rocm_jax/jax/_src/array.py
2024-04-24 17:27:25 -07:00

992 lines
37 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright 2021 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from collections import defaultdict
import enum
import math
import operator as op
import numpy as np
import functools
from typing import Any, Callable, cast, TYPE_CHECKING
from collections.abc import Sequence
from jax._src import abstract_arrays
from jax._src import api
from jax._src import api_util
from jax._src import basearray
from jax._src import config
from jax._src import core
from jax._src import dispatch
from jax._src import dtypes
from jax._src import errors
from jax._src import profiler
from jax._src import tree_util
from jax._src import xla_bridge
from jax._src.lib import xla_client as xc
from jax._src.lib import xla_extension_version
from jax._src.lib import xla_extension as xe
from jax._src.interpreters import mlir
from jax._src.interpreters import pxla
from jax._src.interpreters import xla
from jax._src.sharding import Sharding
from jax._src.sharding_impls import (
SingleDeviceSharding, XLACompatibleSharding, PmapSharding,
device_replica_id_map, hashed_index)
from jax._src.layout import DeviceLocalLayout, Layout, AutoLayout
from jax._src.typing import ArrayLike, DLDeviceType
from jax._src.util import safe_zip, unzip3, use_cpp_class, use_cpp_method
Shape = tuple[int, ...]
Device = xc.Device
Index = tuple[slice, ...]
PRNGKeyArray = Any # TODO(jakevdp): fix cycles and import this.
def _get_device(a: ArrayImpl) -> Device:
devices = a.sharding._internal_device_list # type: ignore
assert len(devices) == 1
return devices[0]
class Shard:
"""A single data shard of an Array.
Attributes:
device : Which device this shard resides on.
index : The index into the global array of this shard.
replica_id : Integer id indicating which replica of the global array this
shard is part of. Always 0 for fully sharded data
(i.e. when theres only 1 replica).
data : The data of this shard. None if ``device`` is non-local.
"""
def __init__(self, device: Device, sharding: Sharding, global_shape: Shape,
data: None | ArrayImpl | PRNGKeyArray = None):
self._device = device
self._sharding = sharding
self._global_shape = global_shape
self._data = data
def __repr__(self):
try:
return (f'Shard(device={self.device!r}, index={self.index}, '
f'replica_id={self.replica_id}, data={self.data})')
except ValueError:
return f'Shard(device={self.device!r}, data={self.data})'
@functools.cached_property
def index(self) -> Index:
try:
device_indices_map_fn = self._sharding.devices_indices_map
except AttributeError:
raise ValueError('Cannot calculate indices from sharding: '
f'{self._sharding}. Please create a device to index '
'mapping for your sharding.') from None
index = device_indices_map_fn(self._global_shape)[self.device]
assert index is not None
return index
@functools.cached_property
def replica_id(self) -> int:
return device_replica_id_map(self._sharding, self._global_shape)[self.device]
@property
def device(self):
return self._device
@property
def data(self):
return self._data
def _reconstruct_array(fun, args, arr_state, aval_state):
"""Method to reconstruct a device array from a serialized state."""
np_value = fun(*args)
np_value.__setstate__(arr_state)
jnp_value = api.device_put(np_value)
jnp_value.aval = jnp_value.aval.update(**aval_state)
return jnp_value
@functools.lru_cache(maxsize=4096)
def _cached_index_calc(s, shape):
map_ = s.addressable_devices_indices_map(shape)
seen_h_indices = set()
l = []
for array_index, index in enumerate(map_.values()):
h_index = hashed_index(index)
if h_index not in seen_h_indices:
seen_h_indices.add(h_index)
l.append((array_index, index))
return l
@functools.lru_cache(maxsize=4096)
def _process_has_full_value_in_mcjax(s, shape):
# Return False for single host as a fast path.
if xla_bridge.process_count() == 1:
return False
num_unique_indices = len(
{hashed_index(v) for v in s.devices_indices_map(shape).values()})
num_addressable_unique_indices = len(
{hashed_index(v) for v in s.addressable_devices_indices_map(shape).values()})
return num_unique_indices == num_addressable_unique_indices
class ArrayImpl(basearray.Array):
# TODO(yashkatariya): Add __slots__ here.
aval: core.ShapedArray
_sharding: Sharding
_arrays: list[ArrayImpl]
_committed: bool
_skip_checks: bool
_npy_value: np.ndarray | None
@use_cpp_method()
def __init__(self, aval: core.ShapedArray, sharding: Sharding,
arrays: Sequence[ArrayImpl],
committed: bool, _skip_checks: bool = False):
