mirror of
https://github.com/ROCm/jax.git
synced 2025-04-16 03:46:06 +00:00
248 lines
9.8 KiB
Python
248 lines
9.8 KiB
Python
# Copyright 2023 The JAX Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""Tools to create numpy-style ufuncs."""
|
|
|
|
_AT_INPLACE_WARNING = """\
|
|
Because JAX arrays are immutable, jnp.ufunc.at() cannot operate inplace like
|
|
np.ufunc.at(). Instead, you can pass inplace=False and capture the result; e.g.
|
|
>>> arr = jnp.add.at(arr, ind, val, inplace=False)
|
|
"""
|
|
from functools import partial
|
|
import operator
|
|
|
|
import jax
|
|
from jax._src.lax import lax as lax_internal
|
|
from jax._src.numpy.lax_numpy import _eliminate_deprecated_list_indexing, append, take
|
|
from jax._src.numpy.reductions import _moveaxis
|
|
from jax._src.numpy.util import _wraps, check_arraylike, _broadcast_to, _where
|
|
from jax._src.numpy.vectorize import vectorize
|
|
from jax._src.util import canonicalize_axis
|
|
import numpy as np
|
|
|
|
|
|
class ufunc:
|
|
"""Functions that operate element-by-element on whole arrays.
|
|
|
|
This is a class for LAX-backed implementations of numpy ufuncs.
|
|
"""
|
|
def __init__(self, func, /, nin, nout, *, name=None, nargs=None, identity=None):
|
|
# TODO(jakevdp): validate the signature of func via eval_shape.
|
|
self.__name__ = name or func.__name__
|
|
self._call = vectorize(func)
|
|
self.nin = operator.index(nin)
|
|
self.nout = operator.index(nout)
|
|
self.nargs = nargs or self.nin
|
|
self.identity = identity
|
|
|
|
def __repr__(self):
|
|
return f"<jnp.ufunc '{self.__name__}'>"
|
|
|
|
def __call__(self, *args, out=None, where=None, **kwargs):
|
|
if out is not None:
|
|
raise NotImplementedError(f"out argument of {self}")
|
|
if where is not None:
|
|
raise NotImplementedError(f"where argument of {self}")
|
|
return self._call(*args, **kwargs)
|
|
|
|
@_wraps(np.ufunc.reduce, module="numpy.ufunc")
|
|
def reduce(self, a, axis=0, dtype=None, out=None, keepdims=False, initial=None, where=None):
|
|
if self.nin != 2:
|
|
raise ValueError("reduce only supported for binary ufuncs")
|
|
if self.nout != 1:
|
|
raise ValueError("reduce only supported for functions returning a single value")
|
|
if out is not None:
|
|
raise NotImplementedError(f"out argument of {self.__name__}.reduce()")
|
|
# TODO(jakevdp): implement where.
|
|
if where is not None:
|
|
raise NotImplementedError(f"where argument of {self.__name__}.reduce()")
|
|
return self._reduce_via_scan(a, axis=axis, dtype=dtype, keepdims=keepdims, initial=initial)
|
|
|
|
def _reduce_via_scan(self, arr, axis=0, dtype=None, keepdims=False, initial=None):
|
|
assert self.nin == 2 and self.nout == 1
|
|
check_arraylike(f"{self.__name__}.reduce", arr)
|
|
arr = lax_internal.asarray(arr)
|
|
if initial is None:
|
|
initial = self.identity
|
|
if dtype is None:
|
|
dtype = jax.eval_shape(self, lax_internal._one(arr), lax_internal._one(arr)).dtype
|
|
|
|
if isinstance(axis, tuple):
|
|
axis = tuple(canonicalize_axis(a, arr.ndim) for a in axis)
|
|
raise NotImplementedError("tuple of axes")
|
|
elif axis is None:
|
|
if keepdims:
|
|
final_shape = (1,) * arr.ndim
|
|
else:
|
|
final_shape = ()
|
|
arr = arr.ravel()
|
|
axis = 0
|
|
else:
|
|
axis = canonicalize_axis(axis, arr.ndim)
|
|
if keepdims:
|
|
final_shape = (*arr.shape[:axis], 1, *arr.shape[axis + 1:])
|
|
else:
|
|
final_shape = (*arr.shape[:axis], *arr.shape[axis + 1:])
