mirror of
https://github.com/ROCm/jax.git
synced 2025-04-26 05:16:06 +00:00

Also check the symmetric difference of sharding and `_arrays` devices. PiperOrigin-RevId: 478017409
616 lines
23 KiB
Python
616 lines
23 KiB
Python
# Copyright 2021 The JAX Authors.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# https://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
|
||
from __future__ import annotations
|
||
|
||
import operator as op
|
||
import numpy as np
|
||
from typing import Sequence, Tuple, Callable, Union, Optional, cast, List
|
||
|
||
from jax import core
|
||
from jax._src import abstract_arrays
|
||
from jax._src import ad_util
|
||
from jax._src import api_util
|
||
from jax._src import basearray
|
||
from jax._src import dispatch
|
||
from jax._src import dtypes
|
||
from jax._src.lax import lax as lax_internal
|
||
from jax._src.config import config
|
||
from jax._src.util import prod, safe_zip
|
||
from jax._src.lib import xla_client as xc
|
||
from jax._src.api import device_put
|
||
from jax._src.typing import ArrayLike
|
||
from jax.interpreters import pxla, xla, mlir
|
||
from jax._src.sharding import (
|
||
Sharding, SingleDeviceSharding, XLACompatibleSharding, PmapSharding,
|
||
device_replica_id_map)
|
||
|
||
Shape = Tuple[int, ...]
|
||
Device = xc.Device
|
||
DeviceArray = xc.Buffer
|
||
Index = Tuple[slice, ...]
|
||
|
||
|
||
class Shard:
|
||
"""A single data shard of an Array.
|
||
|
||
Attributes:
|
||
device : Which device this shard resides on.
|
||
index : The index into the global array of this shard.
|
||
replica_id : Integer id indicating which replica of the global array this
|
||
shard is part of. Always 0 for fully sharded data
|
||
(i.e. when there’s only 1 replica).
|
||
data : The data of this shard. None if ``device`` is non-local.
|
||
"""
|
||
|
||
def __init__(self, device: Device, sharding: Sharding, global_shape: Shape,
|
||
data: Optional[ArrayImpl] = None):
|
||
self.device = device
|
||
self._sharding = sharding
|
||
self._global_shape = global_shape
|
||
self.data = data
|
||
|
||
def __repr__(self):
|
||
try:
|
||
return (f'Shard(device={repr(self.device)}, index={self.index}, '
|
||
f'replica_id={self.replica_id}, data={self.data})')
|
||
except ValueError:
|
||
return f'Shard(device={repr(self.device)}, data={self.data})'
|
||
|
||
@property
|
||
def index(self) -> Index:
|
||
try:
|
||
device_indices_map_fn = self._sharding.devices_indices_map
|
||
except AttributeError:
|
||
raise ValueError('Cannot calculate indices from sharding: '
|
||
f'{self._sharding}. Please create a device to index '
|
||
'mapping for your sharding.') from None
|
||
index = device_indices_map_fn(self._global_shape)[self.device]
|
||
assert index is not None
|
||
return index
|
||
|
||
@property
|
||
def replica_id(self) -> int:
|
||
return device_replica_id_map(self._sharding, self._global_shape)[self.device]
|
||
|
||
|
||
def _reconstruct_array(fun, args, arr_state, aval_state):
|
||
"""Method to reconstruct a device array from a serialized state."""
|
||
np_value = fun(*args)
|
||
np_value.__setstate__(arr_state)
|
||
jnp_value = device_put(np_value)
|
||
jnp_value.aval = jnp_value.aval.update(**aval_state)
|
||
return jnp_value
|
||
|
||
|
||
def _single_device_array_from_buf(buf, committed):
|
||
db = pxla._set_aval(buf)
|
||
return ArrayImpl(db.aval, SingleDeviceSharding(db.device()), [db],
|
||
committed=committed, _skip_checks=True)
|
||
|
||
|
||
@pxla.use_cpp_class(xc.ArrayImpl if xc._version >= 97 else None)
|
||
class ArrayImpl(basearray.Array):
