mirror of
https://github.com/ROCm/jax.git
synced 2025-04-14 19:06:07 +00:00
523 lines
18 KiB
Python
523 lines
18 KiB
Python
# Copyright 2022 The JAX Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Module for JAX callbacks."""
|
|
from __future__ import annotations
|
|
|
|
from collections.abc import Callable, Sequence
|
|
import dataclasses
|
|
import functools
|
|
import logging
|
|
from typing import Any
|
|
|
|
import jax
|
|
from jax._src import core
|
|
from jax._src import dispatch
|
|
from jax._src import dtypes
|
|
from jax._src import effects
|
|
from jax._src import sharding_impls
|
|
from jax._src import tree_util
|
|
from jax._src import util
|
|
from jax._src.interpreters import ad
|
|
from jax._src.interpreters import batching
|
|
from jax._src.interpreters import mlir
|
|
from jax._src.lax.control_flow.loops import map as lax_map
|
|
from jax._src.lib import xla_client as xc
|
|
from jax._src.sharding_impls import SingleDeviceSharding
|
|
import numpy as np
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
# `pure_callback_p` is the main primitive for staging out Python pure callbacks.
|
|
pure_callback_p = core.Primitive("pure_callback")
|
|
pure_callback_p.multiple_results = True
|
|
dispatch.prim_requires_devices_during_lowering.add(pure_callback_p)
|
|
|
|
map, unsafe_map = util.safe_map, map
|
|
|
|
|
|
@dataclasses.dataclass(frozen=True)
|
|
class _FlatCallback:
|
|
"""A Python function callable with flat arguments and results.
|
|
|
|
An instance of this class is used as a parameter for the callback primitives.
|
|
We prefer it to an anonymous flattened function because it produces
|
|
equal objects when we call the same Python function with the same argument
|
|
structure.
|
|
"""
|
|
callback_func: Callable[..., Any]
|
|
in_tree: tree_util.PyTreeDef # (args, kwargs) pytree for `callback_func`.
|
|
|
|
def __call__(self, *flat_args: jax.Array) -> Sequence[jax.Array]:
|
|
args, kwargs = tree_util.tree_unflatten(self.in_tree, flat_args)
|
|
return tree_util.tree_leaves(self.callback_func(*args, **kwargs))
|
|
|
|
|
|
def pure_callback_impl(
|
|
*args,
|
|
result_avals,
|
|
callback: _FlatCallback,
|
|
sharding: SingleDeviceSharding | None,
|
|
vectorized: bool,
|
|
):
|
|
del sharding, vectorized, result_avals
|
|
try:
|
|
cpu_device, *_ = jax.local_devices(backend="cpu")
|
|
except RuntimeError as e:
|
|
raise RuntimeError(
|
|
"jax.pure_callback failed to find a local CPU device to place the"
|
|
" inputs on. Make sure \"cpu\" is listed in --jax_platforms or the"
|
|
" JAX_PLATFORMS environment variable."
|
|
) from e
|
|
args = jax.device_put(args, cpu_device)
|
|
with jax.default_device(cpu_device):
|
|
try:
|
|
return tree_util.tree_map(np.asarray, callback(*args))
|
|
except BaseException:
|
|
logger.exception("jax.pure_callback failed")
|
|
raise
|
|
|
|
|
|
pure_callback_p.def_impl(functools.partial(dispatch.apply_primitive,
|
|
pure_callback_p))
|
|
|
|
|
|
@pure_callback_p.def_abstract_eval
|
|
def pure_callback_abstract_eval(
|
|
*avals,
|
|
callback: _FlatCallback,
|
|
result_avals,
|
|
sharding: SingleDeviceSharding | None,
|
|
vectorized: bool,
|
|
):
|
|
del avals, callback, sharding, vectorized
|
|
return result_avals
|
|
|
|
|
|
def pure_callback_jvp_rule(*args, **kwargs):
|
|
del args, kwargs
|
|
raise ValueError(
|
|
"Pure callbacks do not support JVP. "
|
|
"Please use `jax.custom_jvp` to use callbacks while taking gradients.")