# NOTE: the actual implementation of the constructor is moved to C++.
self.aval = aval
self._sharding = sharding
self._arrays = [a._arrays[0] for a in arrays]
self._committed = committed
self._npy_value = None
# Don't rearrange if skip_checks is enabled because this assumes that the
# input buffers are already arranged properly. This usually happens when
# Array's are created as output of a JAX transformation
# (like pjit, xmap, etc).
if not _skip_checks or config.enable_checks.value:
self._check_and_rearrange()
def _check_and_rearrange(self):
for db in self._arrays:
if db.dtype != self.dtype:
raise ValueError(
"Input buffers to `Array` must have matching dtypes. "
f"Got {db.dtype}, expected {self.dtype} for buffer: {db}")
device_id_to_buffer = {_get_device(db).id: db for db in self._arrays}
addressable_dev = self.sharding.addressable_devices
if len(self._arrays) != len(addressable_dev):
raise ValueError(
f"Expected {len(addressable_dev)} per-device arrays "
"(this is how many devices are addressable by the sharding), but "
f"got {len(self._arrays)}")
array_device_ids = set(device_id_to_buffer.keys())
addressable_device_ids = {d.id for d in addressable_dev}
# Calculate a symmetric difference because the device ids between sharding
# and _arrays should match.
diff = array_device_ids ^ addressable_device_ids
if diff:
dev_in_sharding_not_in_arrays = addressable_device_ids - array_device_ids
dev_in_arrays_not_in_sharding = array_device_ids - addressable_device_ids
err_msg = (
"Addressable devices and per-device arrays devices do not match.")
if dev_in_sharding_not_in_arrays:
err_msg += (f" Sharding contains devices {dev_in_sharding_not_in_arrays} "
"that are not present in per-device arrays.")
if dev_in_arrays_not_in_sharding:
err_msg += (f" Per-device arrays contain devices {dev_in_arrays_not_in_sharding} "
"that are not present in the sharding.")
raise ValueError(err_msg)
ss = self.sharding.shard_shape(self.shape)
for db in self._arrays:
if db.shape != ss:
raise ValueError(
f"Expected shard shape {ss} doesn't match the single device array "
f"shape {db.shape}. Shape of Array is "
f"{self.aval.str_short()} with sharding {self.sharding}")
# Rearrange arrays based on the device assignment.
if isinstance(self.sharding, XLACompatibleSharding):
addressable_da = self.sharding._addressable_device_assignment
self._arrays = [device_id_to_buffer[device.id] for device in addressable_da]
@property
def shape(self) -> Shape:
return self.aval.shape
@property
def dtype(self):
return self.aval.dtype
@property
def ndim(self):
return len(self.shape)
@property
def size(self):
return math.prod(self.shape)
@property
def sharding(self):
return self._sharding
@property
def weak_type(self):
return self.aval.weak_type
def __str__(self):
return str(self._value)
def __len__(self):
try:
return self.shape[0]
except IndexError as err:
raise TypeError("len() of unsized object") from err # same as numpy error
def __bool__(self):
core.check_bool_conversion(self)
return bool(self._value)
def __float__(self):
core.check_scalar_conversion(self)
return self._value.__float__()
def __int__(self):
core.check_scalar_conversion(self)
return self._value.__int__()
def __complex__(self):
core.check_scalar_conversion(self)
return self._value.__complex__()
def __hex__(self):
core.check_integer_conversion(self)
return hex(self._value) # type: ignore
def __oct__(self):
core.check_integer_conversion(self)
return oct(self._value) # type: ignore
def __index__(self):
core.check_integer_conversion(self)
return op.index(self._value)
def tobytes(self, order="C"):
return self._value.tobytes(order)
def tolist(self):
return self._value.tolist()
def __format__(self, format_spec):
# Simulates behavior of https://github.com/numpy/numpy/pull/9883
if self.ndim == 0:
return format(self._value[()], format_spec)
else:
return format(self._value, format_spec)
def __getitem__(self, idx):
from jax._src.lax import lax
from jax._src.numpy import lax_numpy
self._check_if_deleted()
if isinstance(self.sharding, PmapSharding):
if config.pmap_no_rank_reduction.value:
cidx = idx if isinstance(idx, tuple) else (idx,)
padded_cidx = tuple(
slice(i, i + 1, None) if isinstance(i, int) else i for i in cidx
) + (slice(None),) * (len(self.shape) - len(cidx))
else:
if not isinstance(idx, tuple):
padded_cidx = (idx,) + (slice(None),) * (len(self.shape) - 1)
else:
padded_cidx = idx + (slice(None),) * (len(self.shape) - len(idx))
indices = tuple(self.sharding.devices_indices_map(self.shape).values())
try:
arr_idx = indices.index(padded_cidx)
except ValueError:
arr_idx = None
if arr_idx is not None:
a = self._arrays[arr_idx]
out = ArrayImpl(
a.aval, SingleDeviceSharding(_get_device(a)), [a], committed=False,
_skip_checks=True)
if config.pmap_no_rank_reduction.value:
# If cidx was the index of a single shard, then it corresponds to one
# shard of the chunked dimension.
dims = tuple(i for i, x in enumerate(cidx) if isinstance(x, int))
return lax.squeeze(out, dimensions=dims)
else:
return out
return lax_numpy._rewriting_take(self, idx)
def __iter__(self):
if self.ndim == 0:
raise TypeError("iteration over a 0-d array") # same as numpy error
else:
assert self.is_fully_replicated or self.is_fully_addressable
if dispatch.is_single_device_sharding(self.sharding) or self.is_fully_replicated:
return (sl for chunk in self._chunk_iter(100) for sl in chunk._unstack()) # type: ignore
elif isinstance(self.sharding, PmapSharding):
return (self[i] for i in range(self.shape[0])) # type: ignore
else:
# TODO(yashkatariya): Don't bounce to host and use `_chunk_iter` path
# here after uneven partitioning support is added.
return (api.device_put(self._value[i]) for i in range(self.shape[0]))
@property
def is_fully_replicated(self) -> bool:
return self.sharding.is_fully_replicated
def __repr__(self):
prefix = 'Array('
if self.aval is not None and self.aval.weak_type:
dtype_str = f'dtype={self.dtype.name}, weak_type=True)'
else:
dtype_str = f'dtype={self.dtype.name})'
if self.is_fully_addressable or self.is_fully_replicated:
line_width = np.get_printoptions()["linewidth"]
if self.size == 0:
s = f"[], shape={self.shape}"
else:
s = np.array2string(self._value, prefix=prefix, suffix=',',
separator=', ', max_line_width=line_width)
last_line_len = len(s) - s.rfind('\n') + 1
sep = ' '
if last_line_len + len(dtype_str) + 1 > line_width:
sep = ' ' * len(prefix)
return f"{prefix}{s},{sep}{dtype_str}"
else:
return f"{prefix}{self.shape}, {dtype_str}"
@property
def is_fully_addressable(self) -> bool:
"""Is this Array fully addressable?
A jax.Array is fully addressable if the current process can address all of
the devices named in the :class:`Sharding`. ``is_fully_addressable`` is
equivalent to "is_local" in multi-process JAX.
Note that fully replicated is not equal to fully addressable i.e.
a jax.Array which is fully replicated can span across multiple hosts and is
not fully addressable.
"""
return self.sharding.is_fully_addressable
def __array__(self, dtype=None, context=None, copy=None):
# copy argument is supported by np.asarray starting in numpy 2.0
kwds = {} if copy is None else {'copy': copy}
return np.asarray(self._value, dtype=dtype, **kwds)
def __dlpack__(self, *, stream: int | Any | None = None,
max_version: tuple[int, int] | None = None,
dl_device: tuple[DLDeviceType, int] | None = None,
copy: bool | None = None):
from jax._src.dlpack import to_dlpack # pylint: disable=g-import-not-at-top
device_set = self.sharding.device_set
if len(device_set) > 1:
raise BufferError(
"to_dlpack can only pack a dlpack tensor from an array on a singular "
f"device, but an array with a Sharding over {len(device_set)} devices "
"was provided."
