rocm_jax/jaxlib/gpu_solver.py
Peter Hawkins cb182b8b22 Use a Jacobi SVD solver for unbatched SVDs up to 1024x1024 on NVIDIA GPUs.
The unbatched Jacobi solver is faster for small-moderate matrices, and the unbatched kernel doesn't have size restrictions.

Timings on T4 GPU:

Before:

------------------------------------------------------------
Benchmark                  Time             CPU   Iterations
------------------------------------------------------------
svd/m:1/n:1           263587 ns       242274 ns         2780
svd/m:2/n:1           335561 ns       298238 ns         2303
svd/m:5/n:1           337784 ns       299841 ns         2304
svd/m:10/n:1          339184 ns       300703 ns         2311
svd/m:100/n:1         359826 ns       320088 ns         2159
svd/m:500/n:1         376124 ns       338660 ns         2076
svd/m:800/n:1         375779 ns       335590 ns         2060
svd/m:1000/n:1        419171 ns       341487 ns         2072
svd/m:1/n:2           307564 ns       270663 ns         2544
svd/m:2/n:2           320928 ns       283601 ns         2487
svd/m:5/n:2           377373 ns       344228 ns         2035
svd/m:10/n:2          380557 ns       349412 ns         1953
svd/m:100/n:2         435465 ns       403496 ns         1722
svd/m:500/n:2         444610 ns       410913 ns         1680
svd/m:800/n:2         454493 ns       416495 ns         1665
svd/m:1000/n:2        492110 ns       420539 ns         1665
svd/m:1/n:5           307316 ns       275833 ns         2531
svd/m:2/n:5           374318 ns       341432 ns         2086
svd/m:5/n:5           512928 ns       470293 ns         1361
svd/m:10/n:5          589330 ns       537070 ns         1353
svd/m:100/n:5         620164 ns       580166 ns         1193
svd/m:500/n:5         636424 ns       593692 ns         1180
svd/m:800/n:5         635545 ns       595016 ns         1181
svd/m:1000/n:5        672443 ns       597387 ns         1115
svd/m:1/n:10          310013 ns       273998 ns         2520
svd/m:2/n:10          370451 ns       334489 ns         2105
svd/m:5/n:10          560037 ns       522223 ns         1274
svd/m:10/n:10         572868 ns       535388 ns         1304
svd/m:100/n:10        959802 ns       918258 ns          765
svd/m:500/n:10        955958 ns       909778 ns          758
svd/m:800/n:10        924104 ns       879512 ns          777
svd/m:1000/n:10       950140 ns       883493 ns          775
svd/m:1/n:100         351237 ns       315554 ns         2198
svd/m:2/n:100         426883 ns       390089 ns         1792
svd/m:5/n:100         601557 ns       564493 ns         1255
svd/m:10/n:100        920819 ns       880011 ns          787
svd/m:100/n:100      7902281 ns      7229220 ns           95
svd/m:500/n:100      9720727 ns      9040679 ns           79
svd/m:800/n:100      9856378 ns      8998050 ns           79
svd/m:1000/n:100     9721017 ns      9086414 ns           79
svd/m:1/n:500         371171 ns       334217 ns         2117
svd/m:2/n:500         449165 ns       411499 ns         1700
svd/m:5/n:500         620354 ns       581866 ns         1185
svd/m:10/n:500        892375 ns       847239 ns          833
svd/m:100/n:500      9564810 ns      8867540 ns           79
svd/m:500/n:500    111924035 ns    104078023 ns            7
svd/m:800/n:500    147777319 ns    142730412 ns            5
svd/m:1000/n:500   154205084 ns    149740209 ns            5
svd/m:1/n:800         372122 ns       334212 ns         2119
svd/m:2/n:800         456672 ns       419260 ns         1680
svd/m:5/n:800         691208 ns       626003 ns         1190
svd/m:10/n:800       1017694 ns       941480 ns          730
svd/m:100/n:800      9892683 ns      9091043 ns           76
svd/m:500/n:800    144134235 ns    139129722 ns            5
svd/m:800/n:800    342790246 ns    333299774 ns            2
svd/m:1000/n:800   432820082 ns    427978978 ns            2
svd/m:1/n:1000        372785 ns       335745 ns         1805
