mirror of
https://github.com/ROCm/jax.git
synced 2025-04-14 10:56:06 +00:00

See https://opensource.google/documentation/reference/releasing/contributions#copyright for more details. PiperOrigin-RevId: 476167538
266 lines
9.5 KiB
Python
266 lines
9.5 KiB
Python
# Copyright 2021 The JAX Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import functools
|
|
import operator
|
|
from typing import Callable, Optional
|
|
|
|
import jax
|
|
from jax import core
|
|
from jax import linear_util as lu
|
|
from jax.interpreters import ad
|
|
from jax.interpreters import batching
|
|
from jax.interpreters.batching import not_mapped
|
|
from jax.interpreters import mlir
|
|
from jax.interpreters import partial_eval as pe
|
|
from jax.interpreters import xla
|
|
from jax.tree_util import (tree_flatten, tree_map, tree_structure,
|
|
tree_unflatten, treedef_tuple)
|
|
from jax._src import custom_api_util
|
|
from jax._src import source_info_util
|
|
from jax._src import traceback_util
|
|
from jax._src import util
|
|
from jax._src.api_util import flatten_fun_nokwargs
|
|
|
|
|
|
source_info_util.register_exclusion(__file__)
|
|
traceback_util.register_exclusion(__file__)
|
|
|
|
|
|
map, unsafe_map = util.safe_map, map
|
|
zip, unsafe_zip = util.safe_zip, zip
|
|
|
|
|
|
@custom_api_util.register_custom_decorator_type
|
|
class custom_vmap:
|
|
fun: Callable
|
|
vmap_rule: Optional[Callable]
|
|
|
|
def __init__(self, fun: Callable):
|
|
functools.update_wrapper(self, fun)
|
|
self.fun = fun # type: ignore[assignment]
|
|
self.vmap_rule = None
|
|
|
|
__getattr__ = custom_api_util.forward_attr
|
|
|
|
def def_vmap(self, vmap_rule: Callable) -> Callable:
|
|
self.vmap_rule = vmap_rule
|
|
return vmap_rule
|
|
|
|
@traceback_util.api_boundary
|
|
def __call__(self, *args, **kwargs):
|
|
assert not kwargs
|
|
args_flat, in_tree = tree_flatten(args)
|
|
flat_fun, out_tree = flatten_fun_nokwargs(lu.wrap_init(self.fun), in_tree)
|
|
in_avals = [core.raise_to_shaped(core.get_aval(x)) for x in args_flat]
|
|
debug = pe.debug_info(self.fun, in_tree, False, "custom_vmap")
|
|
jaxpr, _, consts = pe.trace_to_jaxpr_dynamic(flat_fun, in_avals, debug)
|
|
assert not len(consts)
|
|
closed_call = core.ClosedJaxpr(pe.convert_constvars_jaxpr(jaxpr), ())
|
|
out_flat = custom_vmap_p.bind(*consts, *args_flat,
|
|
call=closed_call,
|
|
rule=self.vmap_rule,
|
|
in_tree=in_tree,
|
|
out_tree=out_tree())
|
|
return tree_unflatten(out_tree(), out_flat)
|
|
|
|
|
|
### utils
|
|
|
|
|
|
def ensure_list(xs):
|
|
return xs if type(xs) is list else list(xs)
|
|
|
|
def rule_name(rule):
|
|
return getattr(rule, '__name__', '<unnamed rule>')
|
|
|
|
def call_rule(rule, axis_size, in_batched, args):
|
|
return rule(axis_size, ensure_list(in_batched), *args)
|
|
|
|
def check_vmap_rule_trees(rule, original_out_tree, out_tree, out_batched_tree):
|
|
if out_tree != out_batched_tree:
|
|
raise ValueError(
|
|
'structure of output value and output batching specification returned '
|
|
f'by custom vmap rule ({rule_name(rule)}) do not match.\n'
|
|
f'Output values: {out_tree}\n'
|
|
f'Batching spec: {out_batched_tree}')
|
|
if out_tree != original_out_tree:
|
|
raise ValueError(
|
|
