rocm_jax/examples/mnist_vae.py

142 lines
5.0 KiB
Python

# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A basic variational autoencoder (VAE) on binarized MNIST using Numpy and JAX.
This file uses the stax network definition library and the minmax optimization
library.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
import matplotlib.pyplot as plt
import jax.numpy as np
from jax.config import config
from jax import jit, grad, lax, random
from jax.experimental import minmax
from jax.experimental import stax
from jax.experimental.stax import Dense, FanOut, Relu, Softplus
from examples import datasets
def gaussian_kl(mu, sigmasq):
"""KL divergence from a diagonal Gaussian to the standard Gaussian."""
return -0.5 * np.sum(1. + np.log(sigmasq) - mu**2. - sigmasq)
def gaussian_sample(rng, mu, sigmasq):
"""Sample a diagonal Gaussian."""
return mu + np.sqrt(sigmasq) * random.normal(rng, mu.shape)
def bernoulli_logpdf(logits, x):
"""Bernoulli log pdf of data x given logits."""
return -np.sum(np.logaddexp(0., np.where(x, -1., 1.) * logits))
def elbo(rng, params, images):
"""Monte Carlo estimate of the negative evidence lower bound."""
enc_params, dec_params = params
mu_z, sigmasq_z = encode(enc_params, images)
logits_x = decode(dec_params, gaussian_sample(rng, mu_z, sigmasq_z))
return bernoulli_logpdf(logits_x, images) - gaussian_kl(mu_z, sigmasq_z)
def image_sample(rng, params, nrow, ncol):
"""Sample images from the generative model."""
_, dec_params = params
code_rng, img_rng = random.split(rng)
logits = decode(dec_params, random.normal(code_rng, (nrow * ncol, 10)))
sampled_images = random.bernoulli(img_rng, np.logaddexp(0., logits))
return image_grid(nrow, ncol, sampled_images, (28, 28))
def image_grid(nrow, ncol, imagevecs, imshape):
"""Reshape a stack of image vectors into an image grid for plotting."""
images = iter(imagevecs.reshape((-1,) + imshape))
return np.vstack([np.hstack([next(images).T for _ in range(ncol)][::-1])
for _ in range(nrow)]).T
encoder_init, encode = stax.serial(
Dense(512), Relu,
Dense(512), Relu,
FanOut(2),
stax.parallel(Dense(10), stax.serial(Dense(10), Softplus)),
)
decoder_init, decode = stax.serial(
Dense(512), Relu,
Dense(512), Relu,
Dense(28 * 28),
)
if __name__ == "__main__":
step_size = 0.001
num_epochs = 100
batch_size = 32
nrow, ncol = 10, 10 # sampled image grid size
rng = random.PRNGKey(0)
test_rng = random.PRNGKey(1) # fixed prng key for evaluation
imfile = os.path.join(os.getenv("TMPDIR", "/tmp/"), "mnist_vae_{:03d}.png")
train_images, _, test_images, _ = datasets.mnist(permute_train=True)
num_complete_batches, leftover = divmod(train_images.shape[0], batch_size)
num_batches = num_complete_batches + bool(leftover)
_, init_encoder_params = encoder_init((batch_size, 28 * 28))
_, init_decoder_params = decoder_init((batch_size, 10))
init_params = init_encoder_params, init_decoder_params
opt_init, opt_update = minmax.momentum(step_size, mass=0.9)
def binarize_batch(rng, i, images):
i = i % num_batches
batch = lax.dynamic_slice_in_dim(images, i * batch_size, batch_size)
return random.bernoulli(rng, batch)
@jit
def run_epoch(rng, opt_state):
def body_fun(i, rng__opt_state__images):
(rng, opt_state, images) = rng__opt_state__images
rng, elbo_rng, data_rng = random.split(rng, 3)
batch = binarize_batch(data_rng, i, images)
loss = lambda params: -elbo(elbo_rng, params, batch) / batch_size
g = grad(loss)(minmax.get_params(opt_state))
return rng, opt_update(i, g, opt_state), images
init_val = rng, opt_state, train_images
_, opt_state, _ = lax.fori_loop(0, num_batches, body_fun, init_val)
return opt_state
@jit
def evaluate(opt_state, images):
params = minmax.get_params(opt_state)
elbo_rng, data_rng, image_rng = random.split(test_rng, 3)
binarized_test = random.bernoulli(data_rng, images)
test_elbo = elbo(elbo_rng, params, binarized_test) / images.shape[0]
sampled_images = image_sample(image_rng, params, nrow, ncol)
return test_elbo, sampled_images
opt_state = opt_init(init_params)
for epoch in range(num_epochs):
tic = time.time()
rng, epoch_rng = random.split(rng)
opt_state = run_epoch(epoch_rng, opt_state)
test_elbo, sampled_images = evaluate(opt_state, test_images)
print("{: 3d} {} ({:.3f} sec)".format(epoch, test_elbo, time.time() - tic))
plt.imsave(imfile.format(epoch), sampled_images, cmap=plt.cm.gray)