svd/m:2/n:1000        451946 ns       413341 ns         1668
svd/m:5/n:1000        618475 ns       577213 ns         1169
svd/m:10/n:1000       907729 ns       863335 ns          808
svd/m:100/n:1000     9868543 ns      9116870 ns           76
svd/m:500/n:1000   156777811 ns    152042065 ns            5
svd/m:800/n:1000   429704070 ns    424677592 ns            2
svd/m:1000/n:1000  654864311 ns    642693162 ns            1

After:
------------------------------------------------------------
Benchmark                  Time             CPU   Iterations
------------------------------------------------------------
svd/m:1/n:1           265980 ns       245433 ns         2791
svd/m:2/n:1           340203 ns       302783 ns         2288
svd/m:5/n:1           337807 ns       301916 ns         2286
svd/m:10/n:1          338064 ns       302441 ns         2297
svd/m:100/n:1         335444 ns       298440 ns         2327
svd/m:500/n:1         338025 ns       302096 ns         2272
svd/m:800/n:1         328382 ns       291740 ns         2252
svd/m:1000/n:1        397494 ns       310905 ns         2239
svd/m:1/n:2           310464 ns       274507 ns         2535
svd/m:2/n:2           319999 ns       284247 ns         2515
svd/m:5/n:2           373435 ns       335919 ns         2069
svd/m:10/n:2          376327 ns       339327 ns         2056
svd/m:100/n:2         385061 ns       349258 ns         2003
svd/m:500/n:2         392352 ns       355735 ns         1932
svd/m:800/n:2         410736 ns       370677 ns         1881
svd/m:1000/n:2        494326 ns       405603 ns         1721
svd/m:1/n:5           316735 ns       277292 ns         2538
svd/m:2/n:5           383748 ns       342218 ns         2077
svd/m:5/n:5           494204 ns       454309 ns         1476
svd/m:10/n:5          547017 ns       508184 ns         1371
svd/m:100/n:5         514537 ns       476761 ns         1460
svd/m:500/n:5         544656 ns       504877 ns         1381
svd/m:800/n:5         642590 ns       599314 ns         1159
svd/m:1000/n:5        706166 ns       621209 ns         1106
svd/m:1/n:10          310825 ns       274374 ns         2511
svd/m:2/n:10          381316 ns       344202 ns         2094
svd/m:5/n:10          565469 ns       526759 ns         1266
svd/m:10/n:10         576111 ns       537286 ns         1299
svd/m:100/n:10        653250 ns       613392 ns         1137
svd/m:500/n:10        690532 ns       645828 ns         1080
svd/m:800/n:10        763924 ns       723677 ns          959
svd/m:1000/n:10       940342 ns       855517 ns          818
svd/m:1/n:100         306134 ns       271533 ns         2526
svd/m:2/n:100         374680 ns       339298 ns         2071
svd/m:5/n:100         576926 ns       539062 ns         1228
svd/m:10/n:100        656806 ns       615171 ns         1123
svd/m:100/n:100      3295164 ns      3138621 ns          223
svd/m:500/n:100      4269347 ns      4166000 ns          168
svd/m:800/n:100      4656541 ns      4522247 ns          154
svd/m:1000/n:100     6479223 ns      6354578 ns          112
svd/m:1/n:500         329966 ns       289083 ns         2440
svd/m:2/n:500         407535 ns       366794 ns         1947
svd/m:5/n:500         567367 ns       522809 ns         1336
svd/m:10/n:500        712307 ns       657608 ns         1065
svd/m:100/n:500      4262986 ns      4169907 ns          167
svd/m:500/n:500     28824720 ns     28650258 ns           25
svd/m:800/n:500     29330139 ns     28677269 ns           25
svd/m:1000/n:500    30848037 ns     30089216 ns           23
svd/m:1/n:800         328620 ns       289181 ns         2329
svd/m:2/n:800         419052 ns       379483 ns         1876
svd/m:5/n:800         587366 ns       546979 ns         1269
svd/m:10/n:800        830762 ns       787923 ns          893
svd/m:100/n:800      4763633 ns      4595738 ns          152
svd/m:500/n:800     30447861 ns     29949714 ns           24
