George Necula 550d1aa187 [better_errors] Continue adding debug info to Jaxprs (step 6)
This follows in a series, starting with #26078 and #26313, adding debug_info to more calls to lu.wrap_init.

Here I changed the `custom_jvp_call` to replace the parameter
`jvp_jaxpr_thunk` (a callable) with `jvp_jaxpr_fun` (a `lu.WrappedFun`
that can carry debug info).

Also fixed uses in shard_map, checkify, sparse, attrs, and jax2tf.
2025-02-11 11:28:58 +01:00

237 lines
9.7 KiB
Python

# Copyright 2024 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from typing import Any, Callable
from jax._src import core
from jax._src import source_info_util
from jax._src import api_util
from jax._src import linear_util as lu
from jax._src.ad_util import (Zero)
from jax._src.api_util import flatten_fun_nokwargs
from jax._src.interpreters import ad
from jax._src.interpreters import partial_eval as pe
from jax._src.tree_util import (tree_flatten, tree_unflatten, tree_structure,
treedef_tuple)
from jax._src.util import unzip2, safe_map, safe_zip, split_list
from jax._src.dtypes import dtype, float0
map, unsafe_map = safe_map, map
zip, unsafe_zip = safe_zip, zip
JaxVal = Any
Pytree = Any
register = api_util.register_class_with_attrs
def jax_getattr(obj: Any, attr: str):
with core.take_current_trace() as t:
return t.process_getattr(obj, attr)
def jax_setattr(obj: Any, attr: str, val: Pytree):
with core.take_current_trace() as t:
return t.process_setattr(obj, attr, val)
def _getattr_impl(_, obj, attr):
return getattr(obj, attr)
core.EvalTrace.process_getattr = _getattr_impl
def _setattr_impl(_, obj, attr, val):
setattr(obj, attr, val)
core.EvalTrace.process_setattr = _setattr_impl
def _ensure_tracked(trace: pe.DynamicJaxprTrace, obj: Any, attr: str):
frame = trace.frame
def new_tracer(x):
aval = core.get_aval(x)
tracer = pe.DynamicJaxprTracer(trace, aval, pe.source_info_util.current())
var = frame.tracer_to_var[id(tracer)] = frame.newvar(aval)
frame.attrs_vars.append(var)
frame.tracers.append(tracer)
return tracer
if (obj, attr) not in frame.attrs_tracked:
init_val = getattr(obj, attr)
frame.attrs_inits.append(init_val)
init_vals, init_tree = tree_flatten(init_val)
tracers = map(new_tracer, init_vals)
setattr(obj, attr, tree_unflatten(init_tree, tracers))
frame.attrs_tracked.append((obj, attr))
pe.DynamicJaxprTrace._ensure_tracked = _ensure_tracked
def _getattr_staging(trace, obj, attr):
trace._ensure_tracked(obj, attr)
return getattr(obj, attr)
pe.DynamicJaxprTrace.process_getattr = _getattr_staging
def _setattr_staging(trace, obj, attr, val):
trace._ensure_tracked(obj, attr)
setattr(obj, attr, val)
pe.DynamicJaxprTrace.process_setattr = _setattr_staging
def jvp(f, primals, tangents, attr_tangents):
attrs, attr_tangents = unzip2(((o, a), t) for o, a, t in attr_tangents)
attr_primals = tuple(jax_getattr(o, a) for o, a in attrs)
primals_flat, in_tree = tree_flatten((attr_primals, *primals))
tangents_flat, in_tree_ = tree_flatten((attr_tangents, *tangents))
if in_tree != in_tree_: raise Exception
dbg = api_util.debug_info("attrs_jvp", f, primals, {})