|
|
|
|
# TODO: handle without transpose?
|
|
if axis != 0:
|
|
arr = _moveaxis(arr, axis, 0)
|
|
|
|
if initial is None and arr.shape[0] == 0:
|
|
raise ValueError("zero-size array to reduction operation {self.__name__} which has no ideneity")
|
|
|
|
def body_fun(i, val):
|
|
return self._call(val, arr[i].astype(dtype))
|
|
|
|
if initial is None:
|
|
start = 1
|
|
initial = arr[0]
|
|
else:
|
|
check_arraylike(f"{self.__name__}.reduce", arr)
|
|
start = 0
|
|
|
|
initial = _broadcast_to(lax_internal.asarray(initial).astype(dtype), arr.shape[1:])
|
|
|
|
result = jax.lax.fori_loop(start, arr.shape[0], body_fun, initial)
|
|
if keepdims:
|
|
result = result.reshape(final_shape)
|
|
return result
|
|
|
|
@_wraps(np.ufunc.accumulate, module="numpy.ufunc")
|
|
def accumulate(self, a, axis=0, dtype=None, out=None):
|
|
if self.nin != 2:
|
|
raise ValueError("accumulate only supported for binary ufuncs")
|
|
if self.nout != 1:
|
|
raise ValueError("accumulate only supported for functions returning a single value")
|
|
if out is not None:
|
|
raise NotImplementedError(f"out argument of {self.__name__}.accumulate()")
|
|
return self._accumulate_via_scan(a, axis=axis, dtype=dtype)
|
|
|
|
def _accumulate_via_scan(self, arr, axis=0, dtype=None):
|
|
assert self.nin == 2 and self.nout == 1
|
|
check_arraylike(f"{self.__name__}.accumulate", arr)
|
|
arr = lax_internal.asarray(arr)
|
|
|
|
if dtype is None:
|
|
dtype = jax.eval_shape(self, lax_internal._one(arr), lax_internal._one(arr)).dtype
|
|
|
|
if axis is None or isinstance(axis, tuple):
|
|
raise ValueError("accumulate does not allow multiple axes")
|
|
axis = canonicalize_axis(axis, np.ndim(arr))
|
|
|
|
arr = _moveaxis(arr, axis, 0)
|
|
def scan_fun(carry, _):
|
|
i, x = carry
|
|
y = _where(i == 0, arr[0].astype(dtype), self._call(x.astype(dtype), arr[i].astype(dtype)))
|
|
return (i + 1, y), y
|
|
_, result = jax.lax.scan(scan_fun, (0, arr[0].astype(dtype)), None, length=arr.shape[0])
|
|
return _moveaxis(result, 0, axis)
|
|
|
|
@_wraps(np.ufunc.accumulate, module="numpy.ufunc")
|
|
def at(self, a, indices, b=None, /, *, inplace=True):
|
|
if inplace:
|
|
raise NotImplementedError(_AT_INPLACE_WARNING)
|
|
if b is None:
|
|
return self._at_via_scan(a, indices)
|
|
else:
|
|
return self._at_via_scan(a, indices, b)
|
|
|
|
def _at_via_scan(self, a, indices, *args):
|
|
check_arraylike(f"{self.__name__}.at", a, *args)
|
|
dtype = jax.eval_shape(self, lax_internal._one(a), *(lax_internal._one(arg) for arg in args)).dtype
|
|
a = lax_internal.asarray(a).astype(dtype)
|
|
args = tuple(lax_internal.asarray(arg).astype(dtype) for arg in args)
|
|
indices = _eliminate_deprecated_list_indexing(indices)
|
|
if not indices:
|
|
return a
|
|
|
|
shapes = [np.shape(i) for i in indices if not isinstance(i, slice)]
|
|
shape = shapes and jax.lax.broadcast_shapes(*shapes)
|
|
if not shape:
|
|
return a.at[indices].set(self._call(a.at[indices].get(), *args))
|
|
|
|
args = tuple(_broadcast_to(arg, shape).ravel() for arg in args)
|
|
indices = [idx if isinstance(idx, slice) else _broadcast_to(idx, shape).ravel() for idx in indices]
|
|
|
|
def scan_fun(carry, x):
|
|
i, a = carry
