mirror of
https://github.com/ROCm/jax.git
synced 2025-04-14 10:56:06 +00:00

See https://opensource.google/documentation/reference/releasing/contributions#copyright for more details. PiperOrigin-RevId: 476167538
459 lines
17 KiB
Python
459 lines
17 KiB
Python
# Copyright 2018 The JAX Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import inspect
|
|
import operator
|
|
from functools import partial
|
|
from typing import (Any, Dict, Iterable, Sequence, Set, Tuple, Union, Optional,
|
|
Callable)
|
|
import warnings
|
|
|
|
import numpy as np
|
|
|
|
from jax import core
|
|
from jax._src import dtypes
|
|
from jax._src.tree_util import (
|
|
PyTreeDef, tree_flatten, tree_unflatten, tree_map, tree_structure,
|
|
treedef_children, treedef_is_leaf)
|
|
from jax._src.tree_util import _replace_nones
|
|
from jax import linear_util as lu
|
|
from jax._src.util import safe_map, WrapKwArgs, Hashable, Unhashable
|
|
|
|
from jax._src import traceback_util
|
|
traceback_util.register_exclusion(__file__)
|
|
|
|
map = safe_map
|
|
|
|
def _ensure_index(x: Any) -> Union[int, Tuple[int, ...]]:
|
|
"""Ensure x is either an index or a tuple of indices."""
|
|
x = core.concrete_or_error(None, x, "expected a static index or sequence of indices.")
|
|
try:
|
|
return operator.index(x)
|
|
except TypeError:
|
|
return tuple(map(operator.index, x))
|
|
|
|
def _ensure_index_tuple(x: Any) -> Tuple[int, ...]:
|
|
"""Convert x to a tuple of indices."""
|
|
x = core.concrete_or_error(None, x, "expected a static index or sequence of indices.")
|
|
try:
|
|
return (operator.index(x),)
|
|
except TypeError:
|
|
return tuple(map(operator.index, x))
|
|
|
|
def _ensure_str(x: str) -> str:
|
|
if not isinstance(x, str):
|
|
raise TypeError(f"argument is not a string: {x}")
|
|
return x
|
|
|
|
def _ensure_str_tuple(x: Union[str, Iterable[str]]) -> Tuple[str, ...]:
|
|
"""Convert x to a tuple of strings."""
|
|
if isinstance(x, str):
|
|
return (x,)
|
|
else:
|
|
return tuple(map(_ensure_str, x))
|
|
|
|
@lu.transformation_with_aux
|
|
def flatten_fun(in_tree, *args_flat):
|
|
py_args, py_kwargs = tree_unflatten(in_tree, args_flat)
|
|
ans = yield py_args, py_kwargs
|
|
yield tree_flatten(ans)
|
|
|
|
def apply_flat_fun(fun, io_tree, *py_args):
|
|
in_tree_expected, out_tree = io_tree
|
|
args, in_tree = tree_flatten((py_args, {}))
|
|
if in_tree != in_tree_expected:
|
|
raise TypeError(f"Expected {in_tree_expected}, got {in_tree}")
|
|
ans = fun(*args)
|
|
return tree_unflatten(out_tree, ans)
|
|
|
|
@lu.transformation_with_aux
|
|
def flatten_fun_nokwargs(in_tree, *args_flat):
|
|
py_args = tree_unflatten(in_tree, args_flat)
|
|
ans = yield py_args, {}
|
|
yield tree_flatten(ans)
|
|
|
|
def apply_flat_fun_nokwargs(fun, io_tree, py_args):
|
|
in_tree_expected, out_tree = io_tree
|
|
args, in_tree = tree_flatten(py_args)
|
|
if in_tree != in_tree_expected:
|
|
raise TypeError(f"Expected {in_tree_expected}, got {in_tree}")
|
|
ans = fun(*args)
|
|
return tree_unflatten(out_tree, ans)
|
|
|
|
def flattened_fun_in_tree(fn: lu.WrappedFun) -> Optional[Tuple[PyTreeDef, bool]]:
|
|
# This implementation relies on internal details of linear_util.py's
|
|
# WrappedFun, but it's for the worthy cause of better user error messages.
|
|
# It can fail (i.e. return None) if its WrappedFun argument is not transformed
|
|
# with flatten_fun or flatten_fun_nokwargs, which could happen e.g. when
|
|
# core.eval_jaxpr encounters a call primitive (though at that point we're just
|
|
# round-tripping jaxprs and the user errors in question are impossible).
|
|
assert isinstance(flatten_fun, partial) and len(flatten_fun.args) == 1
|
|
assert (isinstance(flatten_fun_nokwargs, partial) and
|
|
len(flatten_fun_nokwargs.args) == 1)
|
|
flat_xforms = {flatten_fun.args[0], flatten_fun_nokwargs.args[0]}
|
|
try:
|
|
(in_tree, has_kwargs), = ((args[0], f is flatten_fun.args[0])
|
|
for f, args in fn.transforms if f in flat_xforms)
|
|
except ValueError:
|
|
return None
|
|
else:
|
|
return in_tree, has_kwargs
|
|
|
|
@lu.transformation_with_aux
|
|
def flatten_fun_nokwargs2(in_tree, *args_flat):
|
|
py_args = tree_unflatten(in_tree, args_flat)
|
|
pair = yield py_args, {}
|
|
if not isinstance(pair, (list, tuple)) or len(pair) != 2:
|
|
raise TypeError("expected function with aux output to return a two-element "
|
|
f"tuple, but got type {type(pair)} with value {repr(pair)}")
|
|
ans, aux = pair
|
|
ans_flat, ans_tree = tree_flatten(ans)
|
|
aux_flat, aux_tree = tree_flatten(aux)
|
|
yield (ans_flat, aux_flat), (ans_tree, aux_tree)
|
|
|
|
class _HashableWithStrictTypeEquality:
|
|
"""Box object used when comparing static arguments as a jit key.
|
|
|
|
Requires exact type equality using `is` and value equality."""
|
|
__slots__ = ["val"]
|
|
|
|
def __init__(self, val):
|
|
self.val = val
|
|
|
|
def __hash__(self):
|
|
return hash(self.val)
|
|
|
|
def __eq__(self, other):
|
|
return type(self.val) is type(other.val) and self.val == other.val
|
|
|
|
_POSITIONAL_ARGUMENTS = (
|
|
inspect.Parameter.POSITIONAL_ONLY,
|
|
inspect.Parameter.POSITIONAL_OR_KEYWORD
|
|
)
|
|
|
|
def validate_argnums(sig: inspect.Signature, argnums: Tuple[int, ...], argnums_name: str) -> None:
|
|
"""
|
|
Validate that the argnums are sensible for a given function.
|
|
|
|
For functions that accept a variable number of positions arguments
|
|
(`f(..., *args)`) all positive argnums are considered valid.
|
|
"""
|
|
n_pos_args = 0
|
|
for param in sig.parameters.values():
|
|
if param.kind in _POSITIONAL_ARGUMENTS:
|
|
n_pos_args += 1
|
|
|
|
elif param.kind is inspect.Parameter.VAR_POSITIONAL:
|
|
# We can have any number of positional arguments
|
|
return
|
|
|
|
if argnums and (-min(argnums) > n_pos_args or max(argnums) >= n_pos_args):
|
|
# raise ValueError(f"Jitted function has {argnums_name}={argnums}, "
|
|
# f"but only accepts {n_pos_args} positional arguments.")
|
|
# TODO: 2022-08-20 or later: replace with error
|
|
warnings.warn(f"Jitted function has {argnums_name}={argnums}, "
|
|
f"but only accepts {n_pos_args} positional arguments. "
|
|
"This warning will be replaced by an error after 2022-08-20 "
|
|
"at the earliest.", SyntaxWarning)
|
|
|
|
_INVALID_KEYWORD_ARGUMENTS = (
|
|
inspect.Parameter.POSITIONAL_ONLY,
|
|
inspect.Parameter.VAR_POSITIONAL
|
|
)
|
|
|
|
_KEYWORD_ARGUMENTS = (
|
|
inspect.Parameter.POSITIONAL_OR_KEYWORD,
|
|
inspect.Parameter.KEYWORD_ONLY,
|
|
)
|
|
def validate_argnames(sig: inspect.Signature, argnames: Tuple[str, ...], argnames_name: str) -> None:
|
|
"""
|
|
Validate that the argnames are sensible for a given function.
|
|
|
|
For functions that accept a variable keyword arguments
|
|
(`f(..., **kwargs)`) all argnames are considered valid except those
|
|
marked as position-only (`f(pos_only, /, ...)`).
