rocm_jax/jaxlib/hipsolver.py

382 lines
14 KiB
Python

# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import operator
import numpy as np
from jaxlib import xla_client
try:
from . import _hipblas
for _name, _value in _hipblas.registrations().items():
xla_client.register_custom_call_target(_name, _value, platform="ROCM")
except ImportError:
pass
try:
from . import _hipsolver
for _name, _value in _hipsolver.registrations().items():
xla_client.register_custom_call_target(_name, _value, platform="ROCM")
except ImportError:
pass
_ops = xla_client.ops
_Shape = xla_client.Shape
def _real_type(dtype):
"""Returns the real equivalent of 'dtype'."""
return np.finfo(dtype).dtype
_prod = lambda xs: functools.reduce(operator.mul, xs, 1)
def trsm(c,
a,
b,
left_side=False,
lower=False,
trans_a=False,
conj_a=False,
diag=False):
"""Batched triangular solve.
XLA implements unbatched triangular solve directly, so we need only implement
the batched case."""
b_shape = c.get_shape(b)
dtype = b_shape.element_type()
dims = b_shape.dimensions()
assert len(dims) >= 2
m, n = dims[-2:]
batch_dims = tuple(dims[:-2])
num_bd = len(batch_dims)
batch = _prod(batch_dims)
k = m if left_side else n
a_shape = c.get_shape(a)
if (batch_dims + (k, k) != a_shape.dimensions()
or a_shape.element_type() != dtype):
raise ValueError("Argument mismatch for trsm, got {} and {}".format(
a_shape, b_shape))
if conj_a and not trans_a:
raise NotImplementedError(
"Conjugation without transposition not supported")
lwork, opaque = _hipblas.build_trsm_batched_descriptor(
np.dtype(dtype), batch, m, n, left_side, lower, trans_a, conj_a, diag)
layout = (num_bd, num_bd + 1) + tuple(range(num_bd - 1, -1, -1))
out = _ops.CustomCallWithLayout(
c,
b"hipblas_trsm_batched",
operands=(a, b),
shape_with_layout=_Shape.tuple_shape(
(_Shape.array_shape(dtype, b_shape.dimensions(), layout),
_Shape.array_shape(np.dtype(np.int8), (lwork, ), (0, )),
_Shape.array_shape(np.dtype(np.int8), (lwork, ), (0, )))),
operand_shapes_with_layout=(
_Shape.array_shape(dtype, a_shape.dimensions(), layout),
_Shape.array_shape(dtype, b_shape.dimensions(), layout),
),
opaque=opaque,
api_version=xla_client.ops.CustomCallApiVersion.
API_VERSION_STATUS_RETURNING)
return _ops.GetTupleElement(out, 0)
def potrf(c, a, lower):
"""Cholesky decomposition."""
a_shape = c.get_shape(a)
dtype = a_shape.element_type()
dims = a_shape.dimensions()
m, n = dims[-2:]
assert m == n
batch_dims = tuple(dims[:-2])
num_bd = len(batch_dims)
batch = _prod(batch_dims)
lwork, opaque = _hipsolver.build_potrf_descriptor(np.dtype(dtype), lower,
batch, n)
kernel = b"hipsolver_potrf"
out = _ops.CustomCallWithLayout(
c,
kernel,
operands=(a, ),
shape_with_layout=_Shape.tuple_shape((
_Shape.array_shape(dtype, batch_dims + (n, n), (num_bd, num_bd + 1) +
tuple(range(num_bd - 1, -1, -1))),
_Shape.array_shape(np.dtype(np.int32), batch_dims,
tuple(range(num_bd - 1, -1, -1))),
_Shape.array_shape(np.dtype(np.int8), (lwork, ), (0, )),
)),
operand_shapes_with_layout=(_Shape.array_shape(
dtype, batch_dims + (n, n),
(num_bd, num_bd + 1) + tuple(range(num_bd - 1, -1, -1))), ),
opaque=opaque,
api_version=xla_client.ops.CustomCallApiVersion.
API_VERSION_STATUS_RETURNING)
return _ops.GetTupleElement(out, 0), _ops.GetTupleElement(out, 1)
def getrf(c, a):
"""LU decomposition."""
