rocm_jax/jaxlib/gpu_rnn.py
Dan Foreman-Mackey c6e83903de Update RNN kernels to use FFI.
PiperOrigin-RevId: 724151647
2025-02-06 18:27:58 -08:00

162 lines
6.5 KiB
Python

# Copyright 2022 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
import importlib
import jaxlib.mlir.ir as ir
import jaxlib.mlir.dialects.stablehlo as hlo
import numpy as np
from jaxlib import xla_client
from .gpu_common_utils import GpuLibNotLinkedError
for cuda_module_name in [".cuda", "jax_cuda12_plugin"]:
try:
_cuda_rnn = importlib.import_module(f"{cuda_module_name}._rnn", package="jaxlib")
except ImportError:
_cuda_rnn = None
else:
break
if _cuda_rnn:
for _name, _value in _cuda_rnn.registrations().items():
api_version = 1 if _name.endswith("_ffi") else 0
xla_client.register_custom_call_target(_name, _value, platform='CUDA',
api_version=api_version)
compute_rnn_workspace_reserve_space_sizes = _cuda_rnn.compute_rnn_workspace_reserve_space_sizes
for rocm_module_name in [".rocm", "jax_rocm60_plugin"]:
try:
_hip_rnn = importlib.import_module(f"{rocm_module_name}._rnn", package="jaxlib")
except ImportError:
_hip_rnn = None
else:
break
if _hip_rnn:
for _name, _value in _hip_rnn.registrations().items():
api_version = 1 if _name.endswith("_ffi") else 0
xla_client.register_custom_call_target(_name, _value, platform='ROCM',
api_version=api_version)
compute_rnn_workspace_reserve_space_sizes = _hip_rnn.compute_rnn_workspace_reserve_space_sizes
def _rnn_fwd_lowering(_rnn, platform, ctx, input, h_0, c_0, weights, seq_lengths, *,
input_size: int, hidden_size: int, num_layers: int,
dropout: bool, bidirectional: bool,
cudnn_allow_tf32: bool):
"""CuDnn RNN."""
out_dtype = ctx.avals_out[0].dtype
if out_dtype == np.float32:
out_type = ir.F32Type.get()
elif out_dtype == np.float64:
out_type = ir.F64Type.get()
elif out_dtype == np.complex64:
out_type = ir.ComplexType.get(ir.F32Type.get())
elif out_dtype == np.complex128:
out_type = ir.ComplexType.get(ir.F64Type.get())
else:
raise ValueError(f'Unknown output type {out_dtype}')
output_type = ir.RankedTensorType.get(ctx.avals_out[0].shape, out_type)
batch_size = ctx.avals_in[0].shape[0]
max_seq_length = ctx.avals_in[0].shape[1]
# workspace_shape = ctx.avals_out[3].shape
workspace_size, _ = compute_rnn_workspace_reserve_space_sizes(
input_size, hidden_size, num_layers, batch_size, max_seq_length,
dropout, bidirectional, cudnn_allow_tf32)
workspace_shape = (workspace_size,)
workspace_type = ir.RankedTensorType.get(workspace_shape, ir.F32Type.get())
reserve_space_shape = ctx.avals_out[3].shape
reserve_space_type = ir.RankedTensorType.get(reserve_space_shape,
ir.F32Type.get())
if not _rnn:
raise GpuLibNotLinkedError()
opaque = _rnn.build_rnn_descriptor(input_size, hidden_size, num_layers,
batch_size, max_seq_length, dropout,
bidirectional, cudnn_allow_tf32,
workspace_shape[0],
reserve_space_shape[0])
i32_type = ir.IntegerType.get_signless(32)
out = hlo.CustomCallOp(
[output_type, h_0.type, c_0.type, workspace_type, reserve_space_type],
[input, h_0, c_0, weights, seq_lengths],
call_target_name=ir.StringAttr.get(f"{platform}dnn_rnn_ffi"),
has_side_effect=ir.BoolAttr.get(False),
backend_config=ir.DictAttr.get({"opaque": ir.StringAttr.get(opaque)}),
api_version=ir.IntegerAttr.get(i32_type, 4),
called_computations=ir.ArrayAttr.get([]),
)
return out.results[:-2] + out.results[-1:] # drop workspace output
cudnn_rnn_lowering = partial(_rnn_fwd_lowering, _cuda_rnn, "cu")
miopen_rnn_lowering = partial(_rnn_fwd_lowering, _hip_rnn, "hip")
def _hlo_zeros_f32(shape):
return hlo.constant(
ir.DenseElementsAttr.get(
np.zeros(shape, dtype=np.float32), type=ir.F32Type.get()))
def _rnn_bwd_lowering(_rnn, platform, ctx, dy, dhn, dcn, x, h0, c0, w, y,
reserve_space, seq_lengths, *, input_size: int,
hidden_size: int, num_layers: int, dropout: bool,
bidirectional: bool, cudnn_allow_tf32: bool):
"""CuDnn RNN Backward pass."""
batch_size = ctx.avals_in[3].shape[0]
max_seq_length = ctx.avals_in[3].shape[1]
workspace_size, _ = compute_rnn_workspace_reserve_space_sizes(
input_size, hidden_size, num_layers, batch_size, max_seq_length,
dropout, bidirectional, cudnn_allow_tf32)
workspace_shape = (workspace_size,)
workspace_type = ir.RankedTensorType.get(workspace_shape, ir.F32Type.get())
reserve_space_shape = ctx.avals_in[8].shape
if _rnn is None:
raise RuntimeError("cuda couldn't be imported")
opaque = _rnn.build_rnn_descriptor(input_size, hidden_size, num_layers,
batch_size, max_seq_length, dropout,
bidirectional, cudnn_allow_tf32,
workspace_shape[0],
reserve_space_shape[0])
i32_type = ir.IntegerType.get_signless(32)
zeroed_dw = _hlo_zeros_f32(ctx.avals_out[3].shape)
out = hlo.CustomCallOp(
[x.type, h0.type, c0.type, w.type, workspace_type], [
dy, dhn, dcn, x, h0, c0, w, y, reserve_space, zeroed_dw,
seq_lengths
],
call_target_name=ir.StringAttr.get(f"{platform}dnn_rnn_bwd_ffi"),
has_side_effect=ir.BoolAttr.get(False),
backend_config=ir.DictAttr.get({"opaque": ir.StringAttr.get(opaque)}),
api_version=ir.IntegerAttr.get(i32_type, 4),
called_computations=ir.ArrayAttr.get([]),
output_operand_aliases=ir.ArrayAttr.get([
hlo.OutputOperandAlias.get(
output_tuple_indices=[3],
operand_index=9,
operand_tuple_indices=[])
]))
return out.results[:-1] # drop workspace output
cudnn_rnn_bwd_lowering = partial(_rnn_bwd_lowering, _cuda_rnn, "cu")
miopen_rnn_bwd_lowering = partial(_rnn_bwd_lowering, _hip_rnn, "hip")