f'structure of output returned by custom vmap rule ({rule_name(rule)}) '
|
|
'does not match that of original custom-vmapped function.\n'
|
|
f'Original output: {original_out_tree}\n'
|
|
f'Rule output: {out_tree}')
|
|
|
|
# Like batching.bdim_at_front, but doesn't broadcast if not mapped
|
|
def maybe_bdim_at_front(x, bdim):
|
|
if bdim is not_mapped:
|
|
return x
|
|
else:
|
|
return util.moveaxis(x, bdim, 0)
|
|
|
|
# Like batching.batch except (a) not curried and (b) returns inferred output
|
|
# axes instead of accepting and matching a given spec of output axes. Assumes
|
|
# `f` is pytree-flattened
|
|
def vmap_unrestricted(f: lu.WrappedFun, *args, in_axes, axis_name, axis_size):
|
|
f, out_axes = batching.batch_subtrace(f)
|
|
f = batching._batch_outer(f, axis_name, axis_size, in_axes,
|
|
batching.BatchTrace, None)
|
|
outs = f.call_wrapped(*args)
|
|
return outs, out_axes()
|
|
|
|
|
|
### custom_vmap_p rules
|
|
|
|
|
|
def custom_vmap_impl(*args, call, rule, in_tree, out_tree):
|
|
del rule, in_tree, out_tree
|
|
return core.jaxpr_as_fun(call)(*args)
|
|
|
|
|
|
def custom_vmap_batching(args_flat, dims, *, call, rule, in_tree, out_tree):
|
|
del call
|
|
axis_size, = {x.shape[d] for x, d in zip(args_flat, dims) if d is not None}
|
|
args_flat = map(maybe_bdim_at_front, args_flat, dims)
|
|
flat_in_batched = [d is not not_mapped for d in dims]
|
|
|
|
args = tree_unflatten(in_tree, args_flat)
|
|
in_batched = tree_unflatten(in_tree, flat_in_batched)
|
|
out, out_batched = call_rule(rule, axis_size, in_batched, args)
|
|
flat_outs, tree1 = tree_flatten(out)
|
|
flat_out_batched, tree2 = tree_flatten(out_batched)
|
|
check_vmap_rule_trees(rule, out_tree, tree1, tree2)
|
|
flat_out_dims = [0 if b else not_mapped for b in flat_out_batched]
|
|
return flat_outs, flat_out_dims
|
|
|
|
|
|
def custom_vmap_abstract_eval(*in_avals, call, **_):
|
|
return call.out_avals
|
|
|
|
|
|
def custom_vmap_jvp(primals, tangents, *, call, rule, in_tree, out_tree):
|
|
def jvp_of_rule_rule(axis_size, in_batched, primals, tangents):
|
|
in_batched_ps, in_batched_ts = in_batched
|
|
|
|
mutually_batched = tree_map(operator.and_, in_batched_ps, in_batched_ts)
|
|
extra_batched_ps = tree_map(lambda pb, tb: 0 if pb and not tb else None,
|
|
in_batched_ps, in_batched_ts)
|
|
extra_batched_ts = tree_map(lambda pb, tb: 0 if tb and not pb else None,
|
|
in_batched_ps, in_batched_ts)
|
|
|
|
out_mutually_batched = lu.Store()
|
|
flat_ps_ts, tree_ps_ts = tree_flatten((primals, tangents))
|
|
flat_extra_batched_ps_ts, tree_ps_ts2 = tree_flatten(
|
|
(extra_batched_ps, extra_batched_ts),
|
|
is_leaf=lambda x: x is None)
|
|
|
|
# TODO(frostig): assert these also equal:
|
|
# treedef_tuple((in_tree, in_tree))
|
|
# once https://github.com/google/jax/issues/9066 is fixed
|
|
assert tree_ps_ts == tree_ps_ts2
|
|
del tree_ps_ts2
|
|
|
|
def to_jvp(*primals):
|
|
out, out_batched = call_rule(rule, axis_size, mutually_batched, primals)
|
|
check_vmap_rule_trees(
|
|
rule, out_tree, tree_structure(out), tree_structure(out_batched))
|
|
out_mutually_batched.store(out_batched)
|
|
return out
|
|
|
|
def to_vmap_over_extra_batched_dims(primals, tangents):
|
|
return jax.jvp(to_jvp, primals, tangents)