svd/m:800/n:800     94188958 ns     93488372 ns            8
svd/m:1000/n:800    94701529 ns     93394677 ns            7
svd/m:1/n:1000        351102 ns       313099 ns         2218
svd/m:2/n:1000        446543 ns       407807 ns         1708
svd/m:5/n:1000        661152 ns       616174 ns         1129
svd/m:10/n:1000       915743 ns       873397 ns          802
svd/m:100/n:1000     6434730 ns      6282779 ns          113
svd/m:500/n:1000    30244321 ns     29684290 ns           24
svd/m:800/n:1000    92727423 ns     91477078 ns            8
svd/m:1000/n:1000  169500709 ns    168358420 ns            4
PiperOrigin-RevId: 582041508
2023-11-13 12:04:13 -08:00

556 lines
19 KiB
Python

# Copyright 2019 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from functools import partial
import importlib
import math
import jaxlib.mlir.ir as ir
import jaxlib.mlir.dialects.stablehlo as hlo
import numpy as np
from .gpu_common_utils import GpuLibNotLinkedError
from jaxlib import xla_client
from .hlo_helpers import (
DimensionSize, ShapeTypePair, mk_result_types_and_shapes,
custom_call, ensure_hlo_s32, hlo_s32)
try:
from .cuda import _blas as _cublas # pytype: disable=import-error
except ImportError:
for cuda_module_name in ["jax_cuda12_plugin", "jax_cuda11_plugin"]:
try:
_cublas = importlib.import_module(f"{cuda_module_name}._blas")
except ImportError:
_cublas = None
else:
break
if _cublas:
for _name, _value in _cublas.registrations().items():
xla_client.register_custom_call_target(_name, _value, platform="CUDA")
for cuda_module_name in [".cuda", "jax_cuda12_plugin", "jax_cuda11_plugin"]:
try:
_cusolver = importlib.import_module(
f"{cuda_module_name}._solver", package="jaxlib"
)
except ImportError:
_cusolver = None
else:
break
if _cusolver:
for _name, _value in _cusolver.registrations().items():
xla_client.register_custom_call_target(_name, _value, platform="CUDA")
try:
from .rocm import _blas as _hipblas # pytype: disable=import-error
for _name, _value in _hipblas.registrations().items():
xla_client.register_custom_call_target(_name, _value, platform="ROCM")
except ImportError:
_hipblas = None
try:
from .rocm import _solver as _hipsolver # pytype: disable=import-error
for _name, _value in _hipsolver.registrations().items():
xla_client.register_custom_call_target(_name, _value, platform="ROCM")
except ImportError:
_hipsolver = None
def _real_type(dtype):
"""Returns the real equivalent of 'dtype'."""
return np.finfo(dtype).dtype
def _getrf_hlo(platform, gpu_blas, gpu_solver, dtype, a):
"""LU decomposition."""
a_type = ir.RankedTensorType(a.type)
dims = a_type.shape
assert len(dims) >= 2
m, n = dims[-2:]
batch_dims = tuple(dims[:-2])
num_bd = len(batch_dims)
batch = math.prod(batch_dims)
if not gpu_blas:
raise GpuLibNotLinkedError()
if batch > 1 and m == n and m // batch <= 128:
lwork, opaque = gpu_blas.build_getrf_batched_descriptor(
np.dtype(dtype), batch, m)
workspace = ir.RankedTensorType.get([lwork], ir.IntegerType.get_signless(8))
kernel = f"{platform}blas_getrf_batched"
else:
lwork, opaque = gpu_solver.build_getrf_descriptor(
np.dtype(dtype), batch, m, n)
workspace = ir.RankedTensorType.get([lwork], a_type.element_type)
kernel = f"{platform}solver_getrf"
layout = (num_bd, num_bd + 1) + tuple(range(num_bd - 1, -1, -1))
i32_type = ir.IntegerType.get_signless(32)
out = custom_call(
kernel,
result_types=[
a.type,
ir.RankedTensorType.get(batch_dims + (min(m, n),), i32_type),
ir.RankedTensorType.get(batch_dims, i32_type),
workspace,
],
operands=[a],
backend_config=opaque,
operand_layouts=[layout],
result_layouts=[
layout,
tuple(range(num_bd, -1, -1)),
tuple(range(num_bd - 1, -1, -1)),
[0],
],
operand_output_aliases={0: 0}).results
return out[:3]
cuda_getrf = partial(_getrf_hlo, "cu", _cublas, _cusolver)
rocm_getrf = partial(_getrf_hlo, "hip", _hipblas, _hipsolver)
def _geqrf_hlo(platform, gpu_solver, dtype, a):
"""QR decomposition."""