|
|
"""
|
|
var_kwargs = False
|
|
valid_kwargs: Set[str] = set()
|
|
invalid_kwargs: Set[str] = set()
|
|
for param_name, param in sig.parameters.items():
|
|
if param.kind in _KEYWORD_ARGUMENTS:
|
|
valid_kwargs.add(param_name)
|
|
|
|
elif param.kind is inspect.Parameter.VAR_KEYWORD:
|
|
var_kwargs = True
|
|
|
|
elif param.kind in _INVALID_KEYWORD_ARGUMENTS:
|
|
invalid_kwargs.add(param_name)
|
|
|
|
|
|
# Check whether any kwargs are invalid due to position only
|
|
invalid_argnames = invalid_kwargs & set(argnames)
|
|
if invalid_argnames:
|
|
# raise ValueError(f"Jitted function has invalid argnames {invalid_argnames} "
|
|
# f"in {argnames_name}. These are positional-only")
|
|
# TODO: 2022-08-20 or later: replace with error
|
|
warnings.warn(f"Jitted function has invalid argnames {invalid_argnames} "
|
|
f"in {argnames_name}. These are positional-only. "
|
|
"This warning will be replaced by an error after 2022-08-20 "
|
|
"at the earliest.", SyntaxWarning)
|
|
|
|
# Takes any kwargs
|
|
if var_kwargs:
|
|
return
|
|
|
|
# Check that all argnames exist on function
|
|
invalid_argnames = set(argnames) - valid_kwargs
|
|
if invalid_argnames:
|
|
# TODO: 2022-08-20 or later: replace with error
|
|
# raise ValueError(f"Jitted function has invalid argnames {invalid_argnames} "
|
|
# f"in {argnames_name}. Function does not take these args.")
|
|
warnings.warn(f"Jitted function has invalid argnames {invalid_argnames} "
|
|
f"in {argnames_name}. Function does not take these args."
|
|
"This warning will be replaced by an error after 2022-08-20 "
|
|
"at the earliest.", SyntaxWarning)
|
|
|
|
|
|
|
|
def argnums_partial(f, dyn_argnums, args, require_static_args_hashable=True):
|
|
dyn_argnums = _ensure_index_tuple(dyn_argnums)
|
|
dyn_argnums = _ensure_inbounds(False, len(args), dyn_argnums)
|
|
if require_static_args_hashable:
|
|
fixed_args = []
|
|
for i, arg in enumerate(args):
|
|
if i in dyn_argnums: continue
|
|
if not is_hashable(arg):
|
|
raise ValueError(
|
|
"Non-hashable static arguments are not supported, as this can lead "
|
|
f"to unexpected cache-misses. Static argument (index {i}) of type "
|
|
f"{type(arg)} for function {f.__name__} is non-hashable.")
|
|
fixed_args.append(_HashableWithStrictTypeEquality(arg))
|
|
else:
|
|
fixed_args = [Unhashable(arg) for i, arg in enumerate(args)
|
|
if i not in dyn_argnums]
|
|
dyn_args = tuple(args[i] for i in dyn_argnums)
|
|
return _argnums_partial(f, dyn_argnums, tuple(fixed_args)), dyn_args
|
|
|
|
def _ensure_inbounds(allow_invalid: bool, num_args: int, argnums: Sequence[int]
|
|
) -> Tuple[int, ...]:
|
|
"""
|
|
Ensure argnum is within bounds.
|
|
|
|
Also resolves negative argnums
|
|
"""
|
|
result = []
|
|
for i in argnums:
|
|
if i >= num_args and allow_invalid: continue
|
|
if not -num_args <= i < num_args:
|
|
raise ValueError(
|
|
"Positional argument indices, e.g. for `static_argnums`, must have "
|
|
"value greater than or equal to -len(args) and less than len(args), "
|
|
f"but got value {i} for len(args) == {num_args}.")
|
|
result.append(i % num_args) # Resolve negative
|
|
return tuple(result)
|
|
|
|
|
|
def argnums_partial_except(f: lu.WrappedFun, static_argnums: Tuple[int, ...],
|
|
args: Tuple[Any, ...], *, allow_invalid: bool):
|
|
"""Version of ``argnums_partial`` that checks hashability of static_argnums."""