|
|
|
|
to_vmap_over_extra_batched_dims_flat, out_tree2 = flatten_fun_nokwargs(
|
|
lu.wrap_init(to_vmap_over_extra_batched_dims),
|
|
tree_ps_ts)
|
|
|
|
flat_out_ps_ts, flat_out_axes = vmap_unrestricted(
|
|
to_vmap_over_extra_batched_dims_flat, *flat_ps_ts,
|
|
in_axes=flat_extra_batched_ps_ts,
|
|
axis_name=core.no_axis_name, axis_size=axis_size)
|
|
|
|
n, ragged = divmod(len(flat_out_ps_ts), 2)
|
|
assert not ragged
|
|
flat_out_ps, flat_out_ts = flat_out_ps_ts[:n], flat_out_ps_ts[n:]
|
|
flat_out_axes_p, flat_out_axes_t = flat_out_axes[:n], flat_out_axes[n:]
|
|
flat_out_ps = map(maybe_bdim_at_front, flat_out_ps, flat_out_axes_p)
|
|
flat_out_extra_batched_ps = [d is not not_mapped for d in flat_out_axes_p]
|
|
flat_out_ts = map(maybe_bdim_at_front, flat_out_ts, flat_out_axes_t)
|
|
flat_out_extra_batched_ts = [d is not not_mapped for d in flat_out_axes_t]
|
|
|
|
out_ps, out_ts = tree_unflatten(
|
|
out_tree2(), [*flat_out_ps, *flat_out_ts])
|
|
out_extra_batched_ps, out_extra_batched_ts = tree_unflatten(
|
|
out_tree2(), [*flat_out_extra_batched_ps, *flat_out_extra_batched_ts])
|
|
|
|
out_batched_ps = tree_map(
|
|
operator.or_, out_mutually_batched.val, out_extra_batched_ps)
|
|
out_batched_ts = tree_map(
|
|
operator.or_, out_mutually_batched.val, out_extra_batched_ts)
|
|
|
|
return (out_ps, out_ts), (out_batched_ps, out_batched_ts)
|
|
|
|
tangents = map(ad.instantiate_zeros, tangents)
|
|
jvp_call, _ = ad.jvp_jaxpr(call, [True] * len(primals), True)
|
|
jvp_in_tree = treedef_tuple((in_tree, in_tree))
|
|
jvp_out_tree = treedef_tuple((out_tree, out_tree))
|
|
outs = custom_vmap_p.bind(
|
|
*primals, *tangents,
|
|
call=jvp_call, rule=jvp_of_rule_rule,
|
|
in_tree=jvp_in_tree, out_tree=jvp_out_tree)
|
|
assert len(outs) % 2 == 0, len(outs)
|
|
out_primals, out_tangents = util.split_list(outs, [len(outs) // 2])
|
|
return out_primals, out_tangents
|
|
|
|
|
|
custom_vmap_p = core.Primitive('custom_vmap_call')
|
|
custom_vmap_p.multiple_results = True
|
|
custom_vmap_p.def_impl(custom_vmap_impl)
|
|
custom_vmap_p.def_abstract_eval(custom_vmap_abstract_eval)
|
|
batching.primitive_batchers[custom_vmap_p] = custom_vmap_batching
|
|
ad.primitive_jvps[custom_vmap_p] = custom_vmap_jvp
|
|
xla.register_initial_style_primitive(custom_vmap_p)
|
|
mlir.register_lowering(custom_vmap_p, mlir.lower_fun(
|
|
custom_vmap_impl, multiple_results=True))
|
|
|
|
|
|
# -- custom vmap applications
|
|
|
|
|
|
def tree_split(mask, tree):
|
|
lhs = tree_map(lambda l, x: x if l else None, mask, tree)
|
|
rhs = tree_map(lambda l, x: None if l else x, mask, tree)
|
|
return lhs, rhs
|
|
|
|
def tree_merge(mask, lhs_tree, rhs_tree):
|
|
return tree_map(lambda l, x_l, x_r: x_l if l else x_r,
|
|
mask, lhs_tree, rhs_tree)
|
|
|
|
def sequential_vmap(f):
|
|
f = custom_vmap(f)
|
|
|
|
@f.def_vmap
|
|
def rule(axis_size, in_batched, *args):
|
|
del axis_size
|
|
|
|
def to_map(mapped_args):
|
|
args = tree_merge(in_batched, mapped_args, bcast_args)
|
|
return f(*args)
|
|
|
|
mapped_args, bcast_args = tree_split(in_batched, list(args))
|
|
out = jax.lax.map(to_map, mapped_args)
|
|
out_batched = tree_map(lambda _: True, out)
|
|
return out, out_batched
|
|
|
|
return f
|