a_shape = c.get_shape(a)
dtype = a_shape.element_type()
dims = a_shape.dimensions()
assert len(dims) >= 2
m, n = dims[-2:]
batch_dims = tuple(dims[:-2])
num_bd = len(batch_dims)
batch = _prod(batch_dims)
if batch > 1 and m == n and m // batch <= 128:
lwork, opaque = _hipblas.build_getrf_batched_descriptor(
np.dtype(dtype), batch, m)
workspace = _Shape.array_shape(np.dtype(np.int8), (lwork, ), (0, ))
kernel = b"hipblas_getrf_batched"
else:
lwork, opaque = _hipsolver.build_getrf_descriptor(np.dtype(dtype), batch,
m, n)
workspace = _Shape.array_shape(dtype, (lwork, ), (0, ))
kernel = b"hipsolver_getrf"
out = _ops.CustomCallWithLayout(
c,
kernel,
operands=(a, ),
shape_with_layout=_Shape.tuple_shape((
_Shape.array_shape(dtype, batch_dims + (m, n), (num_bd, num_bd + 1) +
tuple(range(num_bd - 1, -1, -1))),
_Shape.array_shape(np.dtype(np.int32), batch_dims + (min(m, n), ),
tuple(range(num_bd, -1, -1))),
_Shape.array_shape(np.dtype(np.int32), batch_dims,
tuple(range(num_bd - 1, -1, -1))),
workspace,
)),
operand_shapes_with_layout=(_Shape.array_shape(
dtype, batch_dims + (m, n),
(num_bd, num_bd + 1) + tuple(range(num_bd - 1, -1, -1))), ),
opaque=opaque,
api_version=xla_client.ops.CustomCallApiVersion.
API_VERSION_STATUS_RETURNING)
return (_ops.GetTupleElement(out, 0), _ops.GetTupleElement(out, 1),
_ops.GetTupleElement(out, 2))
def geqrf(c, a):
"""QR decomposition."""
a_shape = c.get_shape(a)
dtype = a_shape.element_type()
dims = a_shape.dimensions()
assert len(dims) >= 2
m, n = dims[-2:]
batch_dims = tuple(dims[:-2])
num_bd = len(batch_dims)
batch = _prod(batch_dims)
lwork, opaque = _hipsolver.build_geqrf_descriptor(np.dtype(dtype), batch, m,
n)
workspace = _Shape.array_shape(dtype, (lwork, ), (0, ))
kernel = b"hipsolver_geqrf"
out = _ops.CustomCallWithLayout(
c,
kernel,
operands=(a, ),
shape_with_layout=_Shape.tuple_shape((
_Shape.array_shape(dtype, batch_dims + (m, n), (num_bd, num_bd + 1) +
tuple(range(num_bd - 1, -1, -1))),
_Shape.array_shape(dtype, batch_dims + (min(m, n), ),
tuple(range(num_bd, -1, -1))),
_Shape.array_shape(np.dtype(np.int32), batch_dims,
tuple(range(num_bd - 1, -1, -1))),
workspace,
)),
operand_shapes_with_layout=(_Shape.array_shape(
dtype, batch_dims + (m, n),
(num_bd, num_bd + 1) + tuple(range(num_bd - 1, -1, -1))), ),
opaque=opaque,
api_version=xla_client.ops.CustomCallApiVersion.
API_VERSION_STATUS_RETURNING)
return (_ops.GetTupleElement(out, 0), _ops.GetTupleElement(out, 1),
_ops.GetTupleElement(out, 2))
def orgqr(c, a, tau):
"""Product of elementary Householder reflections."""
a_shape = c.get_shape(a)
dtype = a_shape.element_type()
dims = a_shape.dimensions()
assert len(dims) >= 2
m, n = dims[-2:]
batch_dims = tuple(dims[:-2])
num_bd = len(batch_dims)
batch = _prod(batch_dims)
tau_dims = c.get_shape(tau).dimensions()
assert tau_dims[:-1] == dims[:-2]
k = tau_dims[-1]
lwork, opaque = _hipsolver.build_orgqr_descriptor(np.dtype(dtype), batch, m,
n, k)
workspace = _Shape.array_shape(dtype, (lwork, ), (0, ))
kernel = b"hipsolver_orgqr"
out = _ops.CustomCallWithLayout(
c,
kernel,
operands=(a, tau),
shape_with_layout=_Shape.tuple_shape((
_Shape.array_shape(dtype, batch_dims + (m, n), (num_bd, num_bd + 1) +
tuple(range(num_bd - 1, -1, -1))),
_Shape.array_shape(np.dtype(np.int32), batch_dims,
tuple(range(num_bd - 1, -1, -1))),
workspace,
)),
operand_shapes_with_layout=(
_Shape.array_shape(dtype, batch_dims + (m, n), (num_bd, num_bd + 1) +
tuple(range(num_bd - 1, -1, -1))),
_Shape.array_shape(dtype, batch_dims + (k, ),
tuple(range(num_bd, -1, -1))),
),
opaque=opaque,
api_version=xla_client.ops.CustomCallApiVersion.
