rocm_jax/tests/stax_test.py

265 lines
11 KiB
Python

# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for Stax library."""
from absl.testing import absltest
from absl.testing import parameterized
import numpy as np
from jax._src import test_util as jtu
from jax import random
from jax.example_libraries import stax
from jax import dtypes
from jax.config import config
config.parse_flags_with_absl()
def random_inputs(rng, input_shape):
if type(input_shape) is tuple:
return rng.randn(*input_shape).astype(dtypes.canonicalize_dtype(np.float_))
elif type(input_shape) is list:
return [random_inputs(rng, shape) for shape in input_shape]
else:
raise TypeError(type(input_shape))
def _CheckShapeAgreement(test_case, init_fun, apply_fun, input_shape):
rng_key = random.PRNGKey(0)
rng_key, init_key = random.split(rng_key)
result_shape, params = init_fun(init_key, input_shape)
inputs = random_inputs(test_case.rng(), input_shape)
result = apply_fun(params, inputs, rng=rng_key)
test_case.assertEqual(result.shape, result_shape)
# stax makes use of implicit rank promotion, so we allow it in the tests.
@jtu.with_config(jax_numpy_rank_promotion="allow")
class StaxTest(jtu.JaxTestCase):
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_shape={}".format(shape), "shape": shape}
for shape in [(2, 3), (5,)]))
def testRandnInitShape(self, shape):
key = random.PRNGKey(0)
out = stax.randn()(key, shape)
self.assertEqual(out.shape, shape)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_shape={}".format(shape), "shape": shape}
for shape in [(2, 3), (2, 3, 4)]))
def testGlorotInitShape(self, shape):
key = random.PRNGKey(0)
out = stax.glorot()(key, shape)
self.assertEqual(out.shape, shape)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name":
"_channels={}_filter_shape={}_padding={}_strides={}_input_shape={}"
.format(channels, filter_shape, padding, strides, input_shape),
"channels": channels, "filter_shape": filter_shape, "padding": padding,
"strides": strides, "input_shape": input_shape}
for channels in [2, 3]
for filter_shape in [(1, 1), (2, 3)]
for padding in ["SAME", "VALID"]
for strides in [None, (2, 1)]
for input_shape in [(2, 10, 11, 1)]))
def testConvShape(self, channels, filter_shape, padding, strides,
input_shape):
init_fun, apply_fun = stax.Conv(channels, filter_shape, strides=strides,
padding=padding)
_CheckShapeAgreement(self, init_fun, apply_fun, input_shape)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name":
"_channels={}_filter_shape={}_padding={}_strides={}_input_shape={}"
.format(channels, filter_shape, padding, strides, input_shape),
"channels": channels, "filter_shape": filter_shape, "padding": padding,
"strides": strides, "input_shape": input_shape}
for channels in [2, 3]
for filter_shape in [(1, 1), (2, 3), (3, 3)]
for padding in ["SAME", "VALID"]
for strides in [None, (2, 1), (2, 2)]
for input_shape in [(2, 10, 11, 1)]))
def testConvTransposeShape(self, channels, filter_shape, padding, strides,
input_shape):
init_fun, apply_fun = stax.ConvTranspose(channels, filter_shape, # 2D
strides=strides, padding=padding)
_CheckShapeAgreement(self, init_fun, apply_fun, input_shape)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name":
"_channels={}_filter_shape={}_padding={}_strides={}_input_shape={}"
.format(channels, filter_shape, padding, strides, input_shape),
"channels": channels, "filter_shape": filter_shape, "padding": padding,
"strides": strides, "input_shape": input_shape}
for channels in [2, 3]
for filter_shape in [(1,), (2,), (3,)]
for padding in ["SAME", "VALID"]
for strides in [None, (1,), (2,)]
for input_shape in [(2, 10, 1)]))
def testConv1DTransposeShape(self, channels, filter_shape, padding, strides,
input_shape):
init_fun, apply_fun = stax.Conv1DTranspose(channels, filter_shape,
strides=strides, padding=padding)
_CheckShapeAgreement(self, init_fun, apply_fun, input_shape)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_out_dim={}_input_shape={}"
.format(out_dim, input_shape),
"out_dim": out_dim, "input_shape": input_shape}
for out_dim in [3, 4]
for input_shape in [(2, 3), (3, 4)]))
def testDenseShape(self, out_dim, input_shape):
init_fun, apply_fun = stax.Dense(out_dim)
_CheckShapeAgreement(self, init_fun, apply_fun, input_shape)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_input_shape={}_nonlinear={}"
.format(input_shape, nonlinear),
"input_shape": input_shape, "nonlinear": nonlinear}
for input_shape in [(2, 3), (2, 3, 4)]
for nonlinear in ["Relu", "Sigmoid", "Elu", "LeakyRelu"]))
def testNonlinearShape(self, input_shape, nonlinear):