a_type = ir.RankedTensorType(a.type)
dims = a_type.shape
assert len(dims) >= 2
m, n = dims[-2:]
batch_dims = tuple(dims[:-2])
num_bd = len(batch_dims)
batch = math.prod(batch_dims)
lwork, opaque = gpu_solver.build_geqrf_descriptor(
np.dtype(dtype), batch, m, n)
layout = (num_bd, num_bd + 1) + tuple(range(num_bd - 1, -1, -1))
i32_type = ir.IntegerType.get_signless(32)
out = custom_call(
f"{platform}solver_geqrf",
result_types=[
a.type,
ir.RankedTensorType.get(batch_dims + (min(m, n),), a_type.element_type),
ir.RankedTensorType.get(batch_dims, i32_type),
ir.RankedTensorType.get([lwork], a_type.element_type),
],
operands=[a],
backend_config=opaque,
operand_layouts=[layout],
result_layouts=[
layout,
tuple(range(num_bd, -1, -1)),
tuple(range(num_bd - 1, -1, -1)),
[0],
],
operand_output_aliases={0: 0}).results
return out[:3]
cuda_geqrf = partial(_geqrf_hlo, "cu", _cusolver)
rocm_geqrf = partial(_geqrf_hlo, "hip", _hipsolver)
def _geqrf_batched_hlo(platform, gpu_blas, dtype, a):
"""Batched QR decomposition."""
a_type = ir.RankedTensorType(a.type)
dims = a_type.shape
assert len(dims) >= 2
m, n = dims[-2:]
batch_dims = tuple(dims[:-2])
num_bd = len(batch_dims)
batch = math.prod(batch_dims)
if not gpu_blas:
raise GpuLibNotLinkedError()
lwork, opaque = gpu_blas.build_geqrf_batched_descriptor(
np.dtype(dtype), batch, m, n)
layout = (num_bd, num_bd + 1) + tuple(range(num_bd - 1, -1, -1))
out = custom_call(
f"{platform}blas_geqrf_batched",
result_types=[
a.type,
ir.RankedTensorType.get(batch_dims + (min(m, n),), a_type.element_type),
ir.RankedTensorType.get([lwork], ir.IntegerType.get_signless(8)),
ir.RankedTensorType.get([lwork], ir.IntegerType.get_signless(8)),
],
operands=[a],
backend_config=opaque,
operand_layouts=[layout],
result_layouts=[
layout,
tuple(range(num_bd, -1, -1)),
[0],
[0],
],
operand_output_aliases={0: 0}
).results
return out[:2]
cuda_geqrf_batched = partial(_geqrf_batched_hlo, "cu", _cublas)
rocm_geqrf_batched = partial(_geqrf_batched_hlo, "hip", _hipblas)
def _csrlsvqr_hlo(platform, gpu_solver, dtype, data,
indices, indptr, b, tol, reorder):
"""Sparse solver via QR decomposition. CUDA only."""
b_type = ir.RankedTensorType(b.type)
data_type = ir.RankedTensorType(data.type)
n = b_type.shape[0]
nnz = data_type.shape[0]
opaque = gpu_solver.build_csrlsvqr_descriptor(
np.dtype(dtype), n, nnz, reorder, tol
)
out = custom_call(
f"{platform}solver_csrlsvqr", # call_target_name
result_types=[b.type],
operands=[data, indptr, indices, b],
backend_config=opaque, # backend_config
operand_layouts=[(0,), (0,), (0,), (0,)], # operand_layouts
result_layouts=[(0,)] # result_layouts
).results
return out
cuda_csrlsvqr = partial(_csrlsvqr_hlo, "cu", _cusolver)
def _orgqr_hlo(platform, gpu_solver, dtype, a, tau):
"""Product of elementary Householder reflections."""