f_, out_tree = flatten_fun_nokwargs(
_set_attrs(lu.wrap_init(f, debug_info=dbg), attrs), in_tree)
out_primals_flat, out_tangents_flat, tangent_attrs_out = _jvp(f_).call_wrapped(
primals_flat, tangents_flat)
out_primals = tree_unflatten(out_tree(), out_primals_flat)
out_tangents = tree_unflatten(out_tree(), out_tangents_flat)
return out_primals, out_tangents, tangent_attrs_out
@lu.transformation2
def _set_attrs(f, attrs, attr_vals, *args):
for (o, a), x in zip(attrs, attr_vals):
jax_setattr(o, a, x)
return f(*args)
def _jvp(fun: lu.WrappedFun):
return jvpfun2(jvp_subtrace2(fun))
@lu.transformation2
def jvpfun2(f, primals, tangents):
tag = core.TraceTag()
tangents = [Zero.from_primal_value(t) if not isinstance(t, Zero)
and dtype(t) == float0 else t for t in tangents]
ctx = source_info_util.transform_name_stack('jvp')
with ctx:
out_primals, out_tangents, tangent_attrs_out = f(tag, primals, tangents)
return out_primals, out_tangents, tangent_attrs_out
@lu.transformation2
def jvp_subtrace2(f, tag, primals, tangents):
with core.take_current_trace() as parent_trace:
trace = ad.JVPTrace(parent_trace, tag)
tag.attrs_tracked = [] # attrs written to
in_tracers = [ad.JVPTracer(trace, x, t) if type(t) is not ad.Zero else x
for x, t in zip(primals, tangents)]
with core.set_current_trace(trace):
ans = f(*in_tracers)
out_primals, out_tangents = unzip2(map(trace.to_primal_tangent_pair, ans))
tangent_attrs_out = []
for (obj, name) in tag.attrs_tracked:
primal, tangent = trace.to_primal_tangent_pair(jax_getattr(obj, name))
jax_setattr(obj, name, primal)
if type(tangent) is not ad.Zero:
tangent_attrs_out.append((obj, name, tangent))
del tag.attrs_tracked
return out_primals, out_tangents, tangent_attrs_out
def _setattr_jvp(trace, obj, attr, maybe_tracer):
primal, tangent = trace.to_primal_tangent_pair(maybe_tracer)
if isinstance(tangent, ad.Zero):
return setattr(obj, attr, primal)
if (obj, attr) not in trace.tag.attrs_tracked:
trace.tag.attrs_tracked.append((obj, attr))
return setattr(obj, attr, ad.JVPTracer(trace, primal, tangent))
ad.JVPTrace.process_setattr = _setattr_jvp
def _getattr_jvp(trace, obj, attr):
return getattr(obj, attr)
ad.JVPTrace.process_getattr = _getattr_jvp
ad.LinearizeTrace.process_setattr = _setattr_jvp
ad.LinearizeTrace.process_getattr = _getattr_jvp
def linearize(f: Callable, *primals, attrs: list[tuple[Any, str]] = []):
attr_primals = [jax_getattr(o, a) for o, a in attrs]
attr_avals = [core.get_aval(p) for p in attr_primals]
primals_flat, in_tree = tree_flatten(primals)
tree = treedef_tuple((tree_structure(attr_primals), *in_tree.children()))
dbg = api_util.debug_info("attrs linearize", f, primals, {})
f_, out_tree = flatten_fun_nokwargs(
_set_attrs(lu.wrap_init(f, debug_info=dbg), attrs), tree)
primal_out, out_pvals, jaxpr, consts, attrs_out = _linearize(
f_, *attr_primals, *primals_flat)
f_lin = _lin_wrap(jaxpr, consts, out_pvals, attr_avals, (in_tree, out_tree()),
attrs, attrs_out)
return tree_unflatten(out_tree(), primal_out), f_lin
def _linearize(traceable: lu.WrappedFun, *primals):