)
device, = device_set
return to_dlpack(self, stream=stream,
max_version=max_version,
src_device=device,
dl_device=dl_device,
copy=copy)
def __dlpack_device__(self) -> tuple[enum.Enum, int]:
if len(self._arrays) != 1:
raise BufferError("__dlpack__ only supported for unsharded arrays.")
from jax._src.dlpack import DLDeviceType # pylint: disable=g-import-not-at-top
if self.platform() == "cpu":
return DLDeviceType.kDLCPU, 0
elif self.platform() == "gpu":
platform_version = _get_device(self).client.platform_version
if "cuda" in platform_version:
dl_device_type = DLDeviceType.kDLCUDA
elif "rocm" in platform_version:
dl_device_type = DLDeviceType.kDLROCM
else:
raise BufferError("Unknown GPU platform for __dlpack__: "
f"{platform_version}")
local_hardware_id = _get_device(self).local_hardware_id
if local_hardware_id is None:
raise BufferError("Couldn't get local_hardware_id for __dlpack__")
return dl_device_type, local_hardware_id
else:
raise BufferError(
"__dlpack__ device only supported for CPU and GPU, got platform: "
f"{self.platform()}"
)
def __reduce__(self):
fun, args, arr_state = self._value.__reduce__() # type: ignore
aval_state = {'weak_type': self.aval.weak_type,
'named_shape': self.aval.named_shape}
return (_reconstruct_array, (fun, args, arr_state, aval_state))
@use_cpp_method()
def unsafe_buffer_pointer(self):
if len(self._arrays) != 1:
raise ValueError("unsafe_buffer_pointer() is supported only for unsharded"
" arrays.")
return self._arrays[0].unsafe_buffer_pointer()
@property
@use_cpp_method()
def __cuda_array_interface__(self):
if len(self._arrays) != 1:
raise ValueError("__cuda_array_interface__() is supported only for "
"unsharded arrays.")
return self._arrays[0].__cuda_array_interface__ # pytype: disable=attribute-error # bind-properties
@use_cpp_method()
def on_device_size_in_bytes(self):
"""Returns the total global on-device size of the array in bytes."""
arr = self._arrays[0]
per_shard_size = arr.on_device_size_in_bytes() # type: ignore
return per_shard_size * len(self.sharding.device_set)
def devices(self) -> set[Device]:
self._check_if_deleted()
return self.sharding.device_set
@property
def device_buffer(self):
raise AttributeError(
"arr.device_buffer has been deprecated. Use arr.addressable_data(0)")
@property
def device_buffers(self):
raise AttributeError(
"arr.device_buffers has been deprecated. Use [x.data for x in arr.addressable_shards]")
def addressable_data(self, index: int) -> ArrayImpl:
self._check_if_deleted()
if self.is_fully_replicated:
return self._fully_replicated_shard()
return self._arrays[index]
@functools.cached_property
def addressable_shards(self) -> Sequence[Shard]:
self._check_if_deleted()
out = []
for a in self._arrays:
out.append(Shard(_get_device(a), self.sharding, self.shape, a))
return out
@property
def layout(self):
# TODO(yashkatariya): Remove the deleted check from here.
if self.is_deleted():
return Layout(None, self.sharding)
try:
return Layout(DeviceLocalLayout(self._pjrt_layout), self.sharding)
except xe.XlaRuntimeError as e:
msg, *_ = e.args
if type(msg) is str and msg.startswith("UNIMPLEMENTED"):
return Layout(None, self.sharding)
else:
raise
@property
def global_shards(self) -> Sequence[Shard]:
"""Returns list of all `Shard`s of the Array across all devices.
The result includes shards that are not addressable by the current process.
If a `Shard` is not addressable, then its `data` will be `None`.
"""
self._check_if_deleted()
if self.is_fully_addressable: # pylint: disable=using-constant-test
return self.addressable_shards
out = []
device_id_to_buffer = {_get_device(a).id: a for a in self._arrays}
for global_d in self.sharding.device_set:
if device_id_to_buffer.get(global_d.id, None) is not None:
array = device_id_to_buffer[global_d.id]
else:
array = None
out.append(Shard(global_d, self.sharding, self.shape, array))
return out
@use_cpp_method()
def delete(self):
if self._arrays is None:
return
for buf in self._arrays:
buf.delete()
self._arrays = None
self._npy_value = None
@use_cpp_method()
def is_deleted(self):
if self._arrays is None:
return True
# This path is taken when a view of `Array` is created and the original
# Array is deleted. In that case, the buffers the view represents also get
# deleted.
return any(buf.is_deleted() for buf in self._arrays)
def _check_if_deleted(self):
if self.is_deleted():
raise RuntimeError(
f"Array has been deleted with shape={self.aval.str_short()}.")