API_VERSION_STATUS_RETURNING)
return (_ops.GetTupleElement(out, 0), _ops.GetTupleElement(out, 1))
def syevd(c, a, lower=False):
"""Symmetric (Hermitian) eigendecomposition."""
a_shape = c.get_shape(a)
dtype = a_shape.element_type()
dims = a_shape.dimensions()
assert len(dims) >= 2
m, n = dims[-2:]
assert m == n
batch_dims = tuple(dims[:-2])
num_bd = len(batch_dims)
batch = _prod(batch_dims)
layout = (num_bd, num_bd + 1) + tuple(range(num_bd - 1, -1, -1))
# TODO(rocm): rocm does not support jacobian method.
kernel = b"hipsolver_syevd"
lwork, opaque = _hipsolver.build_syevd_descriptor(np.dtype(dtype), lower,
batch, n)
eigvals_type = _real_type(dtype)
out = _ops.CustomCallWithLayout(
c,
kernel,
operands=(a, ),
shape_with_layout=_Shape.tuple_shape(
(_Shape.array_shape(dtype, dims, layout),
_Shape.array_shape(np.dtype(eigvals_type), batch_dims + (n, ),
tuple(range(num_bd, -1, -1))),
_Shape.array_shape(np.dtype(np.int32), batch_dims,
tuple(range(num_bd - 1, -1, -1))),
_Shape.array_shape(dtype, (lwork, ), (0, )))),
operand_shapes_with_layout=(_Shape.array_shape(dtype, dims, layout), ),
opaque=opaque,
api_version=xla_client.ops.CustomCallApiVersion.
API_VERSION_STATUS_RETURNING)
return (_ops.GetTupleElement(out, 0), _ops.GetTupleElement(out, 1),
_ops.GetTupleElement(out, 2))
def gesvd(c, a, full_matrices=True, compute_uv=True):
"""Singular value decomposition."""
a_shape = c.get_shape(a)
dims = a_shape.dimensions()
dtype = a_shape.element_type()
assert len(dims) >= 2
m, n = dims[-2:]
batch_dims = tuple(dims[:-2])
num_bd = len(batch_dims)
b = _prod(batch_dims)
singular_vals_dtype = np.dtype(_real_type(dtype))
# TODO(rocm): rocm does not support jacobian method.
# for cuda, jax uses jacobian method for small size matrixes
if m < n:
lwork, opaque = _hipsolver.build_gesvd_descriptor(np.dtype(dtype), b, n, m,
compute_uv,
full_matrices)
scalar_layout = tuple(range(num_bd - 1, -1, -1))
vector_layout = (num_bd, ) + scalar_layout
matrix_layout = (num_bd + 1, num_bd) + scalar_layout
out = _ops.CustomCallWithLayout(
c,
b"hipsolver_gesvd",
operands=(a, ),
shape_with_layout=_Shape.tuple_shape((
_Shape.array_shape(dtype, batch_dims + (m, n), matrix_layout),
_Shape.array_shape(singular_vals_dtype, batch_dims + (min(m, n), ),
vector_layout),
_Shape.array_shape(dtype, batch_dims + (n, n), matrix_layout),
_Shape.array_shape(dtype, batch_dims + (m, m), matrix_layout),
_Shape.array_shape(np.dtype(np.int32), batch_dims, scalar_layout),
_Shape.array_shape(dtype, (lwork, ), (0, )),
)),
operand_shapes_with_layout=(_Shape.array_shape(dtype,
batch_dims + (m, n),
matrix_layout), ),
opaque=opaque,
api_version=xla_client.ops.CustomCallApiVersion.
API_VERSION_STATUS_RETURNING)
s = _ops.GetTupleElement(out, 1)
vt = _ops.GetTupleElement(out, 2)
u = _ops.GetTupleElement(out, 3)
info = _ops.GetTupleElement(out, 4)
else:
lwork, opaque = _hipsolver.build_gesvd_descriptor(np.dtype(dtype), b, m, n,
compute_uv,
full_matrices)
scalar_layout = tuple(range(num_bd - 1, -1, -1))
vector_layout = (num_bd, ) + scalar_layout
matrix_layout = (num_bd, num_bd + 1) + scalar_layout
out = _ops.CustomCallWithLayout(
c,
b"hipsolver_gesvd",
operands=(a, ),
shape_with_layout=_Shape.tuple_shape((
_Shape.array_shape(dtype, batch_dims + (m, n), matrix_layout),
_Shape.array_shape(singular_vals_dtype, batch_dims + (min(m, n), ),
vector_layout),
_Shape.array_shape(dtype, batch_dims + (m, m), matrix_layout),
_Shape.array_shape(dtype, batch_dims + (n, n), matrix_layout),
_Shape.array_shape(np.dtype(np.int32), batch_dims, scalar_layout),
_Shape.array_shape(dtype, (lwork, ), (0, )),
)),
operand_shapes_with_layout=(_Shape.array_shape(dtype,
batch_dims + (m, n),
matrix_layout), ),
opaque=opaque,
api_version=xla_client.ops.CustomCallApiVersion.
API_VERSION_STATUS_RETURNING)
s = _ops.GetTupleElement(out, 1)
u = _ops.GetTupleElement(out, 2)
vt = _ops.GetTupleElement(out, 3)
info = _ops.GetTupleElement(out, 4)
if not full_matrices:
u = _ops.Slice(u, (0, ) * len(dims), batch_dims + (m, min(m, n)),
(1, ) * len(dims))
vt = _ops.Slice(vt, (0, ) * len(dims), batch_dims + (min(m, n), n),
(1, ) * len(dims))
return s, u, vt, info