|
|
|
|
|
|
ad.primitive_jvps[pure_callback_p] = pure_callback_jvp_rule
|
|
|
|
|
|
def pure_callback_transpose_rule(*args, **kwargs):
|
|
del args, kwargs
|
|
raise ValueError(
|
|
"Pure callbacks do not support transpose. "
|
|
"Please use `jax.custom_vjp` to use callbacks while taking gradients.")
|
|
|
|
ad.primitive_transposes[pure_callback_p] = pure_callback_transpose_rule
|
|
|
|
|
|
def callback_batching_rule(
|
|
prim,
|
|
args,
|
|
dims,
|
|
*,
|
|
vectorized: bool,
|
|
result_avals: Sequence[core.ShapedArray],
|
|
**kwargs: Any,
|
|
):
|
|
axis_size = next(a.shape[d] for a, d in zip(args, dims)
|
|
if d is not batching.not_mapped)
|
|
new_args = [arg if dim is batching.not_mapped else
|
|
batching.moveaxis(arg, dim, 0) for arg, dim in zip(args, dims)]
|
|
if vectorized:
|
|
result_avals = tuple(
|
|
core.unmapped_aval(axis_size, core.no_axis_name, 0, aval) # type: ignore
|
|
for aval in result_avals)
|
|
outvals = prim.bind(
|
|
*new_args,
|
|
vectorized=vectorized,
|
|
result_avals=result_avals,
|
|
**kwargs,
|
|
)
|
|
else:
|
|
is_batched = [d is not batching.not_mapped for d in dims]
|
|
unbatched_args, batched_args = util.partition_list(is_batched, new_args)
|
|
def _batch_fun(batched_args):
|
|
merged_args = util.merge_lists(is_batched, unbatched_args, batched_args)
|
|
return prim.bind(
|
|
*merged_args,
|
|
result_avals=result_avals,
|
|
vectorized=vectorized,
|
|
**kwargs,
|
|
)
|
|
outvals = lax_map(_batch_fun, batched_args)
|
|
return tuple(outvals), (0,) * len(outvals)
|
|
|
|
|
|
batching.primitive_batchers[pure_callback_p] = functools.partial(
|
|
callback_batching_rule, pure_callback_p
|
|
)
|
|
|
|
|
|
def _callback_op_sharding(axis_context, sharding: SingleDeviceSharding | None):
|
|
if isinstance(axis_context, sharding_impls.SPMDAxisContext):
|
|
# If we have fully manual sharding during lowering, that means the JAX
|
|
# program has per-device semantics, so we run the callback on each device.
|
|
if axis_context.manual_axes != frozenset(axis_context.mesh.axis_names):
|
|
raise NotImplementedError(
|
|
"callbacks are only supported in spmd computations when all mesh"
|
|
" axes are partitioned manually (no partial automatic sharding)."
|
|
)
|
|
if sharding is not None:
|
|
raise NotImplementedError(
|
|
"callbacks do not support specifying sharding inside spmd"
|
|
" computations"
|
|
)
|
|
op_sharding = xc.OpSharding()
|
|
op_sharding.type = xc.OpSharding.Type.MANUAL
|
|
return op_sharding
|
|
|
|
if isinstance(axis_context, sharding_impls.ShardingContext):
|
|
if sharding is not None:
|
|
if not isinstance(sharding, SingleDeviceSharding):
|
|
raise NotImplementedError(
|
|
"pure_callback only supports SingleDeviceSharding, but got"
|
|
f" {type(sharding)}"
|
|
)
|
|
device = next(iter(sharding.device_set))
|
|
device_assignment = axis_context.device_assignment
|
|
if device_assignment is None:
|
|
raise AssertionError(
|
|
"Please file a bug at https://github.com/jax-ml/jax/issues")
|
|
try:
|
|
device_index = device_assignment.index(device)
|
|
except IndexError as e:
|
|
raise ValueError(
|
|
"Sharding provided to pure_callback specifies a device"
|
|
f" {device} that is not in the device assignment"
|
|
f" ({device_assignment})") from e
|
|
else:
|
|
device_index = 0
|
|
|
|
# If we have fully automatic sharding during lowering, that means the JAX
|
|
# program has bulk array semantics, so we run the callback with a MAXIMAL
|
|
# sharding and hence execute it only once on the full logical value).
|
|
op_sharding = xc.OpSharding()
|
|
op_sharding.type = xc.OpSharding.Type.MAXIMAL
|
|
op_sharding.tile_assignment_dimensions = [1]
|
|
op_sharding.tile_assignment_devices = [device_index]
|
|
return op_sharding
|
|
|
|
# When there's no SPMD partitioning going on, don't annotate a sharding.
|
|
return None
|
|
|
|
|
|
def pure_callback_lowering(
|
|
ctx, *args, callback: _FlatCallback, sharding: SingleDeviceSharding | None, **params
|
|
):
|
|
def _callback(*flat_args):
|
|
return tuple(
|
|
pure_callback_impl(
|
|
*flat_args,
|
|
callback=callback,
|
|
sharding=None, # unused.
|
|
**params,
|
|
)
|
|
)
|
|
|
|
op_sharding = _callback_op_sharding(ctx.module_context.axis_context, sharding)
|
|
result, _, _ = mlir.emit_python_callback(
|
|
ctx,
|
|
_callback,
|
|
None,
|
|
list(args),
|
|
ctx.avals_in,
|
|
ctx.avals_out,
|
|
has_side_effect=False,
|
|
sharding=op_sharding,
|
|
)
|
|
return result
|
|
|
|
|
|
mlir.register_lowering(pure_callback_p, pure_callback_lowering)
|
|
|
|
def _check_shape_dtype(shape_dtype):
|
|
dt = np.dtype(shape_dtype.dtype)
|
|
if dtypes.canonicalize_dtype(dt) != dt:
|
|
raise ValueError(
|
|
"result_shape_dtypes cannot specify 64-bit types when `jax_enable_x64` is disabled")
|
|
|
|
|
|
def pure_callback(
|
|
callback: Callable[..., Any],
|
|
result_shape_dtypes: Any,
|
|
*args: Any,
|
|
sharding: SingleDeviceSharding | None = None,
|
|
vectorized: bool = False,
|
|
**kwargs: Any,
|
|
):
|
|
"""Calls a pure Python callback. Works under :func:`jit`/:func:`~vmap`/etc.
|
|
|
|
For more explanation, see `External Callbacks`_.
|
|
|
|
``pure_callback`` enables calling a Python function in JIT-ed JAX functions.
|
|
The input ``callback`` will be passed JAX arrays placed on a local CPU, and
|
|
it should also return JAX arrays on CPU.
|
|
|
|
The callback is treated as functionally pure, meaning it has no side-effects
|
|
and its output value depends only on its argument values. As a consequence, it
|
|
is safe to be called multiple times (e.g. when transformed by :func:`~vmap` or
|
|
:func:`~pmap`), or not to be called at all when e.g. the output of a
|
|
`jit`-decorated function has no data dependence on its value. Pure callbacks
|
|
may also be reordered if data-dependence allows.
|
|
|
|
When `vmap`-ed the behavior will depend on the value of the
|
|
``vectorized`` keyword argument. When ``vectorized`` is ``True``, the callback
|
|
is assumed to obey
|
|
``jax.vmap(callback)(xs) == callback(xs) == jnp.stack([callback(x) for x in xs])``.
|
|
Therefore, the callback will be called directly on batched inputs (where the
|
|
batch axes are the leading dimensions). Additionally, the callbacks should
|
|
return outputs that have corresponding leading batch axes. If not vectorized
|
|
``callback`` will be mapped sequentially across the batched axis.
|
|
For example, if ``callback = lambda x, y: np.matmul(x, y)``, then we are free
|
|
to set ``vectorized=True`` because the ``np.matmul`` function handles
|
|
arbitrary leading batch dimensions.
|
|
|
|
Args:
|
|
callback: function to execute on the host. The callback is assumed to be a pure
|
|
function (i.e. one without side-effects): if an impure function is passed, it
|
|
may behave in unexpected ways, particularly under transformation. The callable
|
|
will be passed PyTrees of arrays as arguments, and should return a PyTree of
|
|
arrays that matches ``result_shape_dtypes``.
|
|
result_shape_