@use_cpp_method()
def block_until_ready(self):
self._check_if_deleted()
for db in self._arrays:
db.block_until_ready()
return self
@use_cpp_method()
def _single_device_array_to_np_array(self):
return np.asarray(self._arrays[0])
@use_cpp_method()
def _copy_single_device_array_to_host_async(self):
self._arrays[0].copy_to_host_async()
@profiler.annotate_function
def copy_to_host_async(self):
self._check_if_deleted()
if self._npy_value is None:
if self.is_fully_replicated:
self._copy_single_device_array_to_host_async()
return
for i, _ in _cached_index_calc(self.sharding, self.shape):
self._arrays[i]._copy_single_device_array_to_host_async()
@property
@functools.partial(profiler.annotate_function, name="np.asarray(jax.Array)")
def _value(self) -> np.ndarray:
self._check_if_deleted()
if self._npy_value is None:
if self.is_fully_replicated:
self._npy_value = self._single_device_array_to_np_array() # type: ignore
self._npy_value.flags.writeable = False
return cast(np.ndarray, self._npy_value)
# TODO(yashkatariya): Merge `_process_has_full_value_in_mcjax` with
# is_fully_addressable.
if (not self.is_fully_addressable and
not _process_has_full_value_in_mcjax(self.sharding, self.shape)):
raise RuntimeError("Fetching value for `jax.Array` that spans "
"non-addressable devices is not possible. You can use "
"`jax.experimental.multihost_utils.process_allgather` "
"for this use case.")
for i, _ in _cached_index_calc(self.sharding, self.shape):
self._arrays[i]._copy_single_device_array_to_host_async()
npy_value = np.empty(self.shape, self.dtype)
for i, ind in _cached_index_calc(self.sharding, self.shape):
npy_value[ind] = self._arrays[i]._single_device_array_to_np_array()
self._npy_value = npy_value # type: ignore
self._npy_value.flags.writeable = False
# https://docs.python.org/3/library/typing.html#typing.cast
return cast(np.ndarray, self._npy_value)
# TODO(b/273265390): ideally we would write this as a decorator on the ArrayImpl
# class, however this triggers a pytype bug. Workaround: apply the decorator
# after the fact.
if not TYPE_CHECKING:
ArrayImpl = use_cpp_class(xc.ArrayImpl)(ArrayImpl)
# explicitly set to be unhashable.
setattr(ArrayImpl, "__hash__", None)
setattr(ArrayImpl, "__array_priority__", 100)
def make_array_from_callback(
shape: Shape, sharding: Sharding | Layout,
data_callback: Callable[[Index | None], ArrayLike]) -> ArrayImpl:
"""Returns a ``jax.Array`` via data fetched from ``data_callback``.
``data_callback`` is used to fetch the data for each addressable shard of the
returned ``jax.Array``. This function must return concrete arrays, meaning that
``make_array_from_callback`` has limited compatibility with JAX transformations
like :func:`jit` or :func:`vmap`.
Args:
shape : Shape of the ``jax.Array``.
sharding: A ``Sharding`` instance which describes how the ``jax.Array`` is
laid out across devices.
data_callback : Callback that takes indices into the global array value as
input and returns the corresponding data of the global array value.
The data can be returned as any array-like object, e.g. a ``numpy.ndarray``.
Returns:
A ``jax.Array`` via data fetched from ``data_callback``.
Example:
>>> import math
>>> from jax.sharding import Mesh
>>> from jax.sharding import PartitionSpec as P
>>> import numpy as np
...
>>> input_shape = (8, 8)
>>> global_input_data = np.arange(math.prod(input_shape)).reshape(input_shape)
>>> global_mesh = Mesh(np.array(jax.devices()).reshape(2, 4), ('x', 'y'))
>>> inp_sharding = jax.sharding.NamedSharding(global_mesh, P('x', 'y'))
...
>>> def cb(index):
... return global_input_data[index]
...
>>> arr = jax.make_array_from_callback(input_shape, inp_sharding, cb)
>>> arr.addressable_data(0).shape
(4, 2)
"""
dll = sharding.device_local_layout if isinstance(sharding, Layout) else None
if isinstance(dll, AutoLayout):
raise TypeError(
"`DeviceLocalLayout.AUTO` cannot be used in place of a device-local"
f" layout when calling `jax.make_array_from_callback`. Got {sharding}")
sharding = sharding.sharding if isinstance(sharding, Layout) else sharding # type: ignore
if not isinstance(sharding, Sharding):
raise TypeError(
f"sharding should be an instance of `jax.sharding`. Got {sharding} of"
f" type {type(sharding)}")
if sharding.is_fully_replicated:
devices = list(sharding._internal_device_list.addressable_device_list) # type: ignore
per_device_values = [data_callback((slice(None),) * len(shape))] * len(devices)
else:
device_to_index_map = sharding.addressable_devices_indices_map(shape)
devices = list(device_to_index_map.keys())
per_device_values = [data_callback(device_to_index_map[device])
for device in devices]
if isinstance(per_device_values[0], core.Tracer):
raise errors.UnexpectedTracerError(
"jax.make_array_from_callback cannot be called within a traced context.")
