allow_all'):
return jitted_f.lower(*args, **kwargs)
wrapped.lower = lower
return wrapped
@lu.cache
def _cached_shard_map(flat_fun, mesh, in_axes_flat, out_axes_thunk, axis_name):
in_specs = tuple(map(partial(_axis_to_spec, axis_name), in_axes_flat))
out_specs = lambda: map(partial(_axis_to_spec, axis_name), out_axes_thunk())
fun = _handle_reshapes(flat_fun, in_axes_flat, out_axes_thunk)
return (_shard_map(fun.call_wrapped, mesh, in_specs, out_specs,
check_rep=False, auto=frozenset()),
in_specs, out_specs)
@lu.transformation
def _handle_reshapes(in_axes, out_axes_thunk, *args, **kwargs):
args = tree_map(lambda x, ax: x if ax is None else jnp.squeeze(x, axis=ax),
list(args), list(in_axes))
out = yield args, {}
yield tree_map(lambda x, ax: x if ax is None else jnp.expand_dims(x, axis=ax),
list(out), list(out_axes_thunk()))
def _axis_to_spec(axis_name, ax):
if isinstance(ax, int):
specs = [None] * ax + [axis_name]
return P(*specs)
elif ax is None:
return P()
else:
raise TypeError(ax)
def _get_devices(p, backend):
if backend is not None and p.devices is None:
devs = jax.devices(backend=backend)
else:
devs = jax.devices() if p.devices is None else p.devices
if jax.process_count() > 1:
return devs[:p.global_axis_size]
return devs[:p.local_axis_size]
### Rewrite!
class RewriteTracer(core.Tracer):
rep: set[AxisName]
val: Val
def __init__(self, trace, rep, val):
self._trace = trace
self.rep = rep
self.val = val
@property
def aval(self) -> core.AbstractValue:
return core.get_aval(self.val)
def full_lower(self) -> RewriteTracer:
return self
def __str__(self) -> str:
return str(self.val) # TODO(mattjj): could show replication info here
class RewriteTrace(core.Trace):
mesh: Mesh
dyna: int
def __init__(self, *args, mesh, dyna):
super().__init__(*args)
self.mesh = mesh
self.dyna = dyna
def pure(self, val) -> RewriteTracer:
return RewriteTracer(self, set(self.mesh.axis_names), val)
def lift(self, tracer: core.Tracer) -> RewriteTracer:
return RewriteTracer(self, set(self.mesh.axis_names), tracer)
def sublift(self, tracer: core.Tracer) -> RewriteTracer:
return RewriteTracer(self, tracer.rep, tracer.val)
def process_primitive(self, prim, in_tracers, params):
rule = _rewrite_rules.get(prim, partial(_rule_missing, prim))
in_vals, in_reps = unzip2((t.val, t.rep) for t in in_tracers)
with core.new_dynamic(self.dyna):
out_vals, out_reps = rule(self.mesh, in_reps, *in_vals, **params)
out_tracers = map(partial(RewriteTracer, self), out_reps, out_vals)
return out_tracers if prim.multiple_results else out_tracers[0]
def process_call(self, call_primitive, f, in_tracers, params):
in_vals, in_reps = unzip2((t.val, t.rep) for t in in_tracers)
f, out_reps = _rewrite_subtrace(f, self.main, tuple(in_reps))
with core.new_dynamic(self.dyna):
out_vals = call_primitive.bind(f, *in_vals, **params)
return map(partial(RewriteTracer, self), out_reps(), out_vals)
def post_process_call(self, call_primitive, out_tracers, params):
assert False # unreachable
def process_custom_jvp_call(self, prim, fun, jvp, tracers, *, symbolic_zeros):
if symbolic_zeros:
msg = "Please open an issue at https://github.com/google/jax/issues !"
