rocm_jax/tests/array_interoperability_test.py
Matthew Johnson 4a19de6069 added test skips based on jaxlib version
(o/w these were failing at HEAD for me)
2020-10-20 15:35:03 -07:00

201 lines
7.3 KiB
Python

# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from absl.testing import absltest, parameterized
import jax
from jax.config import config
import jax.dlpack
import jax.numpy as jnp
from jax import test_util as jtu
config.parse_flags_with_absl()
FLAGS = config.FLAGS
try:
import torch
import torch.utils.dlpack
except ImportError:
torch = None
try:
import cupy
except ImportError:
cupy = None
try:
import tensorflow as tf
except ImportError:
tf = None
dlpack_dtypes = [jnp.int8, jnp.int16, jnp.int32, jnp.int64,
jnp.uint8, jnp.uint16, jnp.uint32, jnp.uint64,
jnp.float16, jnp.float32, jnp.float64]
torch_dtypes = [jnp.int8, jnp.int16, jnp.int32, jnp.int64,
jnp.uint8, jnp.float16, jnp.float32, jnp.float64]
nonempty_nonscalar_array_shapes = [(4,), (3, 4), (2, 3, 4)]
empty_array_shapes = []
empty_array_shapes += [(0,), (0, 4), (3, 0),]
nonempty_nonscalar_array_shapes += [(3, 1), (1, 4), (2, 1, 4)]
nonempty_array_shapes = [()] + nonempty_nonscalar_array_shapes
all_shapes = nonempty_array_shapes + empty_array_shapes
class DLPackTest(jtu.JaxTestCase):
def setUp(self):
super(DLPackTest, self).setUp()
if jtu.device_under_test() == "tpu":
self.skipTest("DLPack not supported on TPU")
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_{}_take_ownership={}".format(
jtu.format_shape_dtype_string(shape, dtype),
take_ownership),
"shape": shape, "dtype": dtype, "take_ownership": take_ownership}
for shape in all_shapes
for dtype in dlpack_dtypes
for take_ownership in [False, True]))
def testJaxRoundTrip(self, shape, dtype, take_ownership):
if jax.lib.version < (0, 1, 57) and not take_ownership:
raise unittest.SkipTest("Requires jaxlib >= 0.1.57");
rng = jtu.rand_default(self.rng())
np = rng(shape, dtype)
x = jnp.array(np)
dlpack = jax.dlpack.to_dlpack(x, take_ownership=take_ownership)
self.assertEqual(take_ownership, x.device_buffer.is_deleted())
y = jax.dlpack.from_dlpack(dlpack)
self.assertAllClose(np.astype(x.dtype), y)
self.assertRaisesRegex(RuntimeError,
"DLPack tensor may be consumed at most once",
lambda: jax.dlpack.from_dlpack(dlpack))
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_{}".format(
jtu.format_shape_dtype_string(shape, dtype)),
"shape": shape, "dtype": dtype}
for shape in all_shapes
for dtype in dlpack_dtypes))
@unittest.skipIf(not tf, "Test requires TensorFlow")
def testTensorFlowToJax(self, shape, dtype):
if not FLAGS.jax_enable_x64 and dtype in [jnp.int64, jnp.uint64,
jnp.float64]:
raise self.skipTest("x64 types are disabled by jax_enable_x64")
if (jtu.device_under_test() == "gpu" and
not tf.config.list_physical_devices("GPU")):
raise self.skipTest("TensorFlow not configured with GPU support")
rng = jtu.rand_default(self.rng())
np = rng(shape, dtype)
with tf.device("/GPU:0" if jtu.device_under_test() == "gpu" else "/CPU:0"):
x = tf.constant(np)
dlpack = tf.experimental.dlpack.to_dlpack(x)
y = jax.dlpack.from_dlpack(dlpack)
self.assertAllClose(np, y)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_{}".format(
jtu.format_shape_dtype_string(shape, dtype)),
"shape": shape, "dtype": dtype}
for shape in all_shapes
for dtype in dlpack_dtypes))
@unittest.skipIf(not tf, "Test requires TensorFlow")
def testJaxToTensorFlow(self, shape, dtype):
if jax.lib.version < (0, 1, 57):
raise unittest.SkipTest("Requires jaxlib >= 0.1.57");
if not FLAGS.jax_enable_x64 and dtype in [jnp.int64, jnp.uint64,
jnp.float64]:
self.skipTest("x64 types are disabled by jax_enable_x64")
if (jtu.device_under_test() == "gpu" and
not tf.config.list_physical_devices("GPU")):
raise self.skipTest("TensorFlow not configured with GPU support")
rng = jtu.rand_default(self.rng())
np = rng(shape, dtype)
x = jnp.array(np)
# TODO(b/171320191): this line works around a missing context initialization
# bug in TensorFlow.
_ = tf.add(1, 1)
dlpack = jax.dlpack.to_dlpack(x)
y = tf.experimental.dlpack.from_dlpack(dlpack)
self.assertAllClose(np, y.numpy())
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_{}".format(
jtu.format_shape_dtype_string(shape, dtype)),
"shape": shape, "dtype": dtype}
for shape in all_shapes
for dtype in torch_dtypes))
@unittest.skipIf(not torch, "Test requires PyTorch")
def testTorchToJax(self, shape, dtype):
if not FLAGS.jax_enable_x64 and dtype in [jnp.int64, jnp.float64]:
self.skipTest("x64 types are disabled by jax_enable_x64")
rng = jtu.rand_default(self.rng())
np = rng(shape, dtype)
x = torch.from_numpy(np)
x = x.cuda() if jtu.device_under_test() == "gpu" else x
dlpack = torch.utils.dlpack.to_dlpack(x)
y = jax.dlpack.from_dlpack(dlpack)
self.assertAllClose(np, y)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_{}".format(
jtu.format_shape_dtype_string(shape, dtype)),
"shape": shape, "dtype": dtype}
for shape in all_shapes
for dtype in torch_dtypes))
@unittest.skipIf(not torch, "Test requires PyTorch")
def testJaxToTorch(self, shape, dtype):
if jax.lib.version < (0, 1, 57):
raise unittest.SkipTest("Requires jaxlib >= 0.1.57");
if not FLAGS.jax_enable_x64 and dtype in [jnp.int64, jnp.float64]:
self.skipTest("x64 types are disabled by jax_enable_x64")
rng = jtu.rand_default(self.rng())
np = rng(shape, dtype)
x = jnp.array(np)
dlpack = jax.dlpack.to_dlpack(x)
y = torch.utils.dlpack.from_dlpack(dlpack)
self.assertAllClose(np, y.numpy())
class CudaArrayInterfaceTest(jtu.JaxTestCase):
def setUp(self):
super(CudaArrayInterfaceTest, self).setUp()
if jtu.device_under_test() != "gpu":
self.skipTest("__cuda_array_interface__ is only supported on GPU")
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_{}".format(
jtu.format_shape_dtype_string(shape, dtype)),
"shape": shape, "dtype": dtype}
for shape in all_shapes
for dtype in dlpack_dtypes))
@unittest.skipIf(not cupy, "Test requires CuPy")
def testJaxToCuPy(self, shape, dtype):
rng = jtu.rand_default(self.rng())
x = rng(shape, dtype)
y = jnp.array(x)
z = cupy.asarray(y)
self.assertEqual(y.__cuda_array_interface__["data"][0],
z.__cuda_array_interface__["data"][0])
self.assertAllClose(x, cupy.asnumpy(z))
if __name__ == "__main__":
absltest.main(testLoader=jtu.JaxTestLoader())