rocm_jax/tests/infeed_test.py
Matthew Johnson 4236eb2b59
omnistaging, under a flag and disabled by default (#3370)
This change, when enabled, stages out all primitive calls in the dynamic
scope of a jitted, pmapped, or control flow function, rather than only
staging out based on data dependence. One improvement is that jitted
functions can consume less memory, by avoiding instantiating large
constants at trace time, and cause less memory fragmentation as well. It
also simplifies several internals.

See https://github.com/google/jax/pull/3370 fo more information.
2020-07-30 12:59:36 -07:00

102 lines
3.2 KiB
Python

# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import threading
from absl.testing import absltest
import jax
from jax import lax, numpy as jnp
from jax import config
from jax.experimental import host_callback as hcb
from jax.lib import xla_client
import jax.test_util as jtu
import numpy as np
config.parse_flags_with_absl()
FLAGS = config.FLAGS
class InfeedTest(jtu.JaxTestCase):
def testInfeed(self):
@jax.jit
def f(x):
token = lax.create_token(x)
(y,), token = lax.infeed(
token, shape=(jax.ShapedArray((3, 4), jnp.float32),))
(z,), _ = lax.infeed(
token, shape=(jax.ShapedArray((3, 1, 1), jnp.float32),))
return x + y + z
x = np.float32(1.5)
y = np.reshape(np.arange(12, dtype=np.float32), (3, 4)) # np.random.randn(3, 4).astype(np.float32)
z = np.random.randn(3, 1, 1).astype(np.float32)
device = jax.local_devices()[0]
device.transfer_to_infeed((y,))
device.transfer_to_infeed((z,))
self.assertAllClose(f(x), x + y + z)
def testInfeedThenOutfeed(self):
hcb.stop_outfeed_receiver()
@jax.jit
def f(x):
token = lax.create_token(x)
y, token = lax.infeed(
token, shape=jax.ShapedArray((3, 4), jnp.float32))
token = lax.outfeed(token, y + np.float32(1))
return x - 1 if config.omnistaging_enabled else lax.tie_in(token, x - 1)
x = np.float32(7.5)
y = np.random.randn(3, 4).astype(np.float32)
execution = threading.Thread(target=lambda: f(x))
execution.start()
device = jax.local_devices()[0]
device.transfer_to_infeed((y,))
out, = device.transfer_from_outfeed(
xla_client.shape_from_pyval((y,)).with_major_to_minor_layout_if_absent())
execution.join()
self.assertAllClose(out, y + np.float32(1))
def testInfeedThenOutfeedInALoop(self):
hcb.stop_outfeed_receiver()
def doubler(_, token):
y, token = lax.infeed(
token, shape=jax.ShapedArray((3, 4), jnp.float32))
return lax.outfeed(token, y * np.float32(2))
@jax.jit
def f(n):
token = lax.create_token(n)
token = lax.fori_loop(0, n, doubler, token)
return n if config.omnistaging_enabled else lax.tie_in(token, n)
device = jax.local_devices()[0]
n = 10
execution = threading.Thread(target=lambda: f(n))
execution.start()
for _ in range(n):
x = np.random.randn(3, 4).astype(np.float32)
device.transfer_to_infeed((x,))
y, = device.transfer_from_outfeed(xla_client.shape_from_pyval((x,))
.with_major_to_minor_layout_if_absent())
self.assertAllClose(y, x * np.float32(2))
execution.join()
if __name__ == '__main__':
absltest.main(testLoader=jtu.JaxTestLoader())