a_type = ir.RankedTensorType(a.type)
dims = a_type.shape
assert len(dims) >= 2
m, n = dims[-2:]
batch_dims = tuple(dims[:-2])
num_bd = len(batch_dims)
batch = math.prod(batch_dims)
tau_dims = ir.RankedTensorType(tau.type).shape
assert tau_dims[:-1] == dims[:-2]
k = tau_dims[-1]
lwork, opaque = gpu_solver.build_orgqr_descriptor(
np.dtype(dtype), batch, m, n, k)
layout = (num_bd, num_bd + 1) + tuple(range(num_bd - 1, -1, -1))
i32_type = ir.IntegerType.get_signless(32)
out = custom_call(
f"{platform}solver_orgqr",
result_types=[
a.type,
ir.RankedTensorType.get(batch_dims, i32_type),
ir.RankedTensorType.get([lwork], a_type.element_type),
],
operands=[a, tau],
backend_config=opaque,
operand_layouts=[
layout,
tuple(range(num_bd, -1, -1)),
],
result_layouts=[
layout,
tuple(range(num_bd - 1, -1, -1)),
[0],
],
operand_output_aliases={0: 0}).results
return out[:2]
cuda_orgqr = partial(_orgqr_hlo, "cu", _cusolver)
rocm_orgqr = partial(_orgqr_hlo, "hip", _hipsolver)
def _syevd_hlo(platform, gpu_solver, have_jacobi_solver, dtype, a, *,
a_shape_vals: tuple[DimensionSize, ...], lower=False):
"""Symmetric (Hermitian) eigendecomposition."""
a_type = ir.RankedTensorType(a.type)
assert len(a_shape_vals) >= 2
m, n = a_shape_vals[-2:]
assert type(m) is int and type(n) is int and m == n, a_shape_vals
batch_dims_vals = a_shape_vals[:-2]
num_bd = len(batch_dims_vals)
layout = (num_bd, num_bd + 1) + tuple(range(num_bd - 1, -1, -1))
dynamic_batch_dims = any(type(d) != int for d in batch_dims_vals)
if dynamic_batch_dims:
batch_int = -1 # Signals to the kernel that the batch is an operand.
else:
batch_int = math.prod(batch_dims_vals)
if have_jacobi_solver and n <= 32 and not dynamic_batch_dims:
# We cannot use syevj for dynamic shapes because the workspace size
# depends on the batch size.
kernel = f"{platform}solver_syevj"
lwork, opaque = gpu_solver.build_syevj_descriptor(
np.dtype(dtype), lower, batch_int, n)
else:
kernel = f"{platform}solver_syevd"
lwork, opaque = gpu_solver.build_syevd_descriptor(
np.dtype(dtype), lower, batch_int, n)
assert lwork > 0
if ir.ComplexType.isinstance(a_type.element_type):
eigvals_type = ir.ComplexType(a_type.element_type).element_type
else:
eigvals_type = a_type.element_type
i32_type = ir.IntegerType.get_signless(32)
operands = [a]
operand_layouts = [layout]
if dynamic_batch_dims:
batch_size_val = hlo_s32(1)
for b_v in batch_dims_vals:
batch_size_val = hlo.MulOp(batch_size_val, ensure_hlo_s32(b_v)).result
operands.append(batch_size_val)
operand_layouts.append(())
shape_type_pairs: Sequence[ShapeTypePair] = [
(a_shape_vals, a_type.element_type),
(batch_dims_vals + (n,), eigvals_type),
(batch_dims_vals, i32_type),
([lwork], a_type.element_type)]
result_types, result_shapes = mk_result_types_and_shapes(shape_type_pairs)
out = custom_call(
kernel,
result_types=result_types,
operands=operands,
backend_config=opaque,
operand_layouts=operand_layouts,
result_layouts=[
layout,
tuple(range(num_bd, -1, -1)),
tuple(range(num_bd - 1, -1, -1)),
[0],
],
operand_output_aliases={0: 0},
result_shapes=result_shapes).results
return out[:3]
cuda_syevd = partial(_syevd_hlo, "cu", _cusolver, True)
rocm_syevd = partial(_syevd_hlo, "hip", _hipsolver, True)
def _gesvd_hlo(platform, gpu_solver, have_jacobi_solver, dtype, a,
full_matrices=True, compute_uv=True):
"""Singular value decomposition."""