|
|
idx = tuple(ind if isinstance(ind, slice) else ind[i] for ind in indices)
|
|
a = a.at[idx].set(self._call(a.at[idx].get(), *(arg[i] for arg in args)))
|
|
return (i + 1, a), x
|
|
carry, _ = jax.lax.scan(scan_fun, (0, a), None, len(indices[0]))
|
|
return carry[1]
|
|
|
|
@_wraps(np.ufunc.reduceat, module="numpy.ufunc")
|
|
def reduceat(self, a, indices, axis=0, dtype=None, out=None):
|
|
if self.nin != 2:
|
|
raise ValueError("reduceat only supported for binary ufuncs")
|
|
if self.nout != 1:
|
|
raise ValueError("reduceat only supported for functions returning a single value")
|
|
if out is not None:
|
|
raise NotImplementedError(f"out argument of {self.__name__}.reduceat()")
|
|
return self._reduceat_via_scan(a, indices, axis=axis, dtype=dtype)
|
|
|
|
def _reduceat_via_scan(self, a, indices, axis=0, dtype=None):
|
|
check_arraylike(f"{self.__name__}.reduceat", a, indices)
|
|
a = lax_internal.asarray(a)
|
|
idx_tuple = _eliminate_deprecated_list_indexing(indices)
|
|
assert len(idx_tuple) == 1
|
|
indices = idx_tuple[0]
|
|
if a.ndim == 0:
|
|
raise ValueError(f"reduceat: a must have 1 or more dimension, got {a.shape=}")
|
|
if indices.ndim != 1:
|
|
raise ValueError(f"reduceat: indices must be one-dimensional, got {indices.shape=}")
|
|
if dtype is None:
|
|
dtype = a.dtype
|
|
if axis is None or isinstance(axis, (tuple, list)):
|
|
raise ValueError("reduceat requires a single integer axis.")
|
|
axis = canonicalize_axis(axis, a.ndim)
|
|
out = take(a, indices, axis=axis)
|
|
ind = jax.lax.expand_dims(append(indices, a.shape[axis]),
|
|
np.delete(np.arange(out.ndim), axis))
|
|
ind_start = jax.lax.slice_in_dim(ind, 0, ind.shape[axis] - 1, axis=axis)
|
|
ind_end = jax.lax.slice_in_dim(ind, 1, ind.shape[axis], axis=axis)
|
|
def loop_body(i, out):
|
|
return _where((i > ind_start) & (i < ind_end),
|
|
self._call(out, take(a, i.reshape(1), axis=axis)),
|
|
out)
|
|
return jax.lax.fori_loop(0, a.shape[axis], loop_body, out)
|
|
|
|
@_wraps(np.ufunc.outer, module="numpy.ufunc")
|
|
def outer(self, A, B, /, **kwargs):
|
|
if self.nin != 2:
|
|
raise ValueError("outer only supported for binary ufuncs")
|
|
if self.nout != 1:
|
|
raise ValueError("outer only supported for functions returning a single value")
|
|
check_arraylike(f"{self.__name__}.outer", A, B)
|
|
_ravel = lambda A: jax.lax.reshape(A, (np.size(A),))
|
|
result = jax.vmap(jax.vmap(partial(self._call, **kwargs), (None, 0)), (0, None))(_ravel(A), _ravel(B))
|
|
return result.reshape(*np.shape(A), *np.shape(B))
|
|
|
|
|
|
def frompyfunc(func, /, nin, nout, *, identity=None):
|
|
"""Create a JAX ufunc from an arbitrary JAX-compatible scalar function.
|
|
|
|
Args:
|
|
func : a callable that takes `nin` scalar arguments and return `nout` outputs.
|
|
nin: integer specifying the number of scalar inputs
|
|
nout: integer specifying the number of scalar outputs
|
|
identity: (optional) a scalar specifying the identity of the operation, if any.
|
|
|
|
Returns:
|
|
wrapped : jax.numpy.ufunc wrapper of func.
|
|
"""
|
|
# TODO(jakevdp): use functools.wraps or similar to wrap the docstring?
|
|
return ufunc(func, nin, nout, identity=identity)
|