rocm_jax/jax/_src/lax/fft.py
George Necula b9c0658fcf Add support for dynamic shapes to jax.fft.
The idea is that we take all the values that can contain dimension sizes
from the descriptor (shape, strides_in, strides_out) and we pass them as
1-d tensor operands. We also pass as an operand the output_shape, so that
we can use the hlo.CustomCallOp `indices_of_output_shapes` attribute to
tell the shape refinement how to compute the shape of the result.

We keep the old descriptor and the ducc_fft registration for the old
C++ custom targets for backwards compatibility (for 6 months). That behavior
is tested by back_compat_test.py.

The one downside of this implementation is that it moves some of the
ducc-specific logic from ducc_fft.py (in jaxlib) into fft.py (in jax). This
was necessary because that code computes with dimensions that are now
dynamic. In JAX we have support for evaluating dynamic shapes and turning
them into 1-d tensors.

Also added backwards compatibility test for dynamic_ducc_fft and kept the
old test for ducc_fft.

PiperOrigin-RevId: 541168692
2023-06-17 04:50:54 -07:00

254 lines
9.7 KiB
Python

# Copyright 2019 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
import math
from typing import Union, Sequence
import numpy as np
from jax import lax
from jax._src import dispatch
from jax._src.api import jit, linear_transpose, ShapeDtypeStruct
from jax._src.core import Primitive, is_constant_shape
from jax._src.interpreters import ad
from jax._src.interpreters import batching
from jax._src.interpreters import mlir
from jax._src.lib.mlir.dialects import hlo
from jax._src.lib import xla_client
from jax._src.lib import ducc_fft
from jax._src.lib import version as jaxlib_version
from jax._src.numpy.util import promote_dtypes_complex, promote_dtypes_inexact
__all__ = [
"fft",
"fft_p",
]
def _str_to_fft_type(s: str) -> xla_client.FftType:
if s in ("fft", "FFT"):
return xla_client.FftType.FFT
elif s in ("ifft", "IFFT"):
return xla_client.FftType.IFFT
elif s in ("rfft", "RFFT"):
return xla_client.FftType.RFFT
elif s in ("irfft", "IRFFT"):
return xla_client.FftType.IRFFT
else:
raise ValueError(f"Unknown FFT type '{s}'")
@partial(jit, static_argnums=(1, 2))
def fft(x, fft_type: Union[xla_client.FftType, str], fft_lengths: Sequence[int]):
if isinstance(fft_type, str):
typ = _str_to_fft_type(fft_type)
elif isinstance(fft_type, xla_client.FftType):
typ = fft_type
else:
raise TypeError(f"Unknown FFT type value '{fft_type}'")
if typ == xla_client.FftType.RFFT:
if np.iscomplexobj(x):
raise ValueError("only real valued inputs supported for rfft")
x, = promote_dtypes_inexact(x)
else:
x, = promote_dtypes_complex(x)
if len(fft_lengths) == 0:
# XLA FFT doesn't support 0-rank.
return x
fft_lengths = tuple(fft_lengths)
return fft_p.bind(x, fft_type=typ, fft_lengths=fft_lengths)
def _fft_impl(x, fft_type, fft_lengths):
return dispatch.apply_primitive(fft_p, x, fft_type=fft_type, fft_lengths=fft_lengths)
_complex_dtype = lambda dtype: (np.zeros((), dtype) + np.zeros((), np.complex64)).dtype
_real_dtype = lambda dtype: np.finfo(dtype).dtype
def fft_abstract_eval(x, fft_type, fft_lengths):
if len(fft_lengths) > x.ndim:
raise ValueError(f"FFT input shape {x.shape} must have at least as many "
f"input dimensions as fft_lengths {fft_lengths}.")