a_type = ir.RankedTensorType(a.type)
dims = a_type.shape
assert len(dims) >= 2
m, n = dims[-2:]
batch_dims = tuple(dims[:-2])
num_bd = len(batch_dims)
b = math.prod(batch_dims)
if ir.ComplexType.isinstance(a_type.element_type):
singular_vals_type = ir.ComplexType(a_type.element_type).element_type
else:
singular_vals_type = a_type.element_type
scalar_layout = tuple(range(num_bd - 1, -1, -1))
vector_layout = (num_bd,) + tuple(range(num_bd - 1, -1, -1))
i32_type = ir.IntegerType.get_signless(32)
# NVIDIA's batched Jacobi solver supports a maximum matrix size of 32x32, but
# the unbatched solver has no such limit. The unbatched solver appears to
# outperform gesvd for small-moderate matrices, e.g., see:
# https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9226-fast-singular-value-decomposition-on-gpus-v2.pdf
# slide 5.
if have_jacobi_solver and (
(b == 1 and m <= 1024 and n <= 1024) or (m <= 32 and n <= 32)
):
# The batched kernel doesn't support "econ" mode.
econ = not full_matrices and b == 1
lwork, opaque = gpu_solver.build_gesvdj_descriptor(
np.dtype(dtype), b, m, n, compute_uv, 1 if econ else 0)
k = min(m, n)
matrix_layout = (num_bd, num_bd + 1) + tuple(range(num_bd - 1, -1, -1))
_, s, u, v, info, _ = custom_call(
f"{platform}solver_gesvdj",
result_types=[
a.type,
ir.RankedTensorType.get(batch_dims + (min(m, n),), singular_vals_type),
ir.RankedTensorType.get(batch_dims + (m, k if econ else m),
a_type.element_type),
ir.RankedTensorType.get(batch_dims + (n, k if econ else n),
a_type.element_type),
ir.RankedTensorType.get(batch_dims, i32_type),
ir.RankedTensorType.get([lwork], a_type.element_type),
],
operands=[a],
backend_config=opaque,
operand_layouts=[matrix_layout],
result_layouts=[
matrix_layout,
vector_layout,
matrix_layout,
matrix_layout,
scalar_layout,
[0],
],
operand_output_aliases={0: 0}).results
vt = hlo.TransposeOp(
v,
ir.DenseIntElementsAttr.get(np.array(tuple(range(num_bd)) + (num_bd + 1, num_bd)))).result
if np.issubdtype(dtype, np.complexfloating):
vt = hlo.ComplexOp(hlo.RealOp(vt), hlo.NegOp(hlo.ImagOp(vt))).result
if not full_matrices and not econ:
u = hlo.SliceOp(
u,
ir.DenseIntElementsAttr.get(np.zeros([len(dims)], np.int64)),
ir.DenseIntElementsAttr.get(np.array(batch_dims + (m, min(m, n)))),
ir.DenseIntElementsAttr.get(np.ones([len(dims)], np.int64))).result
vt = hlo.SliceOp(
vt,
ir.DenseIntElementsAttr.get(np.zeros([len(dims)], np.int64)),
ir.DenseIntElementsAttr.get(np.array(batch_dims + (min(m, n), n))),
ir.DenseIntElementsAttr.get(np.ones([len(dims)], np.int64))).result
elif m < n:
lwork, opaque = gpu_solver.build_gesvd_descriptor(
np.dtype(dtype), b, n, m, compute_uv, full_matrices)
k = n if full_matrices else m
matrix_layout = (num_bd + 1, num_bd) + tuple(range(num_bd - 1, -1, -1))
_, s, vt, u, info, _ = custom_call(
f"{platform}solver_gesvd",
result_types=[
a.type,
ir.RankedTensorType.get(batch_dims + (min(m, n),), singular_vals_type),
ir.RankedTensorType.get(batch_dims + (k, n), a_type.element_type),
ir.RankedTensorType.get(batch_dims + (m, m), a_type.element_type),
ir.RankedTensorType.get(batch_dims, i32_type),
ir.RankedTensorType.get([lwork], a_type.element_type),
],
operands=[a],
backend_config=opaque,
operand_layouts=[matrix_layout],
result_layouts=[
matrix_layout,
vector_layout,
matrix_layout,
matrix_layout,
scalar_layout,
[0],
],
operand_output_aliases={0: 0}).results
else:
lwork, opaque = gpu_solver.build_gesvd_descriptor(
np.dtype(dtype), b, m, n, compute_uv, full_matrices)
k = m if full_matrices else n
matrix_layout = (num_bd, num_bd + 1) + tuple(range(num_bd - 1, -1, -1))
_, s, u, vt, info, _ = custom_call(
f"{platform}solver_gesvd",
result_types=[
a.type,
ir.RankedTensorType.get(batch_dims + (min(m, n),), singular_vals_type),
ir.RankedTensorType.get(batch_dims + (m, k), a_type.element_type),
ir.RankedTensorType.get(batch_dims + (n, n), a_type.element_type),
ir.RankedTensorType.get(batch_dims, i32_type),
ir.RankedTensorType.get([lwork], a_type.element_type),
],
operands=[a],
backend_config=opaque,
operand_layouts=[matrix_layout],
result_layouts=[
matrix_layout,
vector_layout,
matrix_layout,
matrix_layout,
scalar_layout,
[0],
],
operand_output_aliases={0: 0}).results
return s, u, vt, info
cuda_gesvd = partial(_gesvd_hlo, "cu", _cusolver, True)
rocm_gesvd = partial(_gesvd_hlo, "hip", _hipsolver, False)
def _sytrd_hlo(platform, gpu_solver, dtype, a, *, lower):
"""sytrd: Reduction of a symmetric (Hermitian) matrix to tridiagonal form."""