|
||
# TODO(yashkatariya): Add __slots__ here.
|
||
|
||
aval: core.ShapedArray
|
||
_sharding: Sharding
|
||
_arrays: List[DeviceArray]
|
||
_committed: bool
|
||
_skip_checks: bool
|
||
_npy_value: Optional[np.ndarray]
|
||
|
||
@pxla.use_cpp_method
|
||
def __init__(self, aval: core.ShapedArray, sharding: Sharding,
|
||
arrays: Union[Sequence[DeviceArray], Sequence[ArrayImpl]],
|
||
committed: bool, _skip_checks: bool = False):
|
||
# NOTE: the actual implementation of the constructor is moved to C++.
|
||
|
||
self.aval = aval
|
||
self._sharding = sharding
|
||
# Extract DeviceArrays from arrays with `SingleDeviceSharding` to keep the
|
||
# code handling `self._arrays` simpler.
|
||
# TODO(yashkatariya): This will be slower as it will happen during
|
||
# `__init__` on single controller environment. Make it lazy.
|
||
self._arrays = [a if isinstance(a, DeviceArray) else a._arrays[0] for a in arrays]
|
||
# See https://jax.readthedocs.io/en/latest/faq.html#controlling-data-and-computation-placement-on-devices
|
||
# for what committed means.
|
||
self._committed = committed
|
||
self._npy_value = None
|
||
|
||
# Don't rearrange if skip_checks is enabled because this assumes that the
|
||
# input buffers are already arranged properly. This usually happens when
|
||
# Array's are created as output of a JAX transformation
|
||
# (like pjit, xmap, etc).
|
||
if not _skip_checks or config.jax_enable_checks:
|
||
self._check_and_rearrange()
|
||
|
||
def _check_and_rearrange(self):
|
||
for db in self._arrays:
|
||
if db.dtype != self.dtype:
|
||
raise ValueError(
|
||
"Input buffers to `Array` must have matching dtypes. "
|
||
f"Got {db.dtype}, expected {self.dtype} for buffer: {db}")
|
||
|
||
device_id_to_buffer = {db.device().id: db for db in self._arrays}
|
||
|
||
addressable_dev = self.sharding.addressable_devices
|
||
if len(self._arrays) != len(addressable_dev):
|
||
raise ValueError(
|
||
f"Expected {len(addressable_dev)} per-device arrays "
|
||
"(this is how many devices are addressable by the sharding), but "
|
||
f"got {len(self._arrays)}")
|
||
|
||
array_device_ids = set(device_id_to_buffer.keys())
|
||
addressable_device_ids = set(d.id for d in addressable_dev)
|
||
# Calculate a symmetric difference because the device ids between sharding
|
||
# and _arrays should match.
|
||
diff = set(array_device_ids) ^ set(addressable_device_ids)
|
||
if diff:
|
||
dev_in_sharding_not_in_arrays = set(addressable_device_ids) - set(array_device_ids)
|
||
dev_in_arrays_not_in_sharding = set(array_device_ids) - set(addressable_device_ids)
|
||
err_msg = (
|
||
"Addressable devices and per-device arrays devices do not match.")
|
||
if dev_in_sharding_not_in_arrays:
|
||
err_msg += (f" Sharding contains devices {dev_in_sharding_not_in_arrays} "
|
||
"that are not present in per-device arrays.")
|
||
if dev_in_arrays_not_in_sharding:
|
||
err_msg += (f" Per-device arrays contain devices {dev_in_arrays_not_in_sharding} "
|
||
"that are not present in the sharding.")