raise NotImplementedError(msg)
in_vals, in_reps = unzip2((t.val, t.rep) for t in tracers)
fun, out_reps1 = _rewrite_subtrace(fun, self.main, in_reps)
jvp, out_reps2 = _rewrite_subtrace(jvp, self.main, in_reps * 2)
with core.new_dynamic(self.dyna):
out_vals = prim.bind(fun, jvp, *in_vals, symbolic_zeros=symbolic_zeros)
fst, out_reps = lu.merge_linear_aux(out_reps1, out_reps2)
if not fst:
assert out_reps == out_reps[:len(out_reps) // 2] * 2
out_reps = out_reps[:len(out_reps) // 2]
return map(partial(RewriteTracer, self), out_reps, out_vals)
def post_process_custom_jvp_call(self, out_tracers, jvp_was_run):
assert False # unreachable
def process_custom_vjp_call(self, prim, fun, fwd, bwd, tracers, out_trees,
symbolic_zeros):
if symbolic_zeros:
msg = "Please open an issue at https://github.com/google/jax/issues !"
raise NotImplementedError(msg)
in_vals, in_reps = unzip2((t.val, t.rep) for t in tracers)
fun, out_reps1 = _rewrite_subtrace(fun, self.main, in_reps)
fwd_in_reps = [r_ for r in in_reps for r_ in [r, set(self.mesh.axis_names)]]
fwd, out_reps2 = _rewrite_subtrace(fwd, self.main, fwd_in_reps)
bwd = _rewrite_bwd(bwd, self.mesh, out_reps2, in_reps)
with core.new_dynamic(self.dyna):
out_vals = prim.bind(fun, fwd, bwd, *in_vals, out_trees=out_trees,
symbolic_zeros=symbolic_zeros)
fst, out_reps = lu.merge_linear_aux(out_reps1, out_reps2)
if not fst:
_, res_tree = out_trees()
_, out_reps = split_list(out_reps, [res_tree.num_leaves])
return map(partial(RewriteTracer, self), out_reps, out_vals)
def post_process_custom_vjp_call(self, out_tracers, _):
assert False # unreachable
# TODO process_axis_index
@lu.transformation
def _efficient_transpose_rewrite(mesh, in_names, out_names_thunk, *args):
in_reps = map(partial(_in_names_to_rep, mesh), in_names)
lvl = core.dynamic_level()
with core.new_main(RewriteTrace, dynamic=True, mesh=mesh, dyna=lvl) as main:
t = main.with_cur_sublevel()
in_tracers = map(partial(RewriteTracer, t), in_reps, args)
ans = yield in_tracers, {}
out_tracers = map(t.full_raise, ans)
out_vals, out_reps = unzip2((t.val, t.rep) for t in out_tracers)
del main, t, in_tracers, out_tracers, ans
out_rep_dst = [frozenset(_unmentioned(mesh, n)) for n in out_names_thunk()]
out_vals = [pbroadcast(x, tuple(n for n in src if n not in dst)) if src - dst
else x for x, src, dst in zip(out_vals, out_reps, out_rep_dst)]
yield out_vals
@lu.transformation_with_aux
def _rewrite_subtrace(main, in_reps, *in_vals):
assert len(in_reps) == len(in_vals), (len(in_reps), len(in_vals))
t = main.with_cur_sublevel()
in_tracers = map(partial(RewriteTracer, t), in_reps, in_vals)
with core.new_dynamic(main.level):
outs = yield in_tracers, {}
out_tracers = map(t.full_raise, outs)
out_vals, out_reps = unzip2((t.val, t.rep) for t in out_tracers)
yield out_vals, out_reps
def _rewrite_bwd(bwd, mesh, in_reps, reps_dst):
def new_bwd(*args):
lvl = core.dynamic_level()
with core.new_main(RewriteTrace, dynamic=True, mesh=mesh, dyna=lvl) as main:
bwd_, reps_thunk = _rewrite_subtrace(lu.wrap_init(bwd), main, in_reps())
out = bwd_.call_wrapped(*args)
del main
return map(_match_replication, reps_thunk(), reps_dst, out)
return new_bwd
def _match_replication(src, dst, x):
if dst - src:
x, = psum2_p.bind(x, axes=tuple(n for n in dst if n not in src),
axis_index_groups=None)
if src - dst:
x = pbroadcast(x, tuple(n for n in src if n not in dst))
return x