|
|
if not static_argnums:
|
|
return f, args
|
|
static_argnums = _ensure_inbounds(allow_invalid, len(args), static_argnums)
|
|
dyn_argnums = tuple(i for i in range(len(args)) if i not in static_argnums)
|
|
dyn_args = tuple(args[i] for i in dyn_argnums)
|
|
|
|
fixed_args = []
|
|
for i in static_argnums:
|
|
# TODO(shoyer): set allow_invalid=True permanently after static_argnames.
|
|
if allow_invalid and i >= len(args):
|
|
continue
|
|
static_arg = args[i]
|
|
if not is_hashable(static_arg):
|
|
raise ValueError(
|
|
"Non-hashable static arguments are not supported, as this can lead "
|
|
f"to unexpected cache-misses. Static argument (index {i}) of type "
|
|
f"{type(static_arg)} for function {f.__name__} is non-hashable.")
|
|
else:
|
|
fixed_args.append(_HashableWithStrictTypeEquality(static_arg)) # type: ignore
|
|
|
|
return _argnums_partial(f, dyn_argnums, tuple(fixed_args)), dyn_args
|
|
|
|
@lu.transformation
|
|
def _argnums_partial(dyn_argnums, fixed_args, *dyn_args, **kwargs):
|
|
sentinel = object()
|
|
args = [sentinel] * (len(fixed_args) + len(dyn_args))
|
|
for i, arg in zip(dyn_argnums, dyn_args):
|
|
args[i] = arg
|
|
fixed_args_ = iter(fixed_args)
|
|
args = [next(fixed_args_).val if x is sentinel else x for x in args]
|
|
assert next(fixed_args_, sentinel) is sentinel
|
|
ans = yield args, kwargs
|
|
yield ans
|
|
|
|
|
|
def argnames_partial_except(f: lu.WrappedFun, static_argnames: Tuple[str, ...],
|
|
kwargs: Dict[str, Any]):
|
|
if not static_argnames:
|
|
return f, kwargs
|
|
dyn_kwargs = {k: v for k, v in kwargs.items() if k not in static_argnames}
|
|
|
|
fixed_kwargs: Dict[str, Any] = {}
|
|
for k, arg in kwargs.items():
|
|
if k not in dyn_kwargs:
|
|
try:
|
|
hash(arg)
|
|
except TypeError:
|
|
raise ValueError(
|
|
"Non-hashable static arguments are not supported, as this can lead "
|
|
f"to unexpected cache-misses. Static argument (name {k}) of type "
|
|
f"{type(arg)} for function {f.__name__} is non-hashable.")
|
|
else:
|
|
fixed_kwargs[k] = Hashable(arg) # type: ignore
|
|
|
|
return _argnames_partial(f, WrapKwArgs(fixed_kwargs)), dyn_kwargs
|
|
|
|
@lu.transformation
|
|
def _argnames_partial(fixed_kwargs: WrapKwArgs, *args, **dyn_kwargs):
|
|
kwargs = dict({k: v.val for k, v in fixed_kwargs.val.items()}, **dyn_kwargs)
|
|
ans = yield args, kwargs
|
|
yield ans
|
|
|
|
|
|
def donation_vector(donate_argnums, args, kwargs) -> Tuple[bool, ...]:
|
|
"""Returns a tuple with a boolean value for each leaf in args."""
|
|
res = []
|
|
for i, arg in enumerate(args):
|
|
donate = bool(i in donate_argnums)
|
|
res.extend((donate,) * tree_structure(arg).num_leaves)
|
|
res.extend((False,) * tree_structure(kwargs).num_leaves)
|
|
return tuple(res)
|
|
|
|
def rebase_donate_argnums(donate_argnums, static_argnums) -> Tuple[int, ...]:
|
|
"""Shifts donate to account for static.
|
|
|
|
>>> rebase_donate_argnums((3, 4), (0, 1))
|
|
(1, 2)
|
|
|
|
Args:
|
|
donate_argnums: An iterable of ints.
|
|
static_argnums: An iterable of ints.
|
|
|
|
Returns:
|
|
A tuple of unique, sorted integer values based on donate_argnums with each
|
|
element offset to account for static_argnums.
|
|
"""
|
|
if not (static_argnums or donate_argnums):
|
|
return tuple(sorted(donate_argnums))
|
|
|
|
static_argnums = sorted(set(static_argnums))
|
|
donate_argnums = sorted(set(donate_argnums))
|
|
i = j = o = 0
|
|
out = []
|
|
while j < len(donate_argnums):
|
|
if i < len(static_argnums) and static_argnums[i] == donate_argnums[j]:
|
|
raise ValueError(f"`static_argnums` {static_argnums} and "
|
|
f"`donate_argnums` {donate_argnums} cannot intersect.")
