rocm_jax/jax/_src/dispatch.py

1283 lines
51 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright 2018 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Primitive dispatch and jit dispatch.
from __future__ import annotations
import atexit
import collections
import contextlib
from functools import partial
import itertools
import time
from typing import (
Any, Callable, Dict, Optional, Sequence, Set, Tuple, List, Type, Union,
TYPE_CHECKING)
from typing_extensions import Protocol
import os
import re
import threading
import warnings
from absl import logging
import numpy as np
import jax
from jax import core
from jax import linear_util as lu
from jax.errors import UnexpectedTracerError
import jax.interpreters.ad as ad
import jax.interpreters.batching as batching
import jax.interpreters.mlir as mlir
import jax.interpreters.xla as xla
import jax.interpreters.partial_eval as pe
from jax._src import device_array
from jax._src import dtypes
from jax._src import profiler
from jax._src import stages
from jax._src import traceback_util
from jax._src.abstract_arrays import array_types
from jax._src.config import config, flags
from jax._src.lib.mlir import ir
from jax._src.lib import can_execute_with_token
from jax._src.lib import xla_bridge as xb
from jax._src.lib import xla_client as xc
import jax._src.util as util
from jax._src.util import flatten, unflatten
from etils import epath
if TYPE_CHECKING:
from jax.experimental.array import Array
FLAGS = flags.FLAGS
flags.DEFINE_string(
'jax_dump_ir_to', os.getenv('JAX_DUMP_IR_TO', ''),
help="Path to which HLO/MHLO IR that is emitted by JAX as input to the "
"compiler should be dumped as text files. Optional. If omitted, JAX "
"will not dump IR.")
traceback_util.register_exclusion(__file__)
MYPY = False # Are we currently type checking with mypy?
xe = xc._xla
Backend = xe.Client
Device = xc.Device
Buffer = xe.Buffer
XlaExecutable = xc.Executable
map, unsafe_map = util.safe_map, map
zip, unsafe_zip = util.safe_zip, zip
# This flag is set on exit; no logging should be attempted
_on_exit = False
### op-by-op execution
ArgSpec = Tuple[core.AbstractValue, Optional[Device]]
def arg_spec(x: Any) -> ArgSpec:
from jax.experimental.sharding import PmapSharding
aval = xla.abstractify(x)
try:
if config.jax_array:
if isinstance(x.sharding, PmapSharding):
return aval, None
return aval, (x.sharding if x._committed else None)
else:
return aval, x._device
except:
return aval, None
def apply_primitive(prim, *args, **params):
"""Impl rule that compiles and runs a single primitive 'prim' using XLA."""
compiled_fun = xla_primitive_callable(prim, *unsafe_map(arg_spec, args),
**params)
return compiled_fun(*args)
# TODO(phawkins,frostig,mattjj): update code referring to
# xla.apply_primitive to point here, or use simple_impl if that's why
# it is using apply_primitive to begin with
xla.apply_primitive = apply_primitive
def simple_impl(prim):
prim.def_impl(partial(apply_primitive, prim))
RuntimeToken = Any
class RuntimeTokenSet(threading.local):
tokens: Dict[core.Effect, Tuple[RuntimeToken, Device]]
output_tokens: Dict[Device, RuntimeToken]
output_runtime_tokens: Dict[Device, RuntimeToken]
def __init__(self):
self.tokens = {}
# TODO(sharadmv): remove redundant output token dictionary when minimum
# jaxlib version is bumped to 0.3.16.
self.output_tokens = {}
self.output_runtime_tokens = {}
def get_token(self, eff: core.Effect, device: Device) -> RuntimeToken:
if eff not in self.tokens:
self.tokens[eff] = device_put(np.zeros(0, np.bool_), device), device
elif self.tokens[eff][1] != device:
(old_token,), _ = self.tokens[eff]
old_token.aval = core.ShapedArray((0,), np.bool_)
self.tokens[eff] = device_put(old_token, device), device
return self.tokens[eff][0]
def update_token(self, eff: core.Effect, token: RuntimeToken):
self.tokens[eff] = token, self.tokens[eff][1]
def set_output_token(self, device: Device, token: RuntimeToken):
# We're free to clobber the previous output token because on each
# device we have a total ordering of computations. Only the token
# from the latest computation matters. If this weren't the case
# we'd need to store a set of output tokens.
self.output_tokens[device] = token
def set_output_runtime_token(self, device: Device, token: RuntimeToken):
# TODO(sharadmv): remove this method when minimum jaxlib version is bumped
self.output_runtime_tokens[device] = token
def clear(self):
self.tokens = {}
self.output_tokens = {}
self.output_runtime_tokens = {}
def block_until_ready(self):
for token, _ in self.tokens.values():
token[0].block_until_ready()
for token in self.output_tokens.values():
token[0].block_until_ready()
for token in self.output_runtime_tokens.values():
token.block_until_ready()
self.clear()
runtime_tokens: RuntimeTokenSet = RuntimeTokenSet()
@atexit.register
def wait_for_tokens():
runtime_tokens.block_until_ready()
@util.cache()
def xla_primitive_callable(prim, *arg_specs: ArgSpec, **params):
_, arg_devices = util.unzip2(arg_specs)
donated_invars = (False,) * len(arg_specs)
if config.jax_array:
# This will be resolved in sharded_lowering.
device = None
else:
device = _device_from_arg_devices(arg_devices)
def prim_fun(*args):
out = prim.bind(*args, **params)
if prim.multiple_results:
return out
else:
return out,
compiled = _xla_callable_uncached(lu.wrap_init(prim_fun), device, None,
prim.name, donated_invars, False, *arg_specs)
if not prim.multiple_results:
return lambda *args, **kw: compiled(*args, **kw)[0]
else:
return compiled
def _device_from_arg_devices(devices: Sequence[Optional[Device]]) -> Optional[Device]:
"""Given devices of inputs, determine where to perform a computation.
Args:
devices: list where each element is a either a `Device` instance or `None`.
Returns:
A `Device` instance or None.
Raises:
ValueError if input devices are inconsistent.
