rocm_jax/tests/ann_test.py
Peter Hawkins 954cb9983b [JAX] Update JAX users in preparation for a change that makes iteration over a JAX array return JAX arrays, instead of NumPy arrays.
See https://github.com/google/jax/pull/8043 for context as to why we are making this change.

The upshot for most users is that the values returned by iteration over a JAX array are now themselves JAX arrays, with the semantics of JAX arrays, which sometimes differ from the semantics of NumPy scalars and arrays. In particular:

* Unlike NumPy scalars 0-dimensional JAX arrays are not hashable. This change updates users to call `.tolist()` or `np.asarray(...)` when the output of iterating over a JAX array is hashed, used as a dictionary key, or passed to `set(...)`. In some instances, we can just call `numpy` functions instead of `jax.numpy` functions to build the array in the first place.
* This change confuses Pandas and PIL when a JAX array is converted to a Pandas dataframe or a PIL image. For now, cast JAX arrays to a NumPy array first before passing them into those libraries.
* We now need to use `numpy.testing.assert_array_equal` instead of `numpy.testing.assert_equal` to compare JAX arrays.

PiperOrigin-RevId: 406247725
2021-10-28 16:49:37 -07:00

110 lines
4.1 KiB
Python

# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from absl.testing import absltest
from absl.testing import parameterized
import numpy as np
from jax import lax
from jax.experimental import ann
from jax._src import test_util as jtu
from jax._src.util import prod
from jax.config import config
config.parse_flags_with_absl()
class AnnTest(jtu.JaxTestCase):
@parameterized.named_parameters(
jtu.cases_from_list({
"testcase_name":
"_qy={}_db={}_k={}_recall={}".format(
jtu.format_shape_dtype_string(qy_shape, dtype),
jtu.format_shape_dtype_string(db_shape, dtype), k, recall),
"qy_shape": qy_shape, "db_shape": db_shape, "dtype": dtype,
"k": k, "recall": recall }
for qy_shape in [(200, 128), (128, 128)]
for db_shape in [(128, 500), (128, 3000)]
for dtype in jtu.dtypes.all_floating
for k in [1, 10, 50] for recall in [0.9, 0.95]))
def test_approx_max_k(self, qy_shape, db_shape, dtype, k, recall):
rng = jtu.rand_default(self.rng())
qy = rng(qy_shape, dtype)
db = rng(db_shape, dtype)
scores = lax.dot(qy, db)
_, gt_args = lax.top_k(scores, k)
_, ann_args = ann.approx_max_k(scores, k, recall_target=recall)
self.assertEqual(k, len(ann_args[0]))
gt_args_sets = [set(np.asarray(x)) for x in gt_args]
hits = sum(
len(list(x
for x in ann_args_per_q
if x.item() in gt_args_sets[q]))
for q, ann_args_per_q in enumerate(ann_args))
self.assertGreater(hits / (qy_shape[0] * k), recall)
@parameterized.named_parameters(
jtu.cases_from_list({
"testcase_name":
"_qy={}_db={}_k={}_recall={}".format(
jtu.format_shape_dtype_string(qy_shape, dtype),
jtu.format_shape_dtype_string(db_shape, dtype), k, recall),
"qy_shape": qy_shape, "db_shape": db_shape, "dtype": dtype,
"k": k, "recall": recall }
for qy_shape in [(200, 128), (128, 128)]
for db_shape in [(128, 500), (128, 3000)]
for dtype in jtu.dtypes.all_floating
for k in [1, 10, 50] for recall in [0.9, 0.95]))
def test_approx_min_k(self, qy_shape, db_shape, dtype, k, recall):
rng = jtu.rand_default(self.rng())
qy = rng(qy_shape, dtype)
db = rng(db_shape, dtype)
scores = lax.dot(qy, db)
_, gt_args = lax.top_k(-scores, k)
_, ann_args = ann.approx_min_k(scores, k, recall_target=recall)
self.assertEqual(k, len(ann_args[0]))
gt_args_sets = [set(np.asarray(x)) for x in gt_args]
hits = sum(
len(list(x
for x in ann_args_per_q
if x.item() in gt_args_sets[q]))
for q, ann_args_per_q in enumerate(ann_args))
self.assertGreater(hits / (qy_shape[0] * k), recall)
@parameterized.named_parameters(
jtu.cases_from_list({
"testcase_name":
"_shape={}_k={}_max_k={}".format(
jtu.format_shape_dtype_string(shape, dtype), k, is_max_k),
"shape": shape, "dtype": dtype, "k": k, "is_max_k": is_max_k }
for dtype in [np.float32]
for shape in [(4,), (5, 5), (2, 1, 4)]
for k in [1, 3]
for is_max_k in [True, False]))
def test_autodiff(self, shape, dtype, k, is_max_k):
vals = np.arange(prod(shape), dtype=dtype)
vals = self.rng().permutation(vals).reshape(shape)
if is_max_k:
fn = lambda vs: ann.approx_max_k(vs, k=k)[0]
else:
fn = lambda vs: ann.approx_min_k(vs, k=k)[0]
jtu.check_grads(fn, (vals,), 2, ["fwd", "rev"], eps=1e-2)
if __name__ == "__main__":
absltest.main(testLoader=jtu.JaxTestLoader())