a_type = ir.RankedTensorType(a.type)
dims = a_type.shape
assert len(dims) >= 2
m, n = dims[-2:]
assert m == n, (m, n)
batch_dims = tuple(dims[:-2])
num_bd = len(batch_dims)
b = 1
for d in batch_dims:
b *= d
lwork, opaque = gpu_solver.build_sytrd_descriptor(dtype, lower, b, n)
if np.issubdtype(dtype, np.floating):
diag_type = a_type.element_type
elif dtype == np.complex64:
diag_type = ir.F32Type.get()
elif dtype == np.complex128:
diag_type = ir.F64Type.get()
else:
raise NotImplementedError(f"Unsupported dtype {dtype}")
layout = (num_bd, num_bd + 1) + tuple(range(num_bd - 1, -1, -1))
i32_type = ir.IntegerType.get_signless(32)
a, d, e, taus, info, _ = custom_call(
f"{platform}solver_sytrd",
result_types=[
a.type,
ir.RankedTensorType.get(batch_dims + (n,), diag_type),
ir.RankedTensorType.get(batch_dims + (n - 1,), diag_type),
ir.RankedTensorType.get(batch_dims + (n - 1,), a_type.element_type),
ir.RankedTensorType.get(batch_dims, i32_type),
ir.RankedTensorType.get([lwork], a_type.element_type),
],
operands=[a],
backend_config=opaque,
operand_layouts=[layout],
result_layouts=[
layout,
(num_bd,) + tuple(range(num_bd - 1, -1, -1)),
(num_bd,) + tuple(range(num_bd - 1, -1, -1)),
(num_bd,) + tuple(range(num_bd - 1, -1, -1)),
tuple(range(num_bd - 1, -1, -1)),
[0],
],
operand_output_aliases={0: 0},
).results
# Workaround for NVIDIA partners bug #3865118: sytrd returns an incorrect "1"
# in the first element of the superdiagonal in the `a` matrix in the
# lower=False case. The correct result is returned in the `e` vector so we can
# simply copy it back to where it needs to be:
intattr = lambda xs: ir.DenseIntElementsAttr.get(np.asarray(xs, np.int64))
if not lower and platform == "cu" and m > 1:
start = (0,) * len(batch_dims) + (0,)
end = batch_dims + (1,)
s = hlo.SliceOp(e, intattr(start), intattr(end), intattr([1] * len(start)))
s_type = ir.RankedTensorType.get(batch_dims + (1, 1), diag_type)
s = hlo.BroadcastInDimOp(s_type, s, intattr(range(len(dims) - 1)))
# The diagonals are always real; convert to complex if needed.
s = hlo.ConvertOp(
ir.RankedTensorType.get(s_type.shape, a_type.element_type), s)
offsets = tuple(hlo.ConstantOp(intattr(i))
for i in ((0,) * len(batch_dims) + (0, 1)))
a = hlo.DynamicUpdateSliceOp(a, s, offsets).result
return a, d, e, taus, info
cuda_sytrd = partial(_sytrd_hlo, "cu", _cusolver)
rocm_sytrd = partial(_sytrd_hlo, "hip", _hipsolver)