"""
try:
device, = {d for d in devices if d is not None} or (None,)
return device
except ValueError as err:
msg = "primitive arguments must be colocated on the same device, got {}"
raise ValueError(msg.format(", ".join(map(str, devices)))) from err
# JIT execution
def _xla_call_impl(fun: lu.WrappedFun, *args, device, backend, name,
donated_invars, inline, keep_unused: bool):
del inline # Only used at tracing time
if fun.in_type is None:
arg_specs = unsafe_map(arg_spec, args)
else:
# fun.in_type is used for dynamic shapes.
if config.jax_array:
raise NotImplementedError('Dynamic shapes do not work with Array.')
arg_specs = [(None, getattr(x, '_device', None)) for x in args]
compiled_fun = xla_callable(fun, device, backend, name, donated_invars,
keep_unused, *arg_specs)
try:
return compiled_fun(*args)
except FloatingPointError:
assert config.jax_debug_nans or config.jax_debug_infs # compiled_fun can only raise in this case
print("Invalid value encountered in the output of a jit-decorated function. "
"Calling the de-optimized version.")
# We want to run the wrapped function again (after xla_callable already ran
# it), but linear_util.WrappedFun instances are meant to be run only once.
# In addition to re-executing the Python code, which is usually undesirable
# but which config.jax_debug_nans is meant to opt into, we'll be
# re-executing any linear_util.py-style side effects, i.e. re-populating
# Stores created by any transformation_with_aux's applied to fun. Since this
# is intentional here, to avoid "Store occupied" errors we clone the
# WrappedFun with empty stores.
stores = [lu.Store() for _ in fun.stores]
clone = lu.WrappedFun(fun.f, fun.transforms, stores, fun.params,
fun.in_type)
with core.new_sublevel():
_ = clone.call_wrapped(*args) # may raise, not return
# If control reaches this line, we got a NaN on the output of `compiled_fun`
# but not `clone.call_wrapped` on the same arguments. Let's tell the user.
fun_info = pe.fun_sourceinfo(fun.f)
msg = ("An invalid value was encountered in the output of the "
f"`jit`-decorated function {fun_info}. Because "
"config.jax_debug_nans and/or config.jax_debug_infs is set, the "
"de-optimized function (i.e., the function as if the `jit` "
"decorator were removed) was called in an attempt to get a more "
"precise error message. However, the de-optimized function did not "
"produce invalid values during its execution. This behavior can "
"result from `jit` optimizations causing the invalud value to be "
"produced. It may also arise from having nan/inf constants as "
"outputs, like `jax.jit(lambda ...: jax.numpy.nan)(...)`. "
"\n\n"
"It may be possible to avoid the invalid value by removing the "
"`jit` decorator, at the cost of losing optimizations. "
"\n\n"
"If you see this error, consider opening a bug report at "
"https://github.com/google/jax.")
raise FloatingPointError(msg)
xla.xla_call_p.def_impl(_xla_call_impl)
# TODO(yashkatariya,mattjj): Try to handle this in api.py via a device_put and
# don't pass the device and backend argument to `_xla_callable_uncached`.
def not_none_device_or_backend_on_jit(backend, device, num_ins):
"""This is to support the backend and device argument on jit. It's a feature
that's deprecated but needs to be supported for feature parity and so that we
can delete the non-Array paths when Array is switched on.
"""
# TODO(yashkatariya): Remove this entire function when backend and device are
# removed as arguments on jit.
from jax.experimental import sharding
if device is not None and backend is not None:
raise ValueError("can't specify both a device and a backend for jit, "
"got device={} and backend={}".format(device, backend))
if backend is not None:
da = [xb.get_backend(backend).get_default_device_assignment(1)[0]]
else:
assert device is not None
da = [device]
assert len(da) == 1
# Set committed to True for this path because it simulates a device_put on
# behalf of a user.
committed = True
# in_shardings will be marked as replicated regardless of whatever the input
# had. Given that only a single device is allowed above, this is correct.
in_shardings = [sharding.OpShardingSharding.get_replicated(da)] * num_ins
return committed, da, in_shardings
def sharded_lowering(fun, device, backend, name, donated_invars, always_lower,
keep_unused, *arg_specs):
# TODO(yashkatariya): Remove the local imports from here when the functions
# in pxla.py move to dispatch.py or a utils file.
from jax.interpreters import pxla
from jax.experimental import pjit, sharding
in_avals, in_shardings = util.unzip2(arg_specs)
if backend is not None or device is not None:
committed, da, in_shardings = not_none_device_or_backend_on_jit(
backend, device, len(in_shardings))
else:
committed = any(i is not None for i in in_shardings)
da = pjit._get_and_check_device_assignment(
(i for i in in_shardings if i is not None), pxla.EMPTY_ENV.physical_mesh)
in_shardings = [sharding.OpShardingSharding.get_replicated(da) if i is None else i
for i in in_shardings]
process_index = xb.process_index()
local_da = [d for d in da if d.process_index == process_index]
if len(local_da) != len(da):
warnings.warn(
"Running operations on `Array`s that are not fully addressable by this "
"process (i.e. `Array`s with data sharded across multiple devices and "
"processes.) is dangerous. Its very important that all processes run "
"the same cross-process computations in the same order otherwise it "
"can lead to hangs.\n"
"If youre not already familiar with JAXs multi-process "
"programming model, please read "
"https://jax.readthedocs.io/en/latest/multi_process.html.")
if not in_shardings:
inp_device_assignment = da
else:
inp_device_assignment = None
# Pass in a singleton `_UNSPECIFIED` for out_shardings because we don't know
# the number of output avals at this stage. lower_sharding_computation will
# apply it to all out_avals.
return pxla.lower_sharding_computation(
fun, 'jit', name, in_shardings, pjit._UNSPECIFIED,
donated_invars, in_avals,
in_is_global=(True,) * len(arg_specs), keep_unused=keep_unused,
committed=committed, always_lower=always_lower,
inp_device_assignment=inp_device_assignment)
def _xla_callable_uncached(fun: lu.WrappedFun, device, backend, name,
donated_invars, keep_unused, *arg_specs):
if config.jax_array:
computation = sharded_lowering(fun, device, backend, name, donated_invars,
False, keep_unused, *arg_specs)
return computation.compile(_allow_propagation_to_outputs=True).unsafe_call
else:
return lower_xla_callable(fun, device, backend, name, donated_invars, False,
keep_unused, *arg_specs).compile().unsafe_call
xla_callable = lu.cache(_xla_callable_uncached)
def is_single_device_sharding(sharding) -> bool:
from jax.experimental.sharding import PmapSharding
# Special case PmapSharding here because PmapSharding maps away an axis
# and needs to be handled separately.
return len(sharding.device_set) == 1 and not isinstance(sharding, PmapSharding)
@contextlib.contextmanager
def log_elapsed_time(fmt: str):
if _on_exit:
yield
else:
log_priority = logging.WARNING if config.jax_log_compiles else logging.DEBUG
start_time = time.time()
yield
elapsed_time = time.time() - start_time
logging.log(log_priority, fmt.format(elapsed_time=elapsed_time))
def should_tuple_args(num_args: int, platform: str):
# CPU does not need a tuple as it uses a buffer table
# TPU only needs a tuple for very long lists
if platform == "cpu":
return False
elif platform == "tpu":
return num_args > 2000
else:
return num_args > 100
def raise_warnings_or_errors_for_jit_of_pmap(nreps, backend, name, jaxpr):
if nreps > 1:
warnings.warn(
f"The jitted function {name} includes a pmap. Using "
"jit-of-pmap can lead to inefficient data movement, as the outer jit "
"does not preserve sharded data representations and instead collects "
"input and output arrays onto a single device. "
"Consider removing the outer jit unless you know what you're doing. "
"See https://github.com/google/jax/issues/2926.")
if nreps > xb.device_count(backend):
raise ValueError(
f"compiling computation `{name}` that requires {nreps} replicas, but "
f"only {xb.device_count(backend)} XLA devices are available.")
if xb.process_count() > 1 and (nreps > 1 or
jaxpr_has_primitive(jaxpr, "xla_pmap")):
raise NotImplementedError(
"jit of multi-host pmap not implemented (and jit-of-pmap can cause "
"extra data movement anyway, so maybe you don't want it after all).")
@profiler.annotate_function
def lower_xla_callable(
fun: lu.WrappedFun, device, backend, name, donated_invars,
always_lower: bool, keep_unused: bool, *arg_specs):
"""Lower into XLA.
Args:
always_lower: If `True`, even trivial programs (not doing any computation
such as lambda x: x) will be lowered into an XLA program.
keep_unused: If `False` (the default), arguments that JAX determines to be
unused by `fun` *may* be dropped from resulting compiled XLA executables.
Such arguments will not be transferred to the device nor provided to the
underlying executable. If `True`, unused arguments will not be pruned.
"""
if device is not None and backend is not None:
raise ValueError("can't specify both a device and a backend for jit, "
"got device={} and backend={}".format(device, backend))
abstract_args, arg_devices = util.unzip2(arg_specs)
if fun.in_type is None:
# Add an annotation inferred from the arguments; no dynamic axes here.
in_type = tuple(unsafe_zip(abstract_args, itertools.repeat(True)))
fun = lu.annotate(fun, in_type)
else:
assert abstract_args == (None,) * len(abstract_args)
abstract_args = [aval for aval, _ in fun.in_type]
with log_elapsed_time(f"Finished tracing + transforming {fun.__name__} "
"for jit in {elapsed_time} sec"):
jaxpr, out_type, consts = pe.trace_to_jaxpr_final2(
fun, pe.debug_info_final(fun, "jit"))
out_avals, kept_outputs = util.unzip2(out_type)
if any(isinstance(c, core.Tracer) for c in consts):
raise UnexpectedTracerError("Encountered an unexpected tracer.")
if config.jax_dynamic_shapes:
keep_unused = True
has_outfeed = False
donated_invars = [False] * len(fun.in_type)
else:
has_outfeed = core.jaxpr_uses_outfeed(jaxpr)
jaxpr = apply_outfeed_rewriter(jaxpr)
if not keep_unused:
jaxpr, kept_const_idx, kept_var_idx = _prune_unused_inputs(jaxpr)
consts = [c for i, c in enumerate(consts) if i in kept_const_idx]
abstract_args, arg_devices = util.unzip2(
[a for i, a in enumerate(arg_specs) if i in kept_var_idx])
donated_invars = [x for i, x in enumerate(donated_invars)
if i in kept_var_idx]
del kept_const_idx
else:
kept_var_idx = set(range(len(fun.in_type)))
nreps = jaxpr_replicas(jaxpr)
device = _xla_callable_device(nreps, backend, device, arg_devices)
backend = xb.get_device_backend(device) if device else xb.get_backend(backend)
if config.jax_dynamic_shapes and jaxpr_has_bints(jaxpr):
jaxpr, consts = pe.pad_jaxpr(jaxpr, consts)
map(prefetch, itertools.chain(consts, jaxpr_literals(jaxpr)))
# Computations that only produce constants and/or only rearrange their inputs,
# which are often produced from partial evaluation, don't need compilation,
# and don't need to evaluate their arguments.
if (not always_lower and not (jaxpr.effects or has_outfeed) and
(not jaxpr.eqns and all(kept_outputs) or not jaxpr.outvars)):
return XlaComputation(
name, None, True, None, None, None, jaxpr=jaxpr, consts=consts,
device=device, in_avals=abstract_args, out_avals=out_avals,
has_unordered_effects=False, ordered_effects=[],
kept_var_idx=kept_var_idx, keepalive=None, host_callbacks=[])
if not _on_exit:
log_priority = logging.WARNING if config.jax_log_compiles else logging.DEBUG
if len(abstract_args) > 10:
msg = f"Compiling {fun.__name__} ({id(fun)}) for {len(abstract_args)} args."
else:
msg = f"Compiling {fun.__name__} ({id(fun)} for args {abstract_args}."