|
||
raise ValueError(err_msg)
|
||
|
||
ss = self.sharding.shard_shape(self.shape)
|
||
for db in self._arrays:
|
||
if db.shape != ss:
|
||
raise ValueError(
|
||
f"Expected shard shape {ss} doesn't match the buffer "
|
||
f"shape {db.shape} for buffer: {db}")
|
||
|
||
# Rearrange arrays based on the device assignment.
|
||
if isinstance(self.sharding, XLACompatibleSharding):
|
||
addressable_da = self.sharding._addressable_device_assignment
|
||
self._arrays = [device_id_to_buffer[device.id] for device in addressable_da]
|
||
|
||
@property
|
||
def shape(self) -> Shape:
|
||
return self.aval.shape
|
||
|
||
@property
|
||
def dtype(self):
|
||
return self.aval.dtype
|
||
|
||
@property
|
||
def ndim(self):
|
||
return len(self.shape)
|
||
|
||
@property
|
||
def size(self):
|
||
return prod(self.shape)
|
||
|
||
@property
|
||
def sharding(self):
|
||
return self._sharding
|
||
|
||
def __str__(self):
|
||
return str(self._value)
|
||
|
||
def __len__(self):
|
||
try:
|
||
return self.shape[0]
|
||
except IndexError as err:
|
||
raise TypeError("len() of unsized object") from err # same as numpy error
|
||
|
||
def __bool__(self):
|
||
return bool(self._value)
|
||
|
||
def __nonzero__(self):
|
||
return bool(self._value)
|
||
|
||
def __float__(self):
|
||
return self._value.__float__()
|
||
|
||
def __int__(self):
|
||
return self._value.__int__()
|
||
|
||
def __complex__(self):
|
||
return self._value.__complex__()
|
||
|
||
def __hex__(self):
|
||
assert self.ndim == 0, 'hex only works on scalar values'
|
||
return hex(self._value) # type: ignore
|
||
|
||
def __oct__(self):
|
||
assert self.ndim == 0, 'oct only works on scalar values'
|
||
return oct(self._value) # type: ignore
|
||
|
||
def __index__(self):
|
||
return op.index(self._value)
|
||
|
||
def tobytes(self, order="C"):
|
||
return self._value.tobytes(order)
|
||
|
||
def tolist(self):
|
||
return self._value.tolist()
|
||
|
||
def __format__(self, format_spec):
|
||
# Simulates behavior of https://github.com/numpy/numpy/pull/9883
|
||
if self.ndim == 0:
|
||
return format(self._value[()], format_spec)
|
||
else:
|
||
return format(self._value, format_spec)
|
||
|
||
def __getitem__(self, idx):
|
||
from jax._src.numpy import lax_numpy
|
||
self._check_if_deleted()
|
||
|
||
if dispatch.is_single_device_sharding(self.sharding):
|
||
return lax_numpy._rewriting_take(self, idx)
|
||
# TODO(yashkatariya): Make it work for other Shardings too wherever its
|
||
# possible to not do data movement.
|
||
elif isinstance(self.sharding, PmapSharding):
|
||
if not isinstance(idx, tuple):
|
||
cidx = (idx,) + (slice(None),) * (len(self.shape) - 1)
|
||
else:
|
||
cidx = idx + (slice(None),) * (len(self.shape) - len(idx))
|
||
if self._npy_value is None:
|
||
indices = tuple(self.sharding.devices_indices_map(self.shape).values())
|
||
try:
|
||
buf_idx = indices.index(cidx)
|
||
except ValueError:
|
||
buf_idx = None
|
||
if buf_idx is not None:
|
||
buf = self._arrays[buf_idx]
|
||
aval = core.ShapedArray(buf.shape, self.dtype)
|
||
return ArrayImpl(aval, SingleDeviceSharding(buf.device()), [buf],
|
||
committed=False, _skip_checks=True)
|
||
return lax_numpy._rewriting_take(self, idx)
|
||
else:
|
||
# TODO(yashkatariya): Don't bounce to host and use `_rewriting_take` or
|
||
# the fast path (see PmapSharding branch above) after b/245667823 is
|
||
# fixed.
|
||
return self._value[idx]
|
||
|
||
def __iter__(self):
|
||
if self.ndim == 0:
|
||
raise TypeError("iteration over a 0-d array") # same as numpy error
|
||
else:
|
||
assert self.is_fully_replicated() or self.is_fully_addressable()
|
||
if dispatch.is_single_device_sharding(self.sharding):
|
||
return (sl for chunk in self._chunk_iter(100) for sl in chunk._unstack()) # type: ignore
|
||
elif isinstance(self.sharding, PmapSharding):
|
||
return (self[i] for i in range(self.shape[0])) # type: ignore
|
||
else:
|
||
# TODO(yashkatariya): Don't bounce to host and use `_chunk_iter` path
|
||
# here after b/245667823 is fixed.
|
||
return (self._value[i] for i in range(self.shape[0]))
|
||
|
||
def item(self):
|
||
if dtypes.issubdtype(self.dtype, np.complexfloating):
|
||
return complex(self)
|
||
elif dtypes.issubdtype(self.dtype, np.floating):
|
||
return float(self)
|
||
elif dtypes.issubdtype(self.dtype, np.integer):
|
||
return int(self)
|
||
elif dtypes.issubdtype(self.dtype, np.bool_):
|
||
return bool(self)
|
||
else:
|
||
raise TypeError(self.dtype)
|
||
|
||
def is_fully_replicated(self) -> bool:
|
||
return self.shape == self._arrays[0].shape
|
||
|
||
def __repr__(self):
|
||
prefix = 'Array('
|
||
if self.aval is not None and self.aval.weak_type:
|
||
dtype_str = f'dtype={self.dtype.name}, weak_type=True)'
|
||
else:
|
||
dtype_str = f'dtype={self.dtype.name})'
|
||
|
||
if self.is_fully_addressable() or self.is_fully_replicated():
|
||
line_width = np.get_printoptions()["linewidth"]
|
||
s = np.array2string(self._value, prefix=prefix, suffix=',',
|
||
separator=', ', max_line_width=line_width)
|
||
last_line_len = len(s) - s.rfind('\n') + 1
|
||
sep = ' '
|
||
if last_line_len + len(dtype_str) + 1 > line_width:
|
||
sep = ' ' * len(prefix)
|
||
return f"{prefix}{s},{sep}{dtype_str}"
|
||
else:
|
||
return f"{prefix}{self.shape}, {dtype_str}"
|
||
|
||
def is_fully_addressable(self) -> bool:
|
||
return self.sharding.is_fully_addressable()
|
||
|
||
def __array__(self, dtype=None, context=None):
|
||
return np.asarray(self._value, dtype=dtype)
|
||
|
||
def __dlpack__(self):
|
||
from jax.dlpack import to_dlpack # pylint: disable=g-import-not-at-top
|
||
return to_dlpack(self)
|
||
|
||
def __reduce__(self):
|
||
fun, args, arr_state = self._value.__reduce__() # type: ignore
|
||
aval_state = {'weak_type': self.aval.weak_type,
|
||
'named_shape': self.aval.named_shape}
|
||
return (_reconstruct_array, (fun, args, arr_state, aval_state))
|
||
|
||
def unsafe_buffer_pointer(self):
|
||
assert len(self._arrays) == 1
|
||
return self._arrays[0].unsafe_buffer_pointer()
|
||
|
||
@property
|
||
def __cuda_array_interface__(self):
|
||
assert len(self._arrays) == 1
|
||
return self._arrays[0].__cuda_array_interface__ # pytype: disable=attribute-error # bind-properties
|
||
|
||
# TODO(yashkatariya): Remove this method when everyone is using devices().
|
||
def device(self) -> Device:
|
||
self._check_if_deleted()
|
||
device_set = self.sharding.device_set
|
||
if len(device_set) == 1:
|
||
single_device, = device_set
|
||
return single_device
|
||
raise ValueError('Length of devices is greater than 1. '
|
||
'Please use `.devices()`.')
|
||
|
||
def devices(self) -> List[Device]:
|
||
self._check_if_deleted()
|
||
return list(self.sharding.device_set)
|
||
|
||
# TODO(https://github.com/google/jax/issues/12380): Remove this when DA is
|
||
# deleted.
|
||
@property
|
||
def device_buffer(self) -> DeviceArray:
|
||
self._check_if_deleted()
|
||
if len(self._arrays) == 1:
|
||
return _single_device_array_from_buf(self._arrays[0], self._committed)
|
||
raise ValueError('Length of buffers is greater than 1. Please use '
|
||
'`.device_buffers` instead.')
