rocm_jax/tests/ode_test.py
Peter Hawkins c339330bc1 [XLA:CPU] Relax test tolerances for tests using XLA:CPU.
An upcoming change to XLA:CPU will disable reassociation on floating point operators by default which is an unsound fast math optimization. This change is being made to fix numerical errors in softmax computations caused by reassocation. After that change, we will enable reassociation only in reduction operators where it is very important for performance and the XLA operator contract allows that.

Since this change alters the order of operations, it may cause small numerical changes leading to test failures. This change relaxes test tolerances to make tests pass.

PiperOrigin-RevId: 431453240
2022-02-28 09:26:54 -08:00

256 lines
7.9 KiB
Python

# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from absl.testing import absltest
import numpy as np
import jax
from jax._src import test_util as jtu
import jax.numpy as jnp
from jax.experimental.ode import odeint
from jax.tree_util import tree_map
import scipy.integrate as osp_integrate
from jax.config import config
config.parse_flags_with_absl()
class ODETest(jtu.JaxTestCase):
def check_against_scipy(self, fun, y0, tspace, *args, tol=1e-1):
y0, tspace = np.array(y0), np.array(tspace)
np_fun = partial(fun, np)
scipy_result = jnp.asarray(osp_integrate.odeint(np_fun, y0, tspace, args))
y0, tspace = jnp.array(y0), jnp.array(tspace)
jax_fun = partial(fun, jnp)
jax_result = odeint(jax_fun, y0, tspace, *args)
self.assertAllClose(jax_result, scipy_result, check_dtypes=False, atol=tol, rtol=tol)
@jtu.skip_on_devices("tpu")
def test_pend_grads(self):
def pend(_np, y, _, m, g):
theta, omega = y
return [omega, -m * omega - g * _np.sin(theta)]
y0 = [np.pi - 0.1, 0.0]
ts = np.linspace(0., 1., 11)
args = (0.25, 9.8)
tol = 1e-1 if jtu.num_float_bits(np.float64) == 32 else 1e-3
self.check_against_scipy(pend, y0, ts, *args, tol=tol)
integrate = partial(odeint, partial(pend, jnp))
jtu.check_grads(integrate, (y0, ts, *args), modes=["rev"], order=2,
atol=tol, rtol=tol)
@jtu.skip_on_devices("tpu", "gpu")
def test_pytree_state(self):
"""Test calling odeint with y(t) values that are pytrees."""
def dynamics(y, _t):
return tree_map(jnp.negative, y)
y0 = (np.array(-0.1), np.array([[[0.1]]]))
ts = np.linspace(0., 1., 11)
tol = 1e-1 if jtu.num_float_bits(np.float64) == 32 else 1e-3
integrate = partial(odeint, dynamics)
jtu.check_grads(integrate, (y0, ts), modes=["rev"], order=2,
atol=tol, rtol=tol)
@jtu.skip_on_devices("tpu")
def test_weird_time_pendulum_grads(self):
"""Test that gradients are correct when the dynamics depend on t."""
def dynamics(_np, y, t):
return _np.array([y[1] * -t, -1 * y[1] - 9.8 * _np.sin(y[0])])
y0 = [np.pi - 0.1, 0.0]
ts = np.linspace(0., 1., 11)
tol = 1e-1 if jtu.num_float_bits(np.float64) == 32 else 1e-3
self.check_against_scipy(dynamics, y0, ts, tol=tol)
integrate = partial(odeint, partial(dynamics, jnp))
jtu.check_grads(integrate, (y0, ts), modes=["rev"], order=2,
rtol=tol, atol=tol)
@jtu.skip_on_devices("tpu", "gpu")
def test_decay(self):
def decay(_np, y, t, arg1, arg2):
return -_np.sqrt(t) - y + arg1 - _np.mean((y + arg2)**2)
rng = self.rng()
args = (rng.randn(3), rng.randn(3))
y0 = rng.randn(3)
ts = np.linspace(0.1, 0.2, 4)
tol = 1e-1 if jtu.num_float_bits(np.float64) == 32 else 1e-3
self.check_against_scipy(decay, y0, ts, *args, tol=tol)
integrate = partial(odeint, partial(decay, jnp))
jtu.check_grads(integrate, (y0, ts, *args), modes=["rev"], order=2,
rtol=tol, atol=tol)
@jtu.skip_on_devices("tpu", "gpu")
def test_swoop(self):
def swoop(_np, y, t, arg1, arg2):
return _np.array(y - _np.sin(t) - _np.cos(t) * arg1 + arg2)
ts = np.array([0.1, 0.2])
tol = 1e-1 if jtu.num_float_bits(np.float64) == 32 else 1e-3
