mirror of
https://github.com/ROCm/jax.git
synced 2025-04-17 04:16:07 +00:00
234 lines
8.9 KiB
Python
234 lines
8.9 KiB
Python
# Copyright 2022 The JAX Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License
|
|
|
|
"""Tests for the library of QDWH-based singular value decomposition."""
|
|
import functools
|
|
|
|
import jax
|
|
from jax.config import config
|
|
import jax.numpy as jnp
|
|
import numpy as np
|
|
import scipy.linalg as osp_linalg
|
|
from jax._src.lax import svd
|
|
from jax._src import test_util as jtu
|
|
|
|
from absl.testing import absltest
|
|
from absl.testing import parameterized
|
|
|
|
|
|
config.parse_flags_with_absl()
|
|
_JAX_ENABLE_X64 = config.x64_enabled
|
|
|
|
# Input matrix data type for SvdTest.
|
|
_SVD_TEST_DTYPE = np.float64 if _JAX_ENABLE_X64 else np.float32
|
|
|
|
# Machine epsilon used by SvdTest.
|
|
_SVD_TEST_EPS = jnp.finfo(_SVD_TEST_DTYPE).eps
|
|
|
|
# SvdTest relative tolerance.
|
|
_SVD_RTOL = 1E-6 if _JAX_ENABLE_X64 else 1E-2
|
|
|
|
_MAX_LOG_CONDITION_NUM = 9 if _JAX_ENABLE_X64 else 4
|
|
|
|
|
|
@jtu.with_config(jax_numpy_rank_promotion='allow')
|
|
class SvdTest(jtu.JaxTestCase):
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{ # pylint:disable=g-complex-comprehension
|
|
'testcase_name': '_m={}_by_n={}_log_cond={}_full_matrices={}'.format(
|
|
m, n, log_cond, full_matrices),
|
|
'm': m, 'n': n, 'log_cond': log_cond, 'full_matrices': full_matrices}
|
|
for m, n in zip([2, 8, 10, 20], [4, 6, 10, 18])
|
|
for log_cond in np.linspace(1, _MAX_LOG_CONDITION_NUM, 4)
|
|
for full_matrices in [True, False]))
|
|
def testSvdWithRectangularInput(self, m, n, log_cond, full_matrices):
|
|
"""Tests SVD with rectangular input."""
|
|
with jax.default_matmul_precision('float32'):
|
|
a = np.random.uniform(
|
|
low=0.3, high=0.9, size=(m, n)).astype(_SVD_TEST_DTYPE)
|
|
u, s, v = osp_linalg.svd(a, full_matrices=False)
|
|
cond = 10**log_cond
|
|
s = jnp.linspace(cond, 1, min(m, n))
|
|
a = (u * s) @ v
|
|
a = a.astype(complex) * (1 + 1j)
|
|
|
|
osp_linalg_fn = functools.partial(
|
|
osp_linalg.svd, full_matrices=full_matrices)
|
|
actual_u, actual_s, actual_v = svd.svd(a, full_matrices=full_matrices)
|
|
|
|
k = min(m, n)
|
|
if m > n:
|
|
unitary_u = jnp.real(actual_u.T.conj() @ actual_u)
|
|
unitary_v = jnp.real(actual_v.T.conj() @ actual_v)
|
|
unitary_u_size = m if full_matrices else k
|
|
unitary_v_size = k
|
|
else:
|
|
unitary_u = jnp.real(actual_u @ actual_u.T.conj())
|
|
unitary_v = jnp.real(actual_v @ actual_v.T.conj())
|
|
unitary_u_size = k
|
|
unitary_v_size = n if full_matrices else k
|
|
|
|
_, expected_s, _ = osp_linalg_fn(a)
|
|
|
|
svd_fn = lambda a: svd.svd(a, full_matrices=full_matrices)
|
|
args_maker = lambda: [a]
|
|
|
|
with self.subTest('Test JIT compatibility'):
|
|
self._CompileAndCheck(svd_fn, args_maker)
|
|
|
|
with self.subTest('Test unitary u.'):
|
|
self.assertAllClose(np.eye(unitary_u_size), unitary_u, rtol=_SVD_RTOL,
|
|
atol=2E-3)
|
|
|
|
with self.subTest('Test unitary v.'):
|
|
self.assertAllClose(np.eye(unitary_v_size), unitary_v, rtol=_SVD_RTOL,
|
|
atol=2E-3)
|
|
|
|
with self.subTest('Test s.'):
|
|
self.assertAllClose(
|
|
expected_s, jnp.real(actual_s), rtol=_SVD_RTOL, atol=1E-6)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{'testcase_name': f'_m={m}_by_n={n}', 'm': m, 'n': n}
|
|
for m, n in zip([50, 6], [3, 60])))
|
|
def testSvdWithSkinnyTallInput(self, m, n):
|
|
"""Tests SVD with skinny and tall input."""