logging.log(log_priority, msg)
raise_warnings_or_errors_for_jit_of_pmap(nreps, backend, name, jaxpr)
# pass long arg lists as tuple for TPU
tuple_args = should_tuple_args(len(abstract_args), backend.platform)
axis_env = xla.AxisEnv(nreps, (), ())
name_stack = util.new_name_stack(util.wrap_name(name, 'jit'))
closed_jaxpr = core.ClosedJaxpr(jaxpr, consts)
module_name = f"jit_{fun.__name__}"
unordered_effects = [eff for eff in closed_jaxpr.effects
if eff not in core.ordered_effects]
ordered_effects = [eff for eff in closed_jaxpr.effects
if eff in core.ordered_effects]
lowering_result = mlir.lower_jaxpr_to_module(
module_name, closed_jaxpr, unordered_effects,
ordered_effects, backend, backend.platform,
mlir.ReplicaAxisContext(axis_env), name_stack, donated_invars)
module, keepalive, host_callbacks = (
lowering_result.module, lowering_result.keepalive,
lowering_result.host_callbacks)
return XlaComputation(
name, module, False, donated_invars, fun.in_type, out_type, nreps=nreps,
device=device, backend=backend, tuple_args=tuple_args,
in_avals=abstract_args, out_avals=out_avals,
has_unordered_effects=bool(unordered_effects),
ordered_effects=ordered_effects, kept_var_idx=kept_var_idx,
keepalive=keepalive, host_callbacks=host_callbacks)
def _backend_supports_unbounded_dynamic_shapes(backend: Backend) -> bool:
return backend.platform == 'iree'
def prefetch(x):
if isinstance(x, device_array.DeviceArray):
x.copy_to_host_async()
return x
def jaxpr_literals(jaxpr):
"""Generates all the literals inside a jaxpr, including nested subjaxprs."""
for eqn in jaxpr.eqns:
for v in eqn.invars:
if type(v) is core.Literal:
yield v.val
for subjaxpr in core.subjaxprs(jaxpr):
yield from jaxpr_literals(subjaxpr)
def jaxpr_has_primitive(jaxpr, prim_name: str):
"""Whether there is a primitive given by user anywhere inside a Jaxpr."""
for eqn in jaxpr.eqns:
if prim_name in eqn.primitive.name:
return True
for subjaxpr in core.subjaxprs(jaxpr):
if jaxpr_has_primitive(subjaxpr, prim_name):
return True
return False
def jaxpr_has_bints(jaxpr: core.Jaxpr) -> bool:
return (any(type(v.aval) is core.AbstractBInt for v in jaxpr.invars) or
any(type(v.aval) is core.AbstractBInt
for j in itertools.chain([jaxpr], core.subjaxprs(jaxpr))
for e in j.eqns for v in e.outvars))
def _prune_unused_inputs(
jaxpr: core.Jaxpr) -> Tuple[core.Jaxpr, Set[int], Set[int]]:
used_outputs = [True] * len(jaxpr.outvars)
new_jaxpr, used_consts, used_inputs = pe.dce_jaxpr_consts(jaxpr, used_outputs)
kept_const_idx = {i for i, b in enumerate(used_consts) if b}
kept_var_idx = {i for i, b in enumerate(used_inputs) if b}
return new_jaxpr, kept_const_idx, kept_var_idx
# We can optionally set a Jaxpr rewriter that can be applied just before
# compilation. This mechanism is used for compiling id_tap, we can
# remove it once we bring the id_tap implementation into the core.
outfeed_rewriter: Optional[Callable[[core.Jaxpr], core.Jaxpr]] = None
def apply_outfeed_rewriter(jaxpr: core.Jaxpr) -> core.Jaxpr:
if outfeed_rewriter is not None:
return outfeed_rewriter(jaxpr)
else:
return jaxpr
def jaxpr_replicas(jaxpr) -> int:
"""The number of replicas needed for a jaxpr.
For a eqn, multiply the `axis_size` with the `jaxpr_replicas` of the
subjaxprs. For a list of eqns, take the maximum number of replicas.
"""
if isinstance(jaxpr, core.ClosedJaxpr):
jaxpr = jaxpr.jaxpr
return max(unsafe_map(eqn_replicas, jaxpr.eqns), default=1)
# TODO(mattjj): this function assumes that only pmap has a parameter named
# axis_size, and that it corresponds to cross-replica mapping
def eqn_replicas(eqn):
call_jaxpr = eqn.params.get("call_jaxpr")
if call_jaxpr:
return eqn.params.get('axis_size', 1) * jaxpr_replicas(call_jaxpr)
elif eqn.primitive in xla._initial_style_primitives:
return initial_style_primitive_replicas(eqn.params)
else:
return 1
def initial_style_primitive_replicas(params):
return max(core.traverse_jaxpr_params(jaxpr_replicas, params).values(), default=1)
def _xla_callable_device(nreps, backend, device,
arg_devices) -> Optional[Device]:
if nreps > 1:
if device is not None or backend is not None:
raise ValueError(f"can't specify device or backend for jit-of-pmap, "
f"got device={device} and backend={backend}")
return None
else:
# TODO(skye): dedup with C++ jit logic for determining jit device?
if device is not None:
assert backend is None
return device
if backend is not None:
return xb.get_backend(backend).get_default_device_assignment(1)[0]
arg_device = _device_from_arg_devices(arg_devices)
if arg_device is not None:
return arg_device
return config.jax_default_device
# Argument and result handlers
num_buffers_handlers: Dict[Type[core.AbstractValue],
Callable[[core.AbstractValue], int]] = {}
def aval_to_num_buffers(aval: core.AbstractValue) -> int:
"""Returns the number of buffers in the runtime representation of `aval`.
In general this may differ from the number of buffers in the compiler-IR
representation of the same value.
"""
try:
return num_buffers_handlers[type(aval)](aval)
except KeyError as err:
raise TypeError(f"No num_buffers handler for type: {type(aval)}") from err
num_buffers_handlers[core.AbstractToken] = lambda _: 1
num_buffers_handlers[core.ShapedArray] = lambda _: 1
num_buffers_handlers[core.DShapedArray] = lambda _: 1
num_buffers_handlers[core.ConcreteArray] = lambda _: 1
num_buffers_handlers[core.AbstractBInt] = lambda _: 1
def _input_handler(backend: Backend,
in_type: Optional[pe.InputType],
out_type: Optional[pe.OutputType],
) -> Optional[Callable]:
if in_type is None:
assert out_type is None
return None
in_avals, which_explicit = util.unzip2(in_type)
