rocm_jax/jax/abstract_arrays.py
2019-04-01 15:49:12 -07:00

176 lines
5.1 KiB
Python

# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as onp
import six
from . import core
from . import ad_util
from . util import prod
from .lib import xla_bridge
def concretization_err_msg(fun):
fname = getattr(fun, "__name__", fun)
msg = ("Abstract value passed to `{}`, which requires a concrete value. "
"The function to be transformed can't be traced at the required level "
"of abstraction. If using `jit`, try using `static_argnums` or "
"applying `jit` to smaller subfunctions instead.")
return msg.format(fname)
def concretization_function_error(fun):
def error(self, *args):
raise TypeError(concretization_err_msg(fun))
return error
class UnshapedArray(core.AbstractValue):
__slots__ = ['dtype']
array_abstraction_level = 3
def __init__(self, dtype):
self.dtype = dtype
def __eq__(self, other):
return type(self) is type(other) and self.dtype == other.dtype
def __hash__(self):
return hash(str(self.dtype))
def __repr__(self):
return '{}({})'.format(self.__class__.__name__, self.str_short())
_bool = _nonzero = concretization_function_error(bool)
_float = concretization_function_error(float)
_int = concretization_function_error(int)
if six.PY2:
_long = concretization_function_error(long) # noqa: F821
_complex = concretization_function_error(complex)
_hex = concretization_function_error(hex)
_oct = concretization_function_error(oct)
def at_least_vspace(self):
return self
def join(self, other):
if self.dtype == other.dtype:
return self
else:
raise TypeError(other)
def str_short(self):
return onp.dtype(self.dtype).name
class ShapedArray(UnshapedArray):
__slots__ = ['shape']
array_abstraction_level = 2
def __init__(self, shape, dtype):
self.dtype = onp.dtype(xla_bridge.canonicalize_dtype(dtype))
self.shape = shape
ndim = property(lambda self: len(self.shape))
size = property(lambda self: prod(self.shape))
def __eq__(self, other):
return (type(self) is type(other)
and self.dtype == other.dtype and self.shape == other.shape)
def __hash__(self):
return hash((self.shape, str(self.dtype)))
def at_least_vspace(self):
return self
def join(self, other):
if self.shape == other.shape and self.dtype == other.dtype:
return self
elif self.dtype == other.dtype:
return UnshapedArray(self.dtype)
else:
raise TypeError(other)
def str_short(self):
dtypestr = onp.dtype(self.dtype).name
shapestr = ','.join(map(str, self.shape))
return '{}[{}]'.format(dtypestr, shapestr)
def __len__(self):
try:
return self.shape[0]
except IndexError:
raise TypeError("len() of unsized object") # same as numpy error
def _len(self, ignored_tracer):
return len(self)
class ConcreteArray(ShapedArray):
__slots__ = ['val']
array_abstraction_level = 0
def __init__(self, val):
self.val = val
self.shape = onp.shape(val)
# canonicalized self.dtype doesn't necessarily match self.val
self.dtype = onp.dtype(xla_bridge.canonicalize_dtype(onp.result_type(val)))
assert self.dtype != onp.dtype('O')
def __eq__(self, other):
return (type(self) is type(other) and self.dtype == other.dtype
and self.shape == other.shape and onp.all(self.val == other.val))
def __hash__(self):
return id(self.val)
def at_least_vspace(self):
return ShapedArray(self.shape, self.dtype)
def join(self, other):
if self == other:
return self
elif self.shape == other.shape and self.dtype == other.dtype:
return ShapedArray(self.shape, self.dtype)
elif self.dtype == other.dtype:
return UnshapedArray(self.dtype)
else:
raise TypeError(other)
def str_short(self):
return str(self.val)
def make_shaped_array(x):
dtype = xla_bridge.canonicalize_dtype(onp.result_type(x))
return ShapedArray(onp.shape(x), dtype)
def zeros_like_array(x):
dtype = xla_bridge.canonicalize_dtype(onp.result_type(x))
return onp.broadcast_to(onp.array(0, dtype), onp.shape(x))
array_types = [onp.ndarray, onp.float64, onp.float32, onp.float16,
onp.complex64, onp.complex128,
onp.int64, onp.int32, onp.int16, onp.int8,
onp.bool_, onp.uint64, onp.uint32, onp.uint16, onp.uint8,
onp.longlong, complex, float, int, bool]
for t in array_types:
core.pytype_aval_mappings[t] = ConcreteArray
ad_util.jaxval_zeros_likers[t] = zeros_like_array