rocm_jax/jaxlib/gpu_sparse.py
Peter Hawkins a852710a09 Merge CUDA and ROCM kernel code in jaxlib.
The code for both CUDA and ROCM is almost identical, so with a small shim library to handle the differences we can share almost everything.

PiperOrigin-RevId: 483666051
2022-10-25 07:23:34 -07:00

365 lines
12 KiB
Python

# Copyright 2019 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
cusparse wrappers for performing sparse matrix computations in JAX
"""
from functools import partial
import jaxlib.mlir.ir as ir
import numpy as np
from jaxlib import xla_client
from .mhlo_helpers import custom_call
try:
from .cuda import _sparse as _cusparse
except ImportError:
_cusparse = None
else:
for _name, _value in _cusparse.registrations().items():
xla_client.register_custom_call_target(_name, _value, platform="CUDA")
try:
from .rocm import _sparse as _hipsparse
except ImportError:
_hipsparse = None
else:
for _name, _value in _hipsparse.registrations().items():
xla_client.register_custom_call_target(_name, _value, platform="ROCM")
cuda_is_supported : bool = _cusparse and _cusparse.sparse_supported
rocm_is_supported : bool = _hipsparse and _hipsparse.sparse_supported
def _validate_csr_mhlo(data, indices, indptr, shape):
data_type = ir.RankedTensorType(data.type)
indices_type = ir.RankedTensorType(indices.type)
indptr_type = ir.RankedTensorType(indptr.type)
nnz, = data_type.shape
assert indices_type.shape == [nnz]
assert indptr_type.element_type == indices_type.element_type
assert indptr_type.shape == [shape[0] + 1]
return data_type.element_type, indices_type.element_type, nnz
def _validate_coo_mhlo(data, row, col):
data_type = ir.RankedTensorType(data.type)
row_type = ir.RankedTensorType(row.type)
col_type = ir.RankedTensorType(col.type)
nnz, = data_type.shape
assert row_type.shape == [nnz]
assert col_type.element_type == row_type.element_type
assert col_type.shape == [nnz]
return data_type.element_type, row_type.element_type, nnz
def _csr_todense_mhlo(platform, gpu_sparse, data, indices, indptr, *, shape,
data_dtype, index_dtype):
"""CSR to dense matrix."""
data_type, index_type, nnz = _validate_csr_mhlo(data, indices, indptr, shape)
rows, cols = shape
buffer_size, opaque = gpu_sparse.build_csr_todense_descriptor(
data_dtype, index_dtype, rows, cols, nnz)
out = custom_call(
f"{platform}sparse_csr_todense",
[
ir.RankedTensorType.get(shape, data_type),
ir.RankedTensorType.get([buffer_size],
ir.IntegerType.get_signless(8)),
],
[data, indices, indptr],
backend_config=opaque,
operand_layouts=[[0]] * 3,
result_layouts=[[1, 0], [0]])
return out[0]
cuda_csr_todense = partial(_csr_todense_mhlo, "cu", _cusparse)
rocm_csr_todense = partial(_csr_todense_mhlo, "hip", _hipsparse)
def _csr_fromdense_mhlo(platform, gpu_sparse, mat, *, nnz, index_dtype,
data_dtype, index_type):
"""CSR from dense matrix."""
mat_type = ir.RankedTensorType(mat.type)
rows, cols = mat_type.shape
buffer_size, opaque = gpu_sparse.build_csr_fromdense_descriptor(
data_dtype, index_dtype, rows, cols, nnz)
out = custom_call(
f"{platform}sparse_csr_fromdense",
[
ir.RankedTensorType.get([nnz], mat_type.element_type),
ir.RankedTensorType.get([nnz], index_type),
ir.RankedTensorType.get([rows + 1], index_type),
ir.RankedTensorType.get([buffer_size],
ir.IntegerType.get_signless(8)),
],
[mat],
backend_config=opaque,
operand_layouts=[[1, 0]],
result_layouts=[[0]] * 4)
return out[:3]
cuda_csr_fromdense = partial(_csr_fromdense_mhlo, "cu", _cusparse)
rocm_csr_fromdense = partial(_csr_fromdense_mhlo, "hip", _hipsparse)
def _csr_matvec_mhlo(platform, gpu_sparse, data, indices, indptr, x, *, shape,
transpose=False, compute_dtype=None, compute_type=None,
data_dtype, index_dtype, x_dtype):
"""CSR matrix/vector multiply."""