if fft_type == xla_client.FftType.RFFT:
if x.shape[-len(fft_lengths):] != fft_lengths:
raise ValueError(f"RFFT input shape {x.shape} minor dimensions must "
f"be equal to fft_lengths {fft_lengths}")
shape = (x.shape[:-len(fft_lengths)] + fft_lengths[:-1]
+ (fft_lengths[-1] // 2 + 1,))
dtype = _complex_dtype(x.dtype)
elif fft_type == xla_client.FftType.IRFFT:
if x.shape[-len(fft_lengths):-1] != fft_lengths[:-1]:
raise ValueError(f"IRFFT input shape {x.shape} minor dimensions must "
"be equal to all except the last fft_length, got "
f"{fft_lengths=}")
shape = x.shape[:-len(fft_lengths)] + fft_lengths
dtype = _real_dtype(x.dtype)
else:
if x.shape[-len(fft_lengths):] != fft_lengths:
raise ValueError(f"FFT input shape {x.shape} minor dimensions must "
f"be equal to fft_lengths {fft_lengths}")
shape = x.shape
dtype = x.dtype
return x.update(shape=shape, dtype=dtype)
def _fft_lowering(ctx, x, *, fft_type, fft_lengths):
if not is_constant_shape(fft_lengths):
# TODO: https://github.com/openxla/stablehlo/issues/1366
raise NotImplementedError("Shape polymorphism for FFT with non-constant fft_length is not implemented for TPU and GPU")
return [
hlo.FftOp(x, hlo.FftTypeAttr.get(fft_type.name),
mlir.dense_int_elements(fft_lengths)).result
]
def _fft_lowering_cpu(ctx, x, *, fft_type, fft_lengths):
x_aval, = ctx.avals_in
if jaxlib_version < (0, 4, 13):
if any(not is_constant_shape(a.shape) for a in (ctx.avals_in + ctx.avals_out)):
raise NotImplementedError("Shape polymorphism for custom call is not implemented (fft); b/261671778; try updating your jaxlib.")
return [ducc_fft.ducc_fft_hlo(x, x_aval.dtype, fft_type=fft_type, # type: ignore
fft_lengths=fft_lengths)]
in_shape = x_aval.shape
dtype = x_aval.dtype
out_aval, = ctx.avals_out
out_shape = out_aval.shape
forward = fft_type in (xla_client.FftType.FFT, xla_client.FftType.RFFT)
ndims = len(in_shape)
assert len(fft_lengths) >= 1
assert len(fft_lengths) <= ndims, (fft_lengths, ndims)
assert len(in_shape) == len(out_shape) == ndims
# PocketFft does not allow size 0 dimensions.
if 0 in in_shape or 0 in out_shape:
if fft_type == xla_client.FftType.RFFT:
assert dtype in (np.float32, np.float64), dtype
out_dtype = np.dtype(np.complex64 if dtype == np.float32 else np.complex128)
elif fft_type == xla_client.FftType.IRFFT:
assert np.issubdtype(dtype, np.complexfloating), dtype
out_dtype = np.dtype(np.float32 if dtype == np.complex64 else np.float64)
else:
assert np.issubdtype(dtype, np.complexfloating), dtype
out_dtype = dtype
zero = mlir.ir_constant(np.array(0, dtype=out_dtype),
canonicalize_types=False)
return [
mlir.broadcast_in_dim(ctx, zero, out_aval, broadcast_dimensions=[])]
strides_in = []
stride = 1
for d in reversed(in_shape):
strides_in.append(stride)
stride *= d
strides_in = mlir.shape_tensor(
mlir.eval_dynamic_shape(ctx, tuple(reversed(strides_in))))
strides_out = []
stride = 1
for d in reversed(out_shape):
strides_out.append(stride)
stride *= d
strides_out = mlir.shape_tensor(
mlir.eval_dynamic_shape(ctx, tuple(reversed(strides_out))))
# scale = 1. if forward else (1. / np.prod(fft_lengths)) as a f64[1] tensor
double_type = mlir.ir.RankedTensorType.get((), mlir.ir.F64Type.get())
size_fft_length_prod = np.prod(fft_lengths) if fft_lengths else 1