|
||
|
||
# TODO(https://github.com/google/jax/issues/12380): Remove this when SDA is
|
||
# deleted.
|
||
@property
|
||
def device_buffers(self) -> Sequence[DeviceArray]:
|
||
self._check_if_deleted()
|
||
return [_single_device_array_from_buf(a, self._committed)
|
||
for a in self._arrays]
|
||
|
||
def addressable_data(self, index: int) -> ArrayImpl:
|
||
self._check_if_deleted()
|
||
return _single_device_array_from_buf(self._arrays[index], self._committed)
|
||
|
||
@pxla.maybe_cached_property
|
||
def addressable_shards(self) -> Sequence[Shard]:
|
||
self._check_if_deleted()
|
||
out = []
|
||
for db in self._arrays:
|
||
# Wrap the device arrays in `Array` until C++ returns an Array instead
|
||
# of a DA.
|
||
array = _single_device_array_from_buf(db, self._committed)
|
||
out.append(Shard(db.device(), self.sharding, self.shape, array))
|
||
return out
|
||
|
||
def delete(self):
|
||
if self._arrays is None:
|
||
return
|
||
for buf in self._arrays:
|
||
buf.delete()
|
||
self._arrays = None
|
||
self._npy_value = None
|
||
|
||
def is_deleted(self):
|
||
if self._arrays is None:
|
||
return True
|
||
# This path is taken when a view of `Array` is created and the original
|
||
# Array is deleted. In that case, the buffers the view represents also get
|
||
# deleted.
|
||
return any(buf.is_deleted() for buf in self._arrays)
|
||
|
||
def _check_if_deleted(self):
|
||
if self._arrays is None:
|
||
raise RuntimeError("Array has been deleted.")
|
||
|
||
@pxla.use_cpp_method
|
||
def block_until_ready(self):
|
||
self._check_if_deleted()
|
||
for db in self._arrays:
|
||
db.block_until_ready()
|
||
return self
|
||
|
||
def copy_to_host_async(self):
|
||
self._check_if_deleted()
|
||
if self._npy_value is None:
|
||
try:
|
||
self.addressable_shards[0].replica_id
|
||
replica_id_exists = True
|
||
except ValueError:
|
||
replica_id_exists = False
|
||
|
||
for s in self.addressable_shards:
|
||
if not replica_id_exists or s.replica_id == 0:
|
||
s.data._arrays[0].copy_to_host_async() # pytype: disable=attribute-error
|
||
|
||
@property
|
||
def _value(self) -> np.ndarray:
|
||
self._check_if_deleted()
|
||
|
||
if self._npy_value is None:
|
||
if self.is_fully_replicated():
|
||
self._npy_value = np.asarray(self._arrays[0]) # type: ignore
|
||
self._npy_value.flags.writeable = False
|
||
return cast(np.ndarray, self._npy_value)
|
||
|
||
if not self.is_fully_addressable():
|
||
raise RuntimeError("Fetching value for `jax.Array` that spans "
|
||
"non-addressable devices is not possible. You can use "
|
||
"`jax.experimental.multihost_utils.process_allgather` "
|
||
"for this use case.")
|
||
|
||
self.copy_to_host_async()
|
||
npy_value = np.empty(self.shape, self.dtype)
|
||
|
||
try:
|
||
self.addressable_shards[0].replica_id
|
||
replica_id_exists = True
|
||
except ValueError:
|
||
replica_id_exists = False
|
||
|
||
for s in self.addressable_shards:
|
||
if not replica_id_exists or s.replica_id == 0:
|
||
npy_value[s.index] = np.asarray(s.data._arrays[0]) # type: ignore # [union-attr]
|
||
self._npy_value = npy_value # type: ignore
|
||
self._npy_value.flags.writeable = False
|
||
# https://docs.python.org/3/library/typing.html#typing.cast
|
||
return cast(np.ndarray, self._npy_value)