|
|
|
|
if i < len(static_argnums) and static_argnums[i] < donate_argnums[j]:
|
|
o += 1
|
|
i += 1
|
|
else:
|
|
out.append(donate_argnums[j] - o)
|
|
j += 1
|
|
return tuple(out)
|
|
|
|
|
|
def is_hashable(arg):
|
|
try:
|
|
hash(arg)
|
|
return True
|
|
except TypeError:
|
|
return False
|
|
|
|
|
|
def flatten_axes(name, treedef, axis_tree, *, kws=False, tupled_args=False):
|
|
# given an axis spec tree axis_tree (a pytree with integers and Nones at the
|
|
# leaves, i.e. the Nones are to be considered leaves) that is a tree prefix of
|
|
# the given treedef, build a complete axis spec tree with the same structure
|
|
# and return the flattened result
|
|
# TODO(mattjj,phawkins): improve this implementation
|
|
|
|
proxy = object()
|
|
dummy = tree_unflatten(treedef, [object()] * treedef.num_leaves)
|
|
axes = []
|
|
add_leaves = lambda i, x: axes.extend([i] * len(tree_flatten(x)[0]))
|
|
try:
|
|
tree_map(add_leaves, _replace_nones(proxy, axis_tree), dummy)
|
|
except ValueError:
|
|
if kws:
|
|
# if keyword arguments are included in the tree, we make adapt the error
|
|
# message only to be about the positional arguments
|
|
treedef, leaf = treedef_children(treedef)
|
|
assert treedef_is_leaf(leaf)
|
|
axis_tree, _ = axis_tree
|
|
hint = ""
|
|
if tupled_args:
|
|
hint += (f" Note that {name} that are non-trivial pytrees should always be "
|
|
f"wrapped in a tuple representing the argument list.")
|
|
if len(treedef.children()) == 1:
|
|
try:
|
|
flatten_axes(name, treedef, (axis_tree,))
|
|
except ValueError:
|
|
pass # That's not the issue.
|
|
else:
|
|
hint += (f" In particular, you're passing in a single argument which "
|
|
f"means that {name} might need to be wrapped in "
|
|
f"a singleton tuple.")
|
|
raise ValueError(f"{name} specification must be a tree prefix of the "
|
|
f"corresponding value, got specification {axis_tree} "
|
|
f"for value tree {treedef}.{hint}") from None
|
|
axes = [None if a is proxy else a for a in axes]
|
|
assert len(axes) == treedef.num_leaves
|
|
return axes
|
|
|
|
def _dtype(x):
|
|
try:
|
|
return dtypes.result_type(x)
|
|
except ValueError:
|
|
return dtypes.result_type(getattr(x, 'dtype'))
|
|
|
|
def _shaped_abstractify_slow(x):
|
|
try:
|
|
return core.raise_to_shaped(
|
|
x if isinstance(x, core.AbstractValue) else core.get_aval(x))
|
|
except TypeError:
|
|
pass
|
|
|
|
weak_type = getattr(x, 'weak_type', False)
|
|
named_shape = getattr(x, 'named_shape', {})
|
|
if hasattr(x, 'dtype'):
|
|
dtype = dtypes.canonicalize_dtype(x.dtype)
|
|
else:
|
|
dtype = dtypes.result_type(x) # TODO(frostig,mattjj): why this case?
|
|
return core.ShapedArray(np.shape(x), dtype, weak_type=weak_type,
|
|
named_shape=named_shape)
|
|
|
|
# TODO(mattjj,yashkatariya): replace xla.abstractify with this, same behavior
|
|
def shaped_abstractify(x):
|
|
try:
|
|
return _shaped_abstractify_handlers[type(x)](x)
|
|
except KeyError:
|
|
return _shaped_abstractify_slow(x)
|
|
_shaped_abstractify_handlers: Dict[Any, Callable[[Any], core.ShapedArray]] = {}
|
|
|
|
# This decorator exists to make it easier to monkey-patch APIs in JAX.
|
|
# By default it does nothing, but it can be monkey-patched to do other things.
|
|
def api_hook(fun, tag: str):
|
|
return fun
|