jvpfun, attrs = _split_attrs(_jvp(traceable))
in_pvals = (tuple(pe.PartialVal.known(p) for p in primals)
+ tuple(pe.PartialVal.unknown(core.get_aval(p).to_tangent_aval())
for p in primals))
_, in_tree = tree_flatten((primals, primals))
jvpfun_flat, out_tree = flatten_fun_nokwargs(jvpfun, in_tree)
jaxpr, out_pvals, consts = pe.trace_to_jaxpr_nounits(jvpfun_flat, in_pvals)
out_primals_pvals, out_tangents_pvals, out_tangent_attr_pvals = \
tree_unflatten(out_tree(), out_pvals)
out_primals_consts = [pval.get_known() for pval in out_primals_pvals]
return (out_primals_consts, [*out_tangents_pvals, *out_tangent_attr_pvals],
jaxpr, consts, attrs())
@lu.transformation_with_aux2
def _split_attrs(f, store, *args, **kwargs):
primals, tangents, tangent_attrs = f(*args, **kwargs)
attrs, tangent_attr_vals = unzip2(((o, a), t) for o, a, t in tangent_attrs)
store.store(attrs)
return primals, tangents, tangent_attr_vals
def _lin_wrap(jaxpr, consts, out_pvals, attr_avals, io_tree, in_attrs, out_attrs):
in_tree, out_tree = io_tree
def f_lin(*tangents, attr_tangents):
if set(attr_tangents) - set(in_attrs): raise Exception
tangents_, in_tree_ = tree_flatten(tangents)
assert in_tree == in_tree_
attr_tangents_ = [attr_tangents.get(a, ad.Zero(aval))
for a, aval in zip(in_attrs, attr_avals)]
out = core.eval_jaxpr(jaxpr, consts, *attr_tangents_, *tangents_)
out_ = iter(out)
out = [p.get_known() if p.is_known() else next(out_) for p in out_pvals]
assert next(out_, None) is None
tangents_out, attr_tangents_out = split_list(out, [len(out)-len(out_attrs)])
out_ct = tree_unflatten(out_tree, tangents_out)
return out_ct, dict(zip(out_attrs, attr_tangents_out))
return f_lin
def vjp(f, *primals, attrs: list[tuple[Any, str]] = []):
attr_primals = [jax_getattr(o, a) for o, a in attrs]
primals_flat, in_tree = tree_flatten(primals)
tree = treedef_tuple((tree_structure(attr_primals), *in_tree.children()))
dbg = api_util.debug_info("attrs vjp", f, primals, {})
f_, out_tree = flatten_fun_nokwargs(
_set_attrs(lu.wrap_init(f, debug_info=dbg), attrs), tree)
primal_out, out_pvals, jaxpr, consts, attrs_out = _linearize(
f_, *attr_primals, *primals_flat)
attr_avals = [core.get_aval(jax_getattr(o, a)).to_tangent_aval()
for o, a in attrs_out]
f_vjp = _vjp_wrap(jaxpr, consts, out_pvals, attr_avals, (in_tree, out_tree()),
attrs, attrs_out)
return tree_unflatten(out_tree(), primal_out), f_vjp
def _vjp_wrap(jaxpr, consts, out_pvals, attr_avals, io_tree, in_attrs, out_attrs):
in_tree, out_tree = io_tree
dummies = [ad.UndefinedPrimal(v.aval) for v in jaxpr.invars]
def f_vjp(out_ct, *, attr_cotangents: dict[tuple[Any, str], JaxVal] = {}):
out_cts, out_tree_ = tree_flatten(out_ct)
assert out_tree == out_tree_
attr_cts = [attr_cotangents.get(a, ad.Zero(aval))
for a, aval in zip(out_attrs, attr_avals)]
out = ad.backward_pass(jaxpr, (), consts, dummies, (*out_cts, *attr_cts))
in_attr_bars, arg_cts = split_list(out, [len(in_attrs)])
args_ct = tree_unflatten(in_tree, map(ad.instantiate_zeros, arg_cts))
return args_ct, dict(zip(in_attrs, in_attr_bars))
return f_vjp