size_fft_lengths, = mlir.eval_dynamic_shape_as_vals(ctx, (size_fft_length_prod,))
size_fft_lengths = hlo.ConvertOp(double_type, size_fft_lengths)
one = mlir.ir_constant(np.float64(1.), canonicalize_types=False)
scale = one if forward else hlo.DivOp(one, size_fft_lengths)
scale = hlo.ReshapeOp(
mlir.ir.RankedTensorType.get((1,), mlir.ir.F64Type.get()),
scale).result
in_shape = mlir.shape_tensor(mlir.eval_dynamic_shape(ctx, in_shape))
out_shape = mlir.shape_tensor(mlir.eval_dynamic_shape(ctx, out_shape))
in_shape = in_shape if fft_type != xla_client.FftType.IRFFT else out_shape
result_type = mlir.aval_to_ir_type(out_aval)
return [ducc_fft.dynamic_ducc_fft_hlo(
result_type, x,
input_dtype=x_aval.dtype, ndims=ndims, input_shape=in_shape,
strides_in=strides_in, strides_out=strides_out, scale=scale,
fft_type=fft_type, fft_lengths=fft_lengths, result_shape=out_shape)]
def _naive_rfft(x, fft_lengths):
y = fft(x, xla_client.FftType.FFT, fft_lengths)
n = fft_lengths[-1]
return y[..., : n//2 + 1]
@partial(jit, static_argnums=1)
def _rfft_transpose(t, fft_lengths):
# The transpose of RFFT can't be expressed only in terms of irfft. Instead of
# manually building up larger twiddle matrices (which would increase the
# asymptotic complexity and is also rather complicated), we rely JAX to
# transpose a naive RFFT implementation.
dummy_shape = t.shape[:-len(fft_lengths)] + fft_lengths
dummy_primal = ShapeDtypeStruct(dummy_shape, _real_dtype(t.dtype))
transpose = linear_transpose(
partial(_naive_rfft, fft_lengths=fft_lengths), dummy_primal)
result, = transpose(t)
assert result.dtype == _real_dtype(t.dtype), (result.dtype, t.dtype)
return result
def _irfft_transpose(t, fft_lengths):
# The transpose of IRFFT is the RFFT of the cotangent times a scaling
# factor and a mask. The mask scales the cotangent for the Hermitian
# symmetric components of the RFFT by a factor of two, since these components
# are de-duplicated in the RFFT.
x = fft(t, xla_client.FftType.RFFT, fft_lengths)
n = x.shape[-1]
is_odd = fft_lengths[-1] % 2
full = partial(lax.full_like, t, dtype=x.dtype)
mask = lax.concatenate(
[full(1.0, shape=(1,)),
full(2.0, shape=(n - 2 + is_odd,)),
full(1.0, shape=(1 - is_odd,))],
dimension=0)
scale = 1 / math.prod(fft_lengths)
out = scale * lax.expand_dims(mask, range(x.ndim - 1)) * x
assert out.dtype == _complex_dtype(t.dtype), (out.dtype, t.dtype)
# Use JAX's convention for complex gradients
# https://github.com/google/jax/issues/6223#issuecomment-807740707
return lax.conj(out)
def _fft_transpose_rule(t, operand, fft_type, fft_lengths):
if fft_type == xla_client.FftType.RFFT:
result = _rfft_transpose(t, fft_lengths)
elif fft_type == xla_client.FftType.IRFFT:
result = _irfft_transpose(t, fft_lengths)
else:
result = fft(t, fft_type, fft_lengths)
return result,
def _fft_batching_rule(batched_args, batch_dims, fft_type, fft_lengths):
x, = batched_args
bd, = batch_dims
x = batching.moveaxis(x, bd, 0)
return fft(x, fft_type, fft_lengths), 0
fft_p = Primitive('fft')
fft_p.def_impl(_fft_impl)
fft_p.def_abstract_eval(fft_abstract_eval)
mlir.register_lowering(fft_p, _fft_lowering)
ad.deflinear2(fft_p, _fft_transpose_rule)
batching.primitive_batchers[fft_p] = _fft_batching_rule
mlir.register_lowering(fft_p, _fft_lowering_cpu, platform='cpu')