data_type, index_type, nnz = _validate_csr_mhlo(data, indices, indptr, shape)
rows, cols = shape
if compute_dtype is None:
compute_dtype = data_dtype
compute_type = data_type
buffer_size, opaque = gpu_sparse.build_csr_matvec_descriptor(
data_dtype, x_dtype, compute_dtype, index_dtype,
rows, cols, nnz, transpose)
out_size = cols if transpose else rows
out = custom_call(
f"{platform}sparse_csr_matvec",
[
ir.RankedTensorType.get([out_size], compute_type),
ir.RankedTensorType.get([buffer_size],
ir.IntegerType.get_signless(8)),
],
[data, indices, indptr, x],
backend_config=opaque,
operand_layouts=[[0]] * 4,
result_layouts=[[0]] * 2)
return out[0]
cuda_csr_matvec = partial(_csr_matvec_mhlo, "cu", _cusparse)
rocm_csr_matvec = partial(_csr_matvec_mhlo, "hip", _hipsparse)
def _csr_matmat_mhlo(platform, gpu_sparse, data, indices, indptr, B, *, shape,
transpose=False, compute_dtype=None, compute_type=None,
index_dtype, data_dtype, B_dtype):
"""CSR from dense matrix."""
data_type, index_type, nnz = _validate_csr_mhlo(data, indices, indptr, shape)
rows, cols = shape
B_shape = ir.RankedTensorType(B.type).shape
_, Ccols = B_shape
if compute_dtype is None:
compute_dtype = data_dtype
compute_type = data_type
buffer_size, opaque = gpu_sparse.build_csr_matmat_descriptor(
data_dtype, B_dtype, compute_dtype, index_dtype,
rows, cols, Ccols, nnz, transpose)
out_size = cols if transpose else rows
out = custom_call(
f"{platform}sparse_csr_matmat",
[
ir.RankedTensorType.get([out_size, Ccols], compute_type),
ir.RankedTensorType.get([buffer_size],
ir.IntegerType.get_signless(8)),
],
[data, indices, indptr, B],
backend_config=opaque,
operand_layouts=[[0], [0], [0], [1, 0]],
result_layouts=[[1, 0], [0]])
return out[0]
cuda_csr_matmat = partial(_csr_matmat_mhlo, "cu", _cusparse)
rocm_csr_matmat = partial(_csr_matmat_mhlo, "hip", _hipsparse)
def _coo_todense_mhlo(platform, gpu_sparse, data, row, col, *, shape,
data_dtype, index_dtype):
"""COO to dense matrix."""
data_type, _, nnz = _validate_coo_mhlo(data, row, col)
rows, cols = shape
buffer_size, opaque = gpu_sparse.build_coo_todense_descriptor(
data_dtype, index_dtype, rows, cols, nnz)
out = custom_call(
f"{platform}sparse_coo_todense",
[
ir.RankedTensorType.get(shape, data_type),
ir.RankedTensorType.get([buffer_size],
ir.IntegerType.get_signless(8)),
],
[data, row, col],
backend_config=opaque,
operand_layouts=[[0]] * 3,
result_layouts=[[1, 0], [0]])
return out[0]
cuda_coo_todense = partial(_coo_todense_mhlo, "cu", _cusparse)
rocm_coo_todense = partial(_coo_todense_mhlo, "hip", _hipsparse)
def _coo_fromdense_mhlo(platform, gpu_sparse, mat, *, nnz, data_dtype,
index_dtype, index_type):
"""COO from dense matrix."""
mat_type = ir.RankedTensorType(mat.type)
rows, cols = mat_type.shape
buffer_size, opaque = gpu_sparse.build_coo_fromdense_descriptor(
data_dtype, index_dtype, rows, cols, nnz)
out = custom_call(
f"{platform}sparse_coo_fromdense",
[
ir.RankedTensorType.get([nnz], mat_type.element_type),
ir.RankedTensorType.get([nnz], index_type),
ir.RankedTensorType.get([nnz], index_type),
ir.RankedTensorType.get([buffer_size],
ir.IntegerType.get_signless(8)),
],
[mat],
backend_config=opaque,
operand_layouts=[[1, 0]],
result_layouts=[[0]] * 4)
return out[:3]
cuda_coo_fromdense = partial(_coo_fromdense_mhlo, "cu", _cusparse)
rocm_coo_fromdense = partial(_coo_fromdense_mhlo, "hip", _hipsparse)
def _coo_matvec_mhlo(platform, gpu_sparse, data, row, col, x, *, shape,
transpose=False, compute_dtype=None, compute_type=None,
index_dtype, data_dtype, x_dtype):
"""COO matrix/vector multiply."""