# Check whether we actually need an input_handler.
needs_implicit = which_explicit and not all(which_explicit)
needs_out_handling = any(type(d) is core.InDBIdx for a, _ in out_type or []
if type(a) is core.DShapedArray for d in a.shape)
if not needs_implicit and not needs_out_handling:
return None
assert config.jax_dynamic_shapes
# Precompute how to grab implicit inputs from explicit inputs' axis sizes.
which_explicit = which_explicit or [True] * len(in_avals)
implicit_idxs = {i for i, ex in enumerate(which_explicit) if not ex}
implicit_args_from_axes: List[Tuple[int, int, int]] = []
for arg_idx, aval in enumerate(in_avals):
if isinstance(aval, core.DShapedArray):
for axis_idx, d in enumerate(aval.shape):
if isinstance(d, core.DBIdx) and d.val in implicit_idxs:
implicit_args_from_axes.append((d.val, arg_idx, axis_idx))
assert {i for i, _, _ in implicit_args_from_axes} == implicit_idxs
# Precompute which input values are needed for output types.
inputs_needed_for_out_types = out_type and [
d.val for aval, _ in out_type if type(aval) is core.DShapedArray # type: ignore
for d in aval.shape if type(d) is core.InDBIdx]
def elaborate(explicit_args: Sequence[Any]) -> Tuple[Tuple, Optional[Tuple]]:
if needs_implicit:
# Build full argument list, leaving Nones for implicit arguments.
explicit_args_ = iter(explicit_args)
args = [next(explicit_args_) if ex else None for ex in which_explicit]
assert next(explicit_args_, None) is None
# Populate implicit arguments.
for i, j, k in implicit_args_from_axes:
if args[i] is None:
args[i] = args[j].shape[k] # type: ignore
else:
if args[i] != args[j].shape[k]:
raise Exception("inconsistent argument axis sizes for type")
else:
args = list(explicit_args)
if needs_out_handling:
# Make a list of inputs needed by output types, leaving unneeded as None.
out_type_env = [None] * len(args)
for i in inputs_needed_for_out_types or []:
out_type_env[i] = args[i]
else:
out_type_env = None # type: ignore
return tuple(args), out_type_env and tuple(out_type_env) # type: ignore
return elaborate
def _result_handler(backend: Backend,
sticky_device: Optional[Device],
out_type: Optional[pe.OutputType]
) -> Callable:
out_avals, kept_outputs = util.unzip2(out_type)
handlers = map(partial(aval_to_result_handler, sticky_device), out_avals)
dyn_outs = any(type(aval) is core.DShapedArray and
any(type(d) in (core.InDBIdx, core.OutDBIdx) for d in aval.shape)
for aval in out_avals)
if not dyn_outs:
return SimpleResultHandler(handlers)
assert config.jax_dynamic_shapes
def result_handler(input_env, lists_of_bufs):
results = []
for handler, bufs in unsafe_zip(handlers, lists_of_bufs):
results.append(handler((input_env, results), *bufs))
return [r for r, keep in unsafe_zip(results, kept_outputs) if keep]
return result_handler
class SimpleResultHandler:
handlers: Sequence[ResultHandler]
def __init__(self, handlers): self.handlers = handlers
def __iter__(self): return iter(self.handlers)
def __len__(self): return len(self.handlers)
def __call__(self, env, lists_of_bufs):
return tuple(h(env, *bs) for h, bs in zip(self.handlers, lists_of_bufs))
def maybe_create_array_from_da(buf, aval, device):
if config.jax_array:
from jax.experimental.array import Array
from jax.experimental.sharding import SingleDeviceSharding
return Array(aval, SingleDeviceSharding(buf.device()), [buf],
committed=(device is not None), _skip_checks=True)
else:
return device_array.make_device_array(aval, device, buf)
if MYPY:
ResultHandler = Any
else:
class ResultHandler(Protocol):
def __call__(self, env: Optional[Sequence[Any]], *args: xla.Buffer) -> Any:
"""Boxes raw buffers into their user-facing representation."""
def aval_to_result_handler(sticky_device: Optional[Device],
aval: core.AbstractValue) -> ResultHandler:
try:
return result_handlers[type(aval)](sticky_device, aval)
except KeyError as err:
raise TypeError(f"No result handler for type: {type(aval)}") from err
def array_result_handler(sticky_device: Optional[Device],
aval: core.ShapedArray):
if aval.dtype == dtypes.float0:
return lambda _, __: np.zeros(aval.shape, dtypes.float0)
aval = core.raise_to_shaped(aval)
if core.is_opaque_dtype(aval.dtype):
return aval.dtype._rules.result_handler(sticky_device, aval)
handler = lambda _, b: maybe_create_array_from_da(b, aval, sticky_device)
handler.args = aval, sticky_device # for C++ dispatch path in api.py
return handler
def dynamic_array_result_handler(sticky_device: Optional[Device],
aval: core.DShapedArray):
if aval.dtype == dtypes.float0:
return lambda _: np.zeros(aval.shape, dtypes.float0) # type: ignore
else:
return partial(_dynamic_array_result_handler, sticky_device, aval)
def _dynamic_array_result_handler(sticky_device, aval, env, buf):
in_env, out_env = env or (None, None)
shape = [in_env[d.val] if type(d) is core.InDBIdx else
out_env[d.val] if type(d) is core.OutDBIdx else d
for d in aval.shape]
if all(type(d) is int for d in shape):
aval = core.ShapedArray(tuple(shape), aval.dtype)
return maybe_create_array_from_da(buf, aval, sticky_device)
elif any(type(d) is core.BInt for d in shape):
padded_shape = [d.bound if type(d) is core.BInt else d for d in shape]
buf_aval = core.ShapedArray(tuple(padded_shape), aval.dtype, aval.weak_type)
data = maybe_create_array_from_da(buf, buf_aval, sticky_device)
return core.PaddedArray(aval.update(shape=tuple(shape)), data)
else:
aval = core.ShapedArray(tuple(shape), aval.dtype)
return maybe_create_array_from_da(buf, aval, sticky_device)
result_handlers: Dict[
Type[core.AbstractValue],
Callable[[Optional[Device], Any], ResultHandler]] = {}
result_handlers[core.AbstractToken] = lambda _, __: lambda _, __: core.token
result_handlers[core.ShapedArray] = array_result_handler
result_handlers[core.DShapedArray] = dynamic_array_result_handler
result_handlers[core.ConcreteArray] = array_result_handler
result_handlers[core.AbstractBInt] = \
lambda _, a: lambda _, b: core.BInt(int(b), a.bound)
def needs_check_special():
return config.jax_debug_infs or config.jax_debug_nans
def check_special(name, bufs):
if needs_check_special():
for buf in bufs:
_check_special(name, buf.xla_shape(), buf)
def _check_special(name, xla_shape, buf):
assert not xla_shape.is_tuple()
if dtypes.issubdtype(xla_shape.element_type(), np.inexact):
if config.jax_debug_nans and np.any(np.isnan(np.asarray(buf))):
raise FloatingPointError(f"invalid value (nan) encountered in {name}")
if config.jax_debug_infs and np.any(np.isinf(np.asarray(buf))):
raise FloatingPointError(f"invalid value (inf) encountered in {name}")
def _add_tokens(has_unordered_effects: bool, ordered_effects: List[core.Effect],
has_host_callbacks: bool, device: Device, input_bufs):
tokens = [runtime_tokens.get_token(eff, device) for eff in ordered_effects]
tokens_flat = flatten(tokens)
input_bufs = [*tokens_flat, *input_bufs]
def _remove_tokens(output_bufs, runtime_token):
# TODO(sharadmv): simplify when minimum jaxlib version is bumped
num_output_tokens = len(ordered_effects) + (not can_execute_with_token and
has_unordered_effects)
token_bufs, output_bufs = util.split_list(output_bufs, [num_output_tokens])
if has_unordered_effects or has_host_callbacks:
if can_execute_with_token:
runtime_tokens.set_output_runtime_token(device, runtime_token)
else:
output_token_buf, *token_bufs = token_bufs
runtime_tokens.set_output_token(device, output_token_buf)
for eff, token_buf in zip(ordered_effects, token_bufs):
runtime_tokens.update_token(eff, token_buf)
return output_bufs
return input_bufs, _remove_tokens
def _execute_compiled(name: str, compiled: XlaExecutable,
input_handler: Optional[Callable],
output_buffer_counts: Sequence[int],
result_handler: Callable,
has_unordered_effects: bool,
ordered_effects: List[core.Effect],
kept_var_idx, has_host_callbacks: bool, *args):
device, = compiled.local_devices()
args, env = input_handler(args) if input_handler else (args, None)
in_flat = flatten(device_put(x, device) for i, x in enumerate(args)
if i in kept_var_idx)
if has_unordered_effects or ordered_effects or has_host_callbacks:
in_flat, token_handler = _add_tokens(
has_unordered_effects, ordered_effects, has_host_callbacks, device,
in_flat)
if can_execute_with_token:
out_flat, runtime_token = compiled.execute_with_token(in_flat)
else:
out_flat = compiled.execute(in_flat)
runtime_token = None
else:
out_flat = compiled.execute(in_flat)
check_special(name, out_flat)
out_bufs = unflatten(out_flat, output_buffer_counts)
if ordered_effects or has_unordered_effects or has_host_callbacks:
out_bufs = token_handler(out_bufs, runtime_token)
return result_handler(env, out_bufs)
def _execute_replicated(name: str, compiled: XlaExecutable,
input_handler: Optional[Callable],
output_buffer_counts: Sequence[int],
result_handler: Callable,
has_unordered_effects: bool,
ordered_effects: List[core.Effect],
kept_var_idx, has_host_callbacks: bool,
*args, from_lower_sharding_computation: bool = False):
if has_unordered_effects or ordered_effects:
# TODO(sharadmv): support jit-of-pmap with effects
raise NotImplementedError(
"Cannot execute replicated computation with effects.")
if input_handler: raise NotImplementedError # TODO(mattjj, dougalm)
input_bufs = [flatten(device_put(x, device) for i, x in enumerate(args)
if i in kept_var_idx)
for device in compiled.local_devices()]
input_bufs_flip = list(unsafe_zip(*input_bufs))
out_bufs_flat_rep = compiled.execute_sharded_on_local_devices(input_bufs_flip)
out_flat = [bufs[0] for bufs in out_bufs_flat_rep]
check_special(name, out_flat)
out_bufs = unflatten(out_flat, output_buffer_counts)
if from_lower_sharding_computation:
return result_handler(out_bufs)
return result_handler(None, out_bufs)
def _execute_trivial(jaxpr, device: Optional[Device], consts, avals, handlers,
has_unordered_effects: bool,
ordered_effects: List[core.Effect], kept_var_idx,
host_callbacks, *args):
env: Dict[core.Var, Any] = {}
pruned_args = (x for i, x in enumerate(args) if i in kept_var_idx)
map(env.setdefault, jaxpr.invars, pruned_args)
map(env.setdefault, jaxpr.constvars, consts)
outs = [xla.canonicalize_dtype(v.val) if type(v) is core.Literal else env[v]
for v in jaxpr.outvars]
return [_copy_device_array_to_device(x, device) if device_array.type_is_device_array(x)
else h(None, *device_put(x, device)) for h, x in zip(handlers, outs)]
class XlaComputation(stages.XlaLowering):
name: str
_is_trivial: bool
_executable: Optional[XlaCompiledComputation]
_donated_invars: Optional[Sequence[bool]]
def __init__(self, name: str, hlo, is_trivial: bool,
donated_invars: Optional[Sequence[bool]],
in_type: Optional[pe.InputType],
out_type: Optional[pe.OutputType],
**compile_args):
self.name = name
self._hlo = hlo
self._is_trivial = is_trivial
self._donated_invars = donated_invars
self._in_type = in_type
self._out_type = out_type
self._executable = None
self.compile_args = compile_args
def is_trivial(self):
return self._is_trivial
# -- stages.XlaLowering overrides
def hlo(self) -> xc.XlaComputation:
if self.is_trivial():
raise ValueError("A trivial computation has no HLO")
if isinstance(self._hlo, xc.XlaComputation):
return self._hlo
return xe.mlir.mlir_module_to_xla_computation(
mlir.module_to_string(self._hlo),
use_tuple_args=self.compile_args["tuple_args"])
def mhlo(self) -> ir.Module:
if self.is_trivial():
raise ValueError("A trivial computation has no MHLO")
if isinstance(self._hlo, xc.XlaComputation):
module_str = xe.mlir.xla_computation_to_mlir_module(self._hlo)
with mlir.make_ir_context():
return ir.Module.parse(module_str)
return self._hlo
def compile(self) -> XlaCompiledComputation:
if self._executable is None:
if self.is_trivial():
self._executable = XlaCompiledComputation.from_trivial_jaxpr(
**self.compile_args)
else:
self._executable = XlaCompiledComputation.from_xla_computation(
self.name, self._hlo, self._in_type, self._out_type,
**self.compile_args)
return self._executable
@profiler.annotate_function
def backend_compile(backend, built_c, options, host_callbacks):
# we use a separate function call to ensure that XLA compilation appears
# separately in Python profiling results
if host_callbacks:
return backend.compile(built_c, compile_options=options,
host_callbacks=host_callbacks)
# Some backends don't have `host_callbacks` option yet
# TODO(sharadmv): remove this fallback when all backends allow `compile`
# to take in `host_callbacks`
return backend.compile(built_c, compile_options=options)
# TODO(phawkins): update users.
xla.backend_compile = backend_compile
_ir_dump_counter = itertools.count()
def _make_string_safe_for_filename(s: str) -> str:
return re.sub(r'[^\w.)( -]', '', s)
def _dump_ir_to_file(name: str, ir: str):
id = next(_ir_dump_counter)
name = f"jax_ir{id}_{_make_string_safe_for_filename(name)}.mlir"
name = epath.Path(FLAGS.jax_dump_ir_to) / name
name.write_text(ir)
def compile_or_get_cached(backend, computation: ir.Module, compile_options,
host_callbacks):
# Avoid import cycle between jax and jax.experimental
from jax.experimental.compilation_cache import compilation_cache as cc
sym_name = computation.operation.attributes['sym_name']
module_name = ir.StringAttr(sym_name).value
# Convert ir.Module to a string representation, unless the
# back-end expliclity flags the ability to handle a module directly
# (avoiding the overhead of back and forth conversions)
serialized_computation: Union[str, bytes, ir.Module]
if getattr(backend, "needs_str_ir", True):
if xc.mlir_api_version >= 34:
serialized_computation = mlir.module_to_bytecode(computation)
else:
serialized_computation = mlir.module_to_string(computation)
else:
serialized_computation = computation
# Persistent compilation cache only implemented on TPU.
# TODO(skye): add warning when initializing cache on unsupported default platform
supported_platforms = ["tpu"]
# GPU caching can be enabled if JitRt is enabled.
# TODO(b/232263664): Remove check when JitRt is enabled by default.
if "--xla_gpu_enable_xla_runtime_executable=true" in os.environ.get("XLA_FLAGS", ""):
supported_platforms.append("gpu")
if cc.is_initialized() and backend.platform in supported_platforms:
cached_executable = cc.get_executable(serialized_computation,
compile_options, backend)
if cached_executable is not None:
logging.info('Persistent compilation cache hit for %s.', module_name)
return cached_executable
else:
compiled = backend_compile(backend, serialized_computation,
compile_options, host_callbacks)
cc.put_executable(module_name, serialized_computation, compile_options,
compiled, backend)
return compiled
if FLAGS.jax_dump_ir_to:
_dump_ir_to_file(module_name, mlir.module_to_string(computation))
return backend_compile(backend, serialized_computation, compile_options,
host_callbacks)
def get_buffer_counts(out_avals, ordered_effects, has_unordered_effects):
buffer_counts = [aval_to_num_buffers(aval) for aval in out_avals]
if ordered_effects or has_unordered_effects:
num_output_tokens = len(ordered_effects)
# TODO(sharadmv): remove check when minimum jaxlib version is bumped
if not can_execute_with_token:
num_output_tokens += has_unordered_effects
buffer_counts = ([1] * num_output_tokens) + buffer_counts
return buffer_counts
class XlaCompiledComputation(stages.XlaExecutable):
def __init__(self, xla_executable, in_avals, kept_var_idx, unsafe_call,
keepalive: Any):
self._xla_executable = xla_executable
self.in_avals = in_avals
self._kept_var_idx = kept_var_idx
self.unsafe_call = unsafe_call
# Only the `unsafe_call` function is cached, so to avoid the `keepalive`
# being garbage collected we attach it to `unsafe_call`.
self.unsafe_call.keepalive = keepalive
@staticmethod
def from_xla_computation(name: str, xla_computation: Optional[ir.Module],
in_type: Optional[pe.InputType],
out_type: Optional[pe.OutputType], nreps: int,
device: Optional[Device], backend: Backend,
tuple_args: bool,
in_avals: Sequence[core.AbstractValue],
out_avals: Sequence[core.AbstractValue],
has_unordered_effects: bool,
ordered_effects: List[core.Effect],
kept_var_idx: Set[int], keepalive: Optional[Any],
host_callbacks: List[Any]) -> XlaCompiledComputation:
sticky_device = device
input_handler = _input_handler(backend, in_type, out_type)
result_handler = _result_handler(backend, sticky_device, out_type)
options = xb.get_compile_options(
num_replicas=nreps, num_partitions=1,
device_assignment=(sticky_device,) if sticky_device else None)
options.parameter_is_tupled_arguments = tuple_args
with log_elapsed_time(f"Finished XLA compilation of {name} "
"in {elapsed_time} sec"):
compiled = compile_or_get_cached(backend, xla_computation, options,
host_callbacks)
buffer_counts = get_buffer_counts(out_avals, ordered_effects,
has_unordered_effects)
execute = _execute_compiled if nreps == 1 else _execute_replicated
unsafe_call = partial(execute, name, compiled, input_handler, buffer_counts, # type: ignore # noqa: F811
result_handler, has_unordered_effects,
ordered_effects, kept_var_idx, bool(host_callbacks))
return XlaCompiledComputation(compiled, in_avals, kept_var_idx, unsafe_call,
keepalive)
def is_trivial(self):
return self._xla_executable == None
@property
def xla_executable(self):
# TODO(frostig): remove in favor of runtime_executable?
if self.is_trivial():
raise ValueError("A trivial compiled computation has no XLA executable")
return self._xla_executable
@staticmethod
def from_trivial_jaxpr(jaxpr, consts, device, in_avals, out_avals,
has_unordered_effects, ordered_effects, kept_var_idx,
keepalive: Optional[Any],
host_callbacks: List[Any]) -> XlaCompiledComputation:
assert keepalive is None
result_handlers = map(partial(aval_to_result_handler, device), out_avals)
unsafe_call = partial(_execute_trivial, jaxpr, device, consts, out_avals,
result_handlers, has_unordered_effects,
ordered_effects, kept_var_idx, bool(host_callbacks))
return XlaCompiledComputation(None, in_avals, kept_var_idx, unsafe_call,
keepalive)
# -- stages.XlaExecutable overrides
def xla_extension_executable(self):
return self.xla_executable
def call(self, *args):
arg_specs = unsafe_map(arg_spec, args)
arg_avals = [spec[0] for i, spec in enumerate(arg_specs)
if i in self._kept_var_idx]
check_arg_avals_for_call(self.in_avals, arg_avals)
return self.unsafe_call(*args)
def check_arg_avals_for_call(ref_avals, arg_avals):
if len(ref_avals) != len(arg_avals):
raise TypeError(
f"Computation compiled for {len(ref_avals)} inputs "
f"but called with {len(arg_avals)}")
for ref_aval, arg_aval in zip(ref_avals, arg_avals):
if not core.typematch(ref_aval, arg_aval):
ref_avals_fmt = ', '.join(str(a) for a in ref_avals)
arg_avals_fmt = ', '.join(str(a) for a in arg_avals)
raise TypeError(
f"Computation compiled for input types:\n {ref_avals_fmt}\n"
f"called with:\n {arg_avals_fmt}")
def device_put(x, device: Optional[Device] = None) -> Tuple[Any, ...]:
x = xla.canonicalize_dtype(x)
try:
return device_put_handlers[type(x)](x, device)
except KeyError as err:
raise TypeError(f"No device_put handler for type: {type(x)}") from err
# TODO(phawkins): update users.
xla.device_put = device_put
def _device_put_array(x, device: Optional[Device]):
backend = xb.get_device_backend(device)
if x.dtype == dtypes.float0:
x = np.zeros(x.shape, dtype=np.dtype(bool))
return (backend.buffer_from_pyval(x, device),)
def _device_put_scalar(x, device):
return _device_put_array(dtypes.coerce_to_array(x), device)
def _device_put_token(_, device):
backend = xb.get_device_backend(device)
return (backend.buffer_from_pyval(np.zeros((), dtype=np.dtype(np.bool_)),
device),)
_scalar_types = dtypes.python_scalar_dtypes.keys()
device_put_handlers: Dict[Any, Callable[[Any, Optional[Device]],
Tuple[Any, ...]]] = {}
device_put_handlers.update((t, _device_put_array) for t in array_types)
device_put_handlers.update((t, _device_put_scalar) for t in _scalar_types)
device_put_handlers[core.Token] = _device_put_token
device_put_handlers[core.BInt] = lambda x, d: _device_put_scalar(x.val, d)
def _device_put_device_array(x: Union[device_array.DeviceArrayProtocol, device_array._DeviceArray], device: Optional[Device]):
x = _copy_device_array_to_device(x, device)
return (x.device_buffer,)
for t in device_array.device_array_types:
device_put_handlers[t] = _device_put_device_array
device_put_handlers[core.PaddedArray] = lambda x, d: device_put(x._data, d)
def _copy_device_array_to_device(
x: Union[device_array.DeviceArrayProtocol, device_array._DeviceArray],
device: Optional[xc.Device]
) -> Union[device_array.DeviceArrayProtocol, device_array._DeviceArray]:
if device is None:
# no copying to be done because there's no target specified
return x
elif xb.get_device_backend(device).platform == x.device_buffer.platform():
# source and target platforms are the same
if x.device_buffer.device() == device:
# no copying to be done because source equals target
if x._device == device:
return x
else:
moved_buf = x.device_buffer # We need to change stickyness
else:
# move the buffer with a device-to-device copy
moved_buf = x.device_buffer.copy_to_device(device)
else:
# buffers from different XLA backends are passed through the host.
backend = xb.get_device_backend(device)
moved_buf = backend.buffer_from_pyval(np.asarray(x.device_buffer), device)
return device_array.make_device_array(x.aval, device, moved_buf)
def _copy_array_to_device(x: Array, device: Optional[xc.Device]) -> Array:
"""Copies `Array`s with SingleDeviceSharding to a different device."""
from jax.experimental import array, sharding
if device is None:
# no copying to be done because there's no target specified
return x
buf = x._arrays[0]
if xb.get_device_backend(device).platform == buf.platform():
# source and target platforms are the same
if x.device() == device:
# no copying to be done because source equals target
if x._committed:
return x
else:
moved_buf = buf # We need to change stickyness
else:
# move the buffer with a device-to-device copy
moved_buf = buf.copy_to_device(device)
else:
# buffers from different XLA backends are passed through the host.
backend = xb.get_device_backend(device)
moved_buf = backend.buffer_from_pyval(np.asarray(buf), device)
return array.Array(
x.aval, sharding.SingleDeviceSharding(moved_buf.device()), [moved_buf],
committed=(device is not None))
def _device_put_impl(x, device: Optional[Device] = None):
from jax.experimental import array, sharding
if device_array.type_is_device_array(x):
return _copy_device_array_to_device(x, device)
if type(x) is array.Array and isinstance(x.sharding, sharding.SingleDeviceSharding):
return _copy_array_to_device(x, device)
try:
a = xla.abstractify(x)
except TypeError as err:
raise TypeError(
f"Argument '{x}' of type {type(x)} is not a valid JAX type") from err
return aval_to_result_handler(device, a)(None, *device_put(x, device))
device_put_p = core.Primitive('device_put')
device_put_p.def_impl(_device_put_impl)
device_put_p.def_abstract_eval(lambda x, device=None: x)
ad.deflinear2(device_put_p, lambda cotangent, _, **kwargs: [cotangent])
batching.defvectorized(device_put_p)
def _device_put_lowering(ctx, x, *, device):
return [x]
mlir.register_lowering(device_put_p, _device_put_lowering)