|
|
# Generates a skinny and tall input
|
|
with jax.default_matmul_precision('float32'):
|
|
np.random.seed(1235)
|
|
a = np.random.randn(m, n).astype(_SVD_TEST_DTYPE)
|
|
u, s, v = svd.svd(a, full_matrices=False, hermitian=False)
|
|
|
|
relative_diff = np.linalg.norm(a - (u * s) @ v) / np.linalg.norm(a)
|
|
|
|
np.testing.assert_almost_equal(relative_diff, 1E-6, decimal=6)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{ # pylint:disable=g-complex-comprehension
|
|
'testcase_name': f'_m={m}_r={r}_log_cond={log_cond}',
|
|
'm': m, 'r': r, 'log_cond': log_cond}
|
|
for m, r in zip([8, 8, 8, 10], [3, 5, 7, 9])
|
|
for log_cond in np.linspace(1, 3, 3)))
|
|
def testSvdWithOnRankDeficientInput(self, m, r, log_cond):
|
|
"""Tests SVD with rank-deficient input."""
|
|
with jax.default_matmul_precision('float32'):
|
|
a = jnp.triu(jnp.ones((m, m))).astype(_SVD_TEST_DTYPE)
|
|
|
|
# Generates a rank-deficient input.
|
|
u, s, v = jnp.linalg.svd(a, full_matrices=False)
|
|
cond = 10**log_cond
|
|
s = jnp.linspace(cond, 1, m)
|
|
s = s.at[r:m].set(jnp.zeros((m-r,)))
|
|
a = (u * s) @ v
|
|
|
|
with jax.default_matmul_precision('float32'):
|
|
u, s, v = svd.svd(a, full_matrices=False, hermitian=False)
|
|
diff = np.linalg.norm(a - (u * s) @ v)
|
|
|
|
np.testing.assert_almost_equal(diff, 1E-4, decimal=2)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{ # pylint:disable=g-complex-comprehension
|
|
'testcase_name': '_m={}_by_n={}_log_cond={}_full_matrices={}'.format(
|
|
m, n, log_cond, full_matrices),
|
|
'm': m, 'n': n, 'log_cond': log_cond, 'full_matrices': full_matrices}
|
|
for m, n in zip([2, 8, 10, 20], [4, 6, 10, 18])
|
|
for log_cond in np.linspace(1, _MAX_LOG_CONDITION_NUM, 4)
|
|
for full_matrices in [True, False]))
|
|
def testSingularValues(self, m, n, log_cond, full_matrices):
|
|
"""Tests singular values."""