first_value = xla.canonicalize_dtype(per_device_values[0])
aval = core.ShapedArray(shape, first_value.dtype, weak_type=False)
# first value can be numpy array, python scalar, etc.
if (sharding.is_fully_replicated and not isinstance(first_value, ArrayImpl)
and not dtypes.issubdtype(aval.dtype, dtypes.extended) and dll is None):
# Do this check outside because `batched_device_put` won't do these checks
# like ArrayImpl.
if shape != first_value.shape:
raise ValueError(
f"Expected shard shape {shape} doesn't match the single device "
f"array shape {first_value.shape}. Shape of Array is "
f"{aval.str_short()} with sharding {sharding}")
return pxla.batched_device_put(
aval, sharding, per_device_values, devices, committed=True)
# After minimum jaxlib version >= 0.4.26, merge this condition into the
# following if block.
if xla_extension_version >= 256 and isinstance(first_value, ArrayImpl):
maybe_default_layout = pxla._maybe_get_default_layout(
Layout(dll, sharding), None, sharding, aval)
layout_eq = first_value.layout.device_local_layout == maybe_default_layout
else:
layout_eq = True
if (isinstance(first_value, ArrayImpl)
and first_value._committed
and sharding.is_fully_replicated
and first_value.is_fully_replicated
and first_value.sharding._device_assignment == tuple(devices)
and layout_eq):
return first_value
if dll is not None:
devices = [Layout(dll, SingleDeviceSharding(d)) for d in devices]
arrays = api.device_put(per_device_values, devices)
if dtypes.issubdtype(aval.dtype, dtypes.extended):
return aval.dtype._rules.make_sharded_array(aval, sharding, arrays,
committed=True)
return ArrayImpl(aval, sharding, arrays, committed=True)
def make_array_from_single_device_arrays(
shape: Shape, sharding: Sharding, arrays: Sequence[basearray.Array]
) -> ArrayImpl:
r"""Returns a ``jax.Array`` from a sequence of ``jax.Array``\s each on a single device.
Every device in input ``sharding``\'s mesh must have an array in ``arrays``\s.
Args:
shape : Shape of the output ``jax.Array``. This conveys information already included with
``sharding`` and ``arrays`` and serves as a double check.
sharding: Sharding: A global Sharding instance which describes how the output jax.Array is laid out across devices.
arrays: Sequence of ``jax.Array``\s that are each single device addressable. ``len(arrays)``
must equal ``len(sharding.addressable_devices)`` and the shape of each array must be the same. For multiprocess code,
each process will call with a different ``arrays`` argument that corresponds to that processes' data.
These arrays are commonly created via ``jax.device_put``.
Returns:
A global ``jax.Array``, sharded as ``sharding``, with shape equal to ``shape``, and with per-device
contents matching ``arrays``.
Examples:
In this single-process example, we use ``make_array_from_single_device_arrays`` to create an
a global array.
>>> import math
>>> from jax.sharding import Mesh
>>> from jax.sharding import PartitionSpec as P
>>> import numpy as np
...
>>> mesh_rows = 2
>>> mesh_cols = jax.device_count() // 2
...
>>> global_shape = (8, 8)
>>> mesh = Mesh(np.array(jax.devices()).reshape(mesh_rows, mesh_cols), ('x', 'y'))
>>> sharding = jax.sharding.NamedSharding(mesh, P('x', 'y'))
>>> inp_data = np.arange(math.prod(global_shape)).reshape(global_shape)
...
>>> arrays = [
... jax.device_put(inp_data[index], d)
... for d, index in sharding.addressable_devices_indices_map(global_shape).items()]
...
>>> arr = jax.make_array_from_single_device_arrays(global_shape, sharding, arrays)
>>> assert arr.shape == (8,8) # arr.shape is (8,8) regardless of jax.device_count()
When using multiple processes, a common data pipeline is to have data parallelism across devices,
with each device receiving at least one example. In this case, the following recipe will use
`make_array_from_single_device_arrays` to create a global jax.Array.