y0 = np.linspace(0.1, 0.9, 10)
args = (0.1, 0.2)
self.check_against_scipy(swoop, y0, ts, *args, tol=tol)
integrate = partial(odeint, partial(swoop, jnp))
jtu.check_grads(integrate, (y0, ts, *args), modes=["rev"], order=2,
rtol=tol, atol=tol)
@jtu.skip_on_devices("tpu", "gpu")
def test_swoop_bigger(self):
def swoop(_np, y, t, arg1, arg2):
return _np.array(y - _np.sin(t) - _np.cos(t) * arg1 + arg2)
ts = np.array([0.1, 0.2])
tol = 1e-1 if jtu.num_float_bits(np.float64) == 32 else 1e-3
big_y0 = np.linspace(1.1, 10.9, 10)
args = (0.1, 0.3)
self.check_against_scipy(swoop, big_y0, ts, *args, tol=tol)
integrate = partial(odeint, partial(swoop, jnp))
jtu.check_grads(integrate, (big_y0, ts, *args), modes=["rev"], order=2,
rtol=tol, atol=tol)
@jtu.skip_on_devices("tpu", "gpu")
def test_odeint_vmap_grad(self):
# https://github.com/google/jax/issues/2531
def dx_dt(x, *args):
return 0.1 * x
def f(x, y):
y0 = jnp.array([x, y])
t = jnp.array([0., 5.])
y = odeint(dx_dt, y0, t)
return y[-1].sum()
def g(x):
# Two initial values for the ODE
y0_arr = jnp.array([[x, 0.1],
[x, 0.2]])
# Run ODE twice
t = jnp.array([0., 5.])
y = jax.vmap(lambda y0: odeint(dx_dt, y0, t))(y0_arr)
return y[:,-1].sum()
ans = jax.grad(g)(2.) # don't crash
expected = jax.grad(f, 0)(2., 0.1) + jax.grad(f, 0)(2., 0.2)
atol = {jnp.float32: 1e-5, jnp.float64: 5e-15}
rtol = {jnp.float32: 1e-5, jnp.float64: 2e-15}
self.assertAllClose(ans, expected, check_dtypes=False, atol=atol, rtol=rtol)
@jtu.skip_on_devices("tpu", "gpu")
def test_disable_jit_odeint_with_vmap(self):
# https://github.com/google/jax/issues/2598
with jax.disable_jit():
t = jnp.array([0.0, 1.0])
x0_eval = jnp.zeros((5, 2))
f = lambda x0: odeint(lambda x, _t: x, x0, t)
jax.vmap(f)(x0_eval) # doesn't crash
@jtu.skip_on_devices("tpu", "gpu")
def test_grad_closure(self):
# simplification of https://github.com/google/jax/issues/2718
def experiment(x):
def model(y, t):
return -x * y
history = odeint(model, 1., np.arange(0, 10, 0.1))
return history[-1]
jtu.check_grads(experiment, (0.01,), modes=["rev"], order=1)
@jtu.skip_on_devices("tpu", "gpu")
def test_grad_closure_with_vmap(self):
# https://github.com/google/jax/issues/2718
@jax.jit
def experiment(x):
def model(y, t):
return -x * y
history = odeint(model, 1., np.arange(0, 10, 0.1))
return history[-1]
gradfun = jax.value_and_grad(experiment)
t = np.arange(0., 1., 0.01)
h, g = jax.vmap(gradfun)(t) # doesn't crash
ans = h[11], g[11]
expected_h = experiment(t[11])
expected_g = (experiment(t[11] + 1e-5) - expected_h) / 1e-5
expected = expected_h, expected_g
self.assertAllClose(ans, expected, check_dtypes=False, atol=1e-2, rtol=1e-2)
@jtu.skip_on_devices("tpu", "gpu")
def test_forward_mode_error(self):
# https://github.com/google/jax/issues/3558
def f(k):
return odeint(lambda x, t: k*x, 1., jnp.linspace(0, 1., 50)).sum()
with self.assertRaisesRegex(TypeError, "can't apply forward-mode.*"):
jax.jacfwd(f)(3.)
@jtu.skip_on_devices("tpu", "gpu")
def test_closure_nondiff(self):
# https://github.com/google/jax/issues/3584
def dz_dt(z, t):
return jnp.stack([z[0], z[1]])
def f(z):
y = odeint(dz_dt, z, jnp.arange(10.))
return jnp.sum(y)
jax.grad(f)(jnp.ones(2)) # doesn't crash
@jtu.skip_on_devices("tpu", "gpu")
def test_complex_odeint(self):
# https://github.com/google/jax/issues/3986
# https://github.com/google/jax/issues/8757
def dy_dt(y, t, alpha):
return alpha * y * jnp.exp(-t)
def f(y0, ts, alpha):
return odeint(dy_dt, y0, ts, alpha).real
alpha = 3 + 4j
y0 = 1 + 2j
ts = jnp.linspace(0., 1., 11)
tol = 1e-1 if jtu.num_float_bits(np.float64) == 32 else 1e-3
jtu.check_grads(f, (y0, ts, alpha), modes=["rev"], order=2, atol=tol, rtol=tol)
if __name__ == '__main__':
absltest.main(testLoader=jtu.JaxTestLoader())