|
|
with jax.default_matmul_precision('float32'):
|
|
a = np.random.uniform(
|
|
low=0.3, high=0.9, size=(m, n)).astype(_SVD_TEST_DTYPE)
|
|
u, s, v = osp_linalg.svd(a, full_matrices=False)
|
|
cond = 10**log_cond
|
|
s = np.linspace(cond, 1, min(m, n))
|
|
a = (u * s) @ v
|
|
a = a + 1j * a
|
|
|
|
# Only computes singular values.
|
|
compute_uv = False
|
|
|
|
osp_linalg_fn = functools.partial(
|
|
osp_linalg.svd, full_matrices=full_matrices, compute_uv=compute_uv)
|
|
actual_s = svd.svd(a, full_matrices=full_matrices, compute_uv=compute_uv)
|
|
|
|
expected_s = osp_linalg_fn(a)
|
|
|
|
svd_fn = lambda a: svd.svd(a, full_matrices=full_matrices)
|
|
args_maker = lambda: [a]
|
|
|
|
with self.subTest('Test JIT compatibility'):
|
|
self._CompileAndCheck(svd_fn, args_maker)
|
|
|
|
with self.subTest('Test s.'):
|
|
self.assertAllClose(expected_s, actual_s, rtol=_SVD_RTOL, atol=1E-6)
|
|
|
|
with self.subTest('Test non-increasing order.'):
|
|
# Computes `actual_diff[i] = s[i+1] - s[i]`.
|
|
actual_diff = jnp.diff(actual_s, append=0)
|
|
np.testing.assert_array_less(actual_diff, np.zeros_like(actual_diff))
|
|
|
|
@parameterized.named_parameters([
|
|
{'testcase_name': f'_m={m}_by_n={n}_full_matrices={full_matrices}_' # pylint:disable=g-complex-comprehension
|
|
f'compute_uv={compute_uv}_dtype={dtype}',
|
|
'm': m, 'n': n, 'full_matrices': full_matrices, # pylint:disable=undefined-variable
|
|
'compute_uv': compute_uv, 'dtype': dtype} # pylint:disable=undefined-variable
|
|
for m, n in zip([2, 4, 8], [4, 4, 6])
|
|
for full_matrices in [True, False]
|
|
for compute_uv in [True, False]
|
|
for dtype in jtu.dtypes.floating + jtu.dtypes.complex
|
|
])
|
|
def testSvdOnZero(self, m, n, full_matrices, compute_uv, dtype):
|
|
"""Tests SVD on matrix of all zeros."""
|
|
osp_fun = functools.partial(osp_linalg.svd, full_matrices=full_matrices,
|
|
compute_uv=compute_uv)
|
|
lax_fun = functools.partial(svd.svd, full_matrices=full_matrices,
|
|
compute_uv=compute_uv)
|
|
args_maker_svd = lambda: [jnp.zeros((m, n), dtype=dtype)]
|
|
self._CheckAgainstNumpy(osp_fun, lax_fun, args_maker_svd)
|
|
self._CompileAndCheck(lax_fun, args_maker_svd)
|
|
|
|
|
|
@parameterized.named_parameters([
|
|
{'testcase_name': f'_m={m}_by_n={n}_r={r}_c={c}_dtype={dtype}',
|
|
'm': m, 'n': n, 'r': r, 'c': c, 'dtype': dtype}
|
|
for m, n, r, c in zip([2, 4, 8], [4, 4, 6], [1, 0, 1], [1, 0, 1])
|
|
for dtype in jtu.dtypes.floating
|
|
])
|
|
@jtu.skip_on_devices("rocm")
|
|
def testSvdOnTinyElement(self, m, n, r, c, dtype):
|
|
"""Tests SVD on matrix of zeros and close-to-zero entries."""
|
|
a = jnp.zeros((m, n), dtype=dtype)
|
|
tiny_element = jnp.finfo(a).tiny
|
|
a = a.at[r, c].set(tiny_element)
|
|
|
|
@jax.jit
|
|
def lax_fun(a):
|
|
return svd.svd(a, full_matrices=False, compute_uv=False, hermitian=False)
|
|
|
|
actual_s = lax_fun(a)
|
|
|
|
k = min(m, n)
|
|
expected_s = np.zeros((k,), dtype=dtype)
|
|
expected_s[0] = tiny_element
|
|
|
|
self.assertAllClose(expected_s, jnp.real(actual_s), rtol=_SVD_RTOL,
|
|
atol=1E-6)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
absltest.main(testLoader=jtu.JaxTestLoader())
|