First, we create the per host data as Numpy arrays.
>>> sharding = jax.sharding.NamedSharding(mesh, P(('x', 'y'),))
>>> rows_per_device = 2
>>> feature_length = 32
>>> per_device_shape = (rows_per_device, feature_length)
>>> per_host_shape = (rows_per_device * len(mesh.local_devices), feature_length)
>>> per_host_generator = lambda : np.arange(np.prod(per_host_shape)).reshape(per_host_shape)
>>> per_host_data = per_host_generator() # replace with your own per-host data pipeline that outputs numpy arrays
Second, we put the Numpy data onto the local devices as single device Jax Arrays. Then we call
make_array_from_single_device_arrays to make the global Array.
>>> global_shape = (rows_per_device * len(sharding.device_set), ) + per_device_shape[1:]
>>> per_device_data = np.split(per_host_data, len(mesh.local_devices), axis = 0) # per device data, but on host
>>> per_device_data_on_device = jax.device_put(per_device_data, mesh.local_devices) # per device data, now on device
>>> output_global_array = jax.make_array_from_single_device_arrays(global_shape, sharding, per_device_data_on_device)
...
>>> assert output_global_array.addressable_data(0).shape == per_device_shape
>>> assert output_global_array.shape == global_shape
When using tensor parallelism (equivalent to sharding across both rows and columns in the
above example), the above example doesn't generate the data in the sharding that you plan
to consume it with. The most common fix is to simply load the data in this data parallel sharding
and have the reshard happen automatically within the downstream jitted function.
Depending on your use case, you might prefer to directly load sharded data, something that
``make_array_from_single_device_arrays`` can do but will depend on your data loading pipeline
also loading in the matching sharding. Loading in a data parallel format is typically
fully satisfactory for data loading for LLM use cases.
"""
# All input arrays should be committed. Checking it is expensive on
# single-controller systems.
if any(isinstance(arr, core.Tracer) for arr in arrays):
raise ValueError(
"jax.make_array_from_single_device_arrays requires a list of concrete"
f" arrays as input. got types {set(map(type, arrays))}")
aval = core.ShapedArray(shape, arrays[0].dtype, weak_type=False)
if dtypes.issubdtype(aval.dtype, dtypes.extended):
return aval.dtype._rules.make_sharded_array(aval, sharding, arrays,
committed=True)
# TODO(phawkins): ideally the cast() could be checked.
return ArrayImpl(aval, sharding, cast(Sequence[ArrayImpl], arrays),
committed=True)
core.pytype_aval_mappings[ArrayImpl] = abstract_arrays.canonical_concrete_aval
xla.pytype_aval_mappings[ArrayImpl] = op.attrgetter('aval')
xla.canonicalize_dtype_handlers[ArrayImpl] = pxla.identity
api_util._shaped_abstractify_handlers[ArrayImpl] = op.attrgetter('aval')
# TODO(jakevdp) replace this with true inheritance at the C++ level.
basearray.Array.register(ArrayImpl)
def _array_mlir_constant_handler(val):
return mlir.ir_constants(val._value)
mlir.register_constant_handler(ArrayImpl, _array_mlir_constant_handler)
# NOTE(skye): we could refactor to generate _multi_slice parameters directly
# from the input ShardingSpec, rather than the indices. However, this would
# require duplicating the ordering logic of spec_to_indices, which is more
# subtle and more likely to change than the index logic we have to support here.
def as_slice_indices(arr: Any, idx: Index) -> tuple[
tuple[int, ...], tuple[int, ...], tuple[int, ...]]:
"""Returns start_indices, limit_indices, removed_dims"""
start_indices = [0] * arr.ndim
limit_indices = list(arr.shape)
removed_dims: list[int] = []
tuple_idx = idx if isinstance(idx, tuple) else (idx,)
for dim, sub_idx in enumerate(tuple_idx):
if isinstance(sub_idx, int):
start_indices[dim] = sub_idx
limit_indices[dim] = sub_idx + 1
removed_dims.append(dim)
elif sub_idx == slice(None):
continue
else:
assert isinstance(sub_idx, slice), sub_idx
assert isinstance(sub_idx.start, int), sub_idx
assert isinstance(sub_idx.stop, int), sub_idx
start_indices[dim] = sub_idx.start
limit_indices[dim] = sub_idx.stop
return tuple(start_indices), tuple(limit_indices), tuple(removed_dims) # type: ignore
def shard_device_array(x, devices, indices, sharding):
start_indices, limit_indices, removed_dims = unzip3(
as_slice_indices(x, idx) for idx in indices)
if sharding.is_fully_replicated:
shards = [x] * len(devices)
else:
shards = x._multi_slice(start_indices, limit_indices, removed_dims)
aval = api_util.shaped_abstractify(x)
return pxla.batched_device_put(aval, sharding, shards, devices)
def _hashable_index(idx):
return tree_util.tree_map(
lambda x: (x.start, x.stop) if type(x) == slice else x, idx)
def shard_sharded_device_array_slow_path(x, devices, indices, sharding):
candidates = defaultdict(list)
bufs = [buf.data for buf in x.addressable_shards]
arr_indices = tuple(x.sharding.devices_indices_map(x.shape).values())
for buf, idx in safe_zip(bufs, arr_indices):
candidates[_hashable_index(idx)].append(buf)
bufs = []
for idx, device in safe_zip(indices, devices):