|
||
|
||
# explicitly set to be unhashable. Same as what device_array.py does.
|
||
setattr(ArrayImpl, "__hash__", None)
|
||
setattr(ArrayImpl, "__array_priority__", 100)
|
||
|
||
def make_array_from_callback(
|
||
shape: Shape, sharding: Sharding,
|
||
data_callback: Callable[[Optional[Index]], ArrayLike]) -> ArrayImpl:
|
||
device_to_index_map = sharding.devices_indices_map(shape)
|
||
# Use addressable_devices here instead of `_addressable_device_assignment`
|
||
# because `_addressable_device_assignment` is only available on
|
||
# `XLACompatibleSharding` and this function is supposed to work for every
|
||
# `Sharding`.
|
||
arrays = [
|
||
device_put(data_callback(device_to_index_map[device]), device)
|
||
for device in sharding.addressable_devices
|
||
]
|
||
aval = core.ShapedArray(shape, arrays[0].dtype, weak_type=False)
|
||
return ArrayImpl(aval, sharding, arrays, committed=True)
|
||
|
||
|
||
def make_array_from_single_device_arrays(
|
||
shape: Shape, sharding: Sharding, arrays: Sequence[ArrayImpl]) -> ArrayImpl:
|
||
# All input arrays should be committed. Checking it is expensive on
|
||
# single-controller systems.
|
||
aval = core.ShapedArray(shape, arrays[0].dtype, weak_type=False)
|
||
return ArrayImpl(aval, sharding, arrays, committed=True)
|
||
|
||
|
||
core.pytype_aval_mappings[ArrayImpl] = abstract_arrays.canonical_concrete_aval
|
||
xla.pytype_aval_mappings[ArrayImpl] = op.attrgetter('aval')
|
||
xla.canonicalize_dtype_handlers[ArrayImpl] = pxla.identity
|
||
api_util._shaped_abstractify_handlers[ArrayImpl] = op.attrgetter('aval')
|
||
ad_util.jaxval_adders[ArrayImpl] = lax_internal.add
|
||
ad_util.jaxval_zeros_likers[ArrayImpl] = lax_internal.zeros_like_array
|
||
if xc._version >= 96:
|
||
# TODO(jakevdp) replace this with true inheritance at the C++ level.
|
||
basearray.Array.register(ArrayImpl)
|
||
|
||
|
||
def _array_mlir_constant_handler(val, canonicalize_types=True):
|
||
return mlir.ir_constants(val._value,
|
||
canonicalize_types=canonicalize_types)
|
||
mlir.register_constant_handler(ArrayImpl, _array_mlir_constant_handler)
|
||
|
||
|
||
def _device_put_array(x, device: Optional[Device]):
|
||
# TODO(yashkatariya): Remove this restriction and the round trip via host
|
||
# once lowering to XLA goes through `lower_mesh_computation`.
|
||
assert x.is_fully_addressable()
|
||
if dispatch.is_single_device_sharding(x.sharding):
|
||
x = dispatch._copy_device_array_to_device(pxla._set_aval(x._arrays[0]), device)
|
||
return (x,)
|
||
else:
|
||
# Round trip via host if x is sharded. SDA also does a round trip via host.
|
||
return dispatch._device_put_array(x._value, device)
|
||
|
||
dispatch.device_put_handlers[ArrayImpl] = _device_put_array
|
||
|
||
|
||
def _array_pmap_shard_arg(x, devices, indices, mode):
|
||
if dispatch.is_single_device_sharding(x.sharding):
|
||
return pxla._shard_device_array(x, devices, indices, mode)