init_fun, apply_fun = getattr(stax, nonlinear)
_CheckShapeAgreement(self, init_fun, apply_fun, input_shape)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_window_shape={}_padding={}_strides={}_input_shape={}"
"_maxpool={}_spec={}"
.format(window_shape, padding, strides, input_shape,
max_pool, spec),
"window_shape": window_shape, "padding": padding, "strides": strides,
"input_shape": input_shape, "max_pool": max_pool, "spec": spec}
for window_shape in [(1, 1), (2, 3)]
for padding in ["VALID"]
for strides in [None, (2, 1)]
for input_shape in [(2, 5, 6, 4)]
for max_pool in [False, True]
for spec in ["NHWC", "NCHW", "WHNC", "WHCN"]))
def testPoolingShape(self, window_shape, padding, strides, input_shape,
max_pool, spec):
layer = stax.MaxPool if max_pool else stax.AvgPool
init_fun, apply_fun = layer(window_shape, padding=padding, strides=strides,
spec=spec)
_CheckShapeAgreement(self, init_fun, apply_fun, input_shape)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_shape={}".format(input_shape),
"input_shape": input_shape}
for input_shape in [(2, 3), (2, 3, 4)]))
def testFlattenShape(self, input_shape):
init_fun, apply_fun = stax.Flatten
_CheckShapeAgreement(self, init_fun, apply_fun, input_shape)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_input_shape={}_spec={}".format(input_shape, i),
"input_shape": input_shape, "spec": spec}
for input_shape in [(2, 5, 6, 1)]
for i, spec in enumerate([
[stax.Conv(3, (2, 2))],
[stax.Conv(3, (2, 2)), stax.Flatten, stax.Dense(4)]])))
def testSerialComposeLayersShape(self, input_shape, spec):
init_fun, apply_fun = stax.serial(*spec)
_CheckShapeAgreement(self, init_fun, apply_fun, input_shape)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_input_shape={}".format(input_shape),
"input_shape": input_shape}
for input_shape in [(3, 4), (2, 5, 6, 1)]))
def testDropoutShape(self, input_shape):
init_fun, apply_fun = stax.Dropout(0.9)
_CheckShapeAgreement(self, init_fun, apply_fun, input_shape)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_input_shape={}".format(input_shape),
"input_shape": input_shape}
for input_shape in [(3, 4), (2, 5, 6, 1)]))
def testFanInSum(self, input_shape):
init_fun, apply_fun = stax.FanInSum
_CheckShapeAgreement(self, init_fun, apply_fun, [input_shape, input_shape])
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_inshapes={}_axis={}".format(input_shapes, axis),
"input_shapes": input_shapes, "axis": axis}
for input_shapes, axis in [
([(2, 3), (2, 1)], 1),
([(2, 3), (2, 1)], -1),
([(1, 2, 4), (1, 1, 4)], 1),
]))
def testFanInConcat(self, input_shapes, axis):
init_fun, apply_fun = stax.FanInConcat(axis)
_CheckShapeAgreement(self, init_fun, apply_fun, input_shapes)
def testIssue182(self):
key = random.PRNGKey(0)
init_fun, apply_fun = stax.Softmax
input_shape = (10, 3)
inputs = np.arange(30.).astype("float32").reshape(input_shape)
out_shape, params = init_fun(key, input_shape)
out = apply_fun(params, inputs)
assert out_shape == out.shape
assert np.allclose(np.sum(np.asarray(out), -1), 1.)
def testBatchNormNoScaleOrCenter(self):
key = random.PRNGKey(0)
axes = (0, 1, 2)
init_fun, apply_fun = stax.BatchNorm(axis=axes, center=False, scale=False)
input_shape = (4, 5, 6, 7)
inputs = random_inputs(self.rng(), input_shape)
out_shape, params = init_fun(key, input_shape)
out = apply_fun(params, inputs)
means = np.mean(out, axis=(0, 1, 2))
std_devs = np.std(out, axis=(0, 1, 2))
assert np.allclose(means, np.zeros_like(means), atol=1e-4)
assert np.allclose(std_devs, np.ones_like(std_devs), atol=1e-4)
def testBatchNormShapeNHWC(self):
key = random.PRNGKey(0)
init_fun, apply_fun = stax.BatchNorm(axis=(0, 1, 2))
input_shape = (4, 5, 6, 7)
inputs = random_inputs(self.rng(), input_shape)
out_shape, params = init_fun(key, input_shape)
out = apply_fun(params, inputs)
self.assertEqual(out_shape, input_shape)
beta, gamma = params
self.assertEqual(beta.shape, (7,))
self.assertEqual(gamma.shape, (7,))
self.assertEqual(out_shape, out.shape)
def testBatchNormShapeNCHW(self):
key = random.PRNGKey(0)
# Regression test for https://github.com/google/jax/issues/461
init_fun, apply_fun = stax.BatchNorm(axis=(0, 2, 3))
input_shape = (4, 5, 6, 7)
inputs = random_inputs(self.rng(), input_shape)
out_shape, params = init_fun(key, input_shape)
out = apply_fun(params, inputs)
self.assertEqual(out_shape, input_shape)
beta, gamma = params
self.assertEqual(beta.shape, (5,))
self.assertEqual(gamma.shape, (5,))
self.assertEqual(out_shape, out.shape)
if __name__ == "__main__":
absltest.main(testLoader=jtu.JaxTestLoader())