# Look up all buffers that contain the correct slice of the logical array.
candidates_list = candidates[_hashable_index(idx)]
if not candidates_list:
# This array isn't sharded correctly. Reshard it via host roundtrip.
# TODO(skye): more efficient reshard?
return pxla.shard_arg(x._value, sharding, canonicalize=False)
# Try to find a candidate buffer already on the correct device,
# otherwise copy one of them.
for buf in candidates_list:
if buf.devices() == {device}:
bufs.append(buf)
break
else:
bufs.append(buf)
return pxla.batched_device_put(x.aval, sharding, bufs, devices)
@functools.lru_cache(maxsize=4096)
def _sharding_indices_and_eq(src_sharding, shape, dst_sharding):
src_indices = src_sharding.addressable_devices_indices_map(shape).values()
dst_indices = dst_sharding.addressable_devices_indices_map(shape).values()
return dst_indices, tuple(src_indices) == tuple(dst_indices)
def _array_shard_arg(x, sharding):
x._check_if_deleted()
indices, same_indices = _sharding_indices_and_eq(x.sharding, x.shape, sharding)
if not x.is_fully_addressable:
if same_indices:
return x
else:
raise NotImplementedError(
"Cannot reshard an input that is not fully addressable")
else:
devices = sharding._addressable_device_assignment
if same_indices:
return xc.copy_array_to_devices_with_sharding(x, list(devices), sharding)
# Resharding starts here:
if dispatch.is_single_device_sharding(x.sharding):
return shard_device_array(x, devices, indices, sharding)
else:
return shard_sharded_device_array_slow_path(x, devices, indices, sharding)
pxla.shard_arg_handlers[ArrayImpl] = _array_shard_arg
def _token_shard_arg(x, sharding):
return _array_shard_arg(x._buf, sharding)
pxla.shard_arg_handlers[core.Token] = _token_shard_arg
def _array_global_result_handler(global_aval, out_sharding, committed):
if global_aval.dtype == dtypes.float0:
return lambda _: np.zeros(global_aval.shape, dtypes.float0) # type: ignore
if dtypes.issubdtype(global_aval.dtype, dtypes.extended):
return global_aval.dtype._rules.global_sharded_result_handler(
global_aval, out_sharding, committed)
return xc.array_result_handler(
global_aval, out_sharding, committed=committed, _skip_checks=True
)
pxla.global_result_handlers[core.ShapedArray] = _array_global_result_handler
pxla.global_result_handlers[core.ConcreteArray] = _array_global_result_handler
def _token_global_result_handler(global_aval, out_sharding, committed):
array_handler = _array_global_result_handler(
core.token_shaped_array, out_sharding, committed
)
def wrapper(*args, **kwargs):
out_buf = array_handler(*args, **kwargs)
return core.Token(out_buf)
return wrapper
pxla.global_result_handlers[core.AbstractToken] = _token_global_result_handler
# Only used for Arrays that come out of pmap.
def _array_local_result_handler(aval, sharding, indices):
if aval.dtype == dtypes.float0:
return lambda _: np.zeros(aval.shape, dtypes.float0) # type: ignore
if dtypes.issubdtype(aval.dtype, dtypes.extended):
return aval.dtype._rules.local_sharded_result_handler(
aval, sharding, indices)
return xc.array_result_handler(
aval, sharding, committed=True, _skip_checks=True
)
pxla.local_result_handlers[core.ShapedArray] = _array_local_result_handler
pxla.local_result_handlers[core.ConcreteArray] = _array_local_result_handler