|
||
|
||
# If the sharding of Array does not match pmap's sharding then take the slow
|
||
# path which is similar to what SDA does. This slow path reroute only happens
|
||
# for `pmap`.
|
||
x_indices = tuple(x.sharding.addressable_devices_indices_map(x.shape).values())
|
||
if indices == x_indices:
|
||
return [buf if buf.device() == d else buf.copy_to_device(d)
|
||
for buf, d in safe_zip(x._arrays, devices)]
|
||
else:
|
||
return pxla._shard_sharded_device_array_slow_path(x, devices, indices, mode)
|
||
|
||
|
||
def _array_rest_shard_arg(x, devices, indices, mode):
|
||
if not x._committed:
|
||
if dispatch.is_single_device_sharding(x.sharding):
|
||
# This condition is to break the recursion that happens when only
|
||
# `pxla._shard_device_array` is used since it has `_multi_slice` in the
|
||
# implementation which is jitted. Eventually it calls back here and the
|
||
# recursion happens.
|
||
x_indices = tuple(x.sharding.addressable_devices_indices_map(x.shape).values())
|
||
if x_indices == indices:
|
||
return [buf if buf.device() == d else buf.copy_to_device(d)
|
||
for buf, d in safe_zip(x._arrays, devices)]
|
||
return pxla._shard_device_array(x, devices, indices, mode)
|
||
else:
|
||
raise NotImplementedError('Resharding uncommitted arrays sharded over '
|
||
'multiple devices is not supported.')
|
||
# TODO(yashkatariya): Remove the special case here and don't move to another
|
||
# device if its already committed. There is a TODO in dispatch.py already
|
||
# for this.
|
||
if dispatch.is_single_device_sharding(x.sharding):
|
||
return [buf if buf.device() == d else buf.copy_to_device(d)
|
||
for buf, d in safe_zip(x._arrays, devices)]
|
||
# If PmapSharding exists, then do a round trip via host. This will happen
|
||
# if the input Array containing PmapSharding takes the jit path
|
||
# i.e. `apply_primitive` or `xla_callable_uncached`. `jit(pmap)` is the most
|
||
# common case where this will happen.
|
||
# TODO(yashkatariya): Remove the special case here and don't move to another
|
||
# device if its already committed. There is a TODO in dispatch.py already
|
||
# for this.
|
||
elif isinstance(x.sharding, PmapSharding):
|
||
return pxla.device_put(x._value, devices, replicate=True)
|
||
else:
|
||
return x._arrays
|
||
|
||
|
||
def _array_shard_arg(x, devices, indices, mode):
|
||
if mode == pxla.InputsHandlerMode.pmap:
|
||
return _array_pmap_shard_arg(x, devices, indices, mode)
|
||
else:
|
||
return _array_rest_shard_arg(x, devices, indices, mode)
|
||
pxla.shard_arg_handlers[ArrayImpl] = _array_shard_arg
|
||
|
||
|
||
def _array_global_result_handler(global_aval, out_sharding, committed,
|
||
is_out_sharding_from_xla):
|
||
if global_aval.dtype == dtypes.float0:
|
||
return lambda _: np.zeros(global_aval.shape, dtypes.float0) # type: ignore
|
||
if core.is_opaque_dtype(global_aval.dtype):
|
||
return global_aval.dtype._rules.global_sharded_result_handler(
|
||
global_aval, out_sharding, committed, is_out_sharding_from_xla)
|
||
return lambda bufs: ArrayImpl(global_aval, out_sharding, bufs,
|
||
committed=committed, _skip_checks=True)
|
||
pxla.global_result_handlers[(core.ShapedArray, pxla.OutputType.Array)] = _array_global_result_handler
|
||
pxla.global_result_handlers[(core.ConcreteArray, pxla.OutputType.Array)] = _array_global_result_handler
|
||
pxla.global_result_handlers[(core.AbstractToken, pxla.OutputType.Array)] = lambda *_: lambda *_: core.token
|
||
|
||
|
||
# Only used for Arrays that come out of pmap.
|
||
def _array_local_result_handler(aval, sharding, indices):
|
||
if core.is_opaque_dtype(aval.dtype):
|
||
return aval.dtype._rules.local_sharded_result_handler(
|
||
aval, sharding, indices)
|
||
return lambda bufs: ArrayImpl(aval, sharding, bufs, committed=True,
|
||
_skip_checks=True)
|
||
pxla.local_result_handlers[(core.ShapedArray, pxla.OutputType.Array)] = _array_local_result_handler
|
||
pxla.local_result_handlers[(core.ConcreteArray, pxla.OutputType.Array)] = _array_local_result_handler
|