data_type, _, nnz = _validate_coo_mhlo(data, row, col)
rows, cols = shape
if compute_dtype is None:
compute_dtype = data_dtype
compute_type = data_type
buffer_size, opaque = gpu_sparse.build_coo_matvec_descriptor(
data_dtype, x_dtype, compute_dtype, index_dtype,
rows, cols, nnz, transpose)
out_size = cols if transpose else rows
out = custom_call(
f"{platform}sparse_coo_matvec",
[
ir.RankedTensorType.get([out_size], compute_type),
ir.RankedTensorType.get([buffer_size],
ir.IntegerType.get_signless(8)),
],
[data, row, col, x],
backend_config=opaque,
operand_layouts=[[0]] * 4,
result_layouts=[[0]] * 2)
return out[0]
cuda_coo_matvec = partial(_coo_matvec_mhlo, "cu", _cusparse)
rocm_coo_matvec = partial(_coo_matvec_mhlo, "hip", _hipsparse)
def _coo_matmat_mhlo(platform, gpu_sparse, data, row, col, B, *, shape,
transpose=False, compute_dtype=None, compute_type=None,
x_dtype, data_dtype, index_dtype):
"""COO from dense matrix."""
data_type, _, nnz = _validate_coo_mhlo(data, row, col)
is_batched_matmat = False
batch_count = 1
if len(shape) == 2:
rows, cols = shape
elif len(shape) == 3:
is_batched_matmat = True
batch_count, rows, cols = shape
# Redefine nnz as nnz per batch.
nnz = nnz // batch_count
B_shape = ir.RankedTensorType(B.type).shape
_, Ccols = B_shape
if compute_dtype is None:
compute_dtype = data_dtype
compute_type = data_type
# TODO(tianjianlu): use batch stride to trigger different mode of batch
# computation. Currently batch_stride = 0 is not allowed because of the issue
# in cusparse https://github.com/NVIDIA/CUDALibrarySamples/issues/81#issuecomment-1205562643
# Set batch stride to be the matrix size for now.
lhs_batch_stride = nnz
B_rows = rows if transpose else cols
rhs_batch_stride = B_rows * Ccols
buffer_size, opaque = gpu_sparse.build_coo_matmat_descriptor(
data_dtype, x_dtype, compute_dtype, index_dtype,
rows, cols, Ccols, nnz, transpose, batch_count, lhs_batch_stride,
rhs_batch_stride)
out_size = cols if transpose else rows
if is_batched_matmat:
out_shape = [batch_count, out_size, Ccols]
out_layout = [2, 1, 0]
else:
out_shape = [out_size, Ccols]
out_layout = [1, 0]
out = custom_call(
f"{platform}sparse_coo_matmat",
[
ir.RankedTensorType.get(out_shape, compute_type),
ir.RankedTensorType.get([buffer_size],
ir.IntegerType.get_signless(8)),
],
[data, row, col, B],
backend_config=opaque,
operand_layouts=[[0], [0], [0], [1, 0]],
result_layouts=[out_layout, [0]])
return out[0]
cuda_coo_matmat = partial(_coo_matmat_mhlo, "cu", _cusparse)
rocm_coo_matmat = partial(_coo_matmat_mhlo, "hip", _hipsparse)
def _gtsv2_mhlo(platform, gpu_sparse, dl, d, du, B, *, m, n, ldb, t):
"""Calls `cusparse<t>gtsv2(dl, d, du, B, m, n, ldb)`."""
f32 = (t == np.float32)
if f32:
buffer_size = gpu_sparse.gtsv2_f32_buffer_size(m, n, ldb)
else:
buffer_size = gpu_sparse.gtsv2_f64_buffer_size(m, n, ldb)
out = custom_call(
f"{platform}sparse_gtsv2_" + ("f32" if f32 else "f64"),
[
ir.RankedTensorType.get(
[ldb, n], ir.F32Type.get() if f32 else ir.F64Type.get()),
ir.RankedTensorType.get([buffer_size],
ir.IntegerType.get_signless(8)),
],
[dl, d, du, B],
backend_config=gpu_sparse.build_gtsv2_descriptor(m, n, ldb),
operand_layouts=[[0]] * 3 + [[1, 0]],
result_layouts=[[1, 0], [0]],
operand_output_aliases={3: 0})
return out[0]
cuda_gtsv2 = partial(_gtsv2_mhlo, "cu", _cusparse)
rocm_gtsv2 = partial(_gtsv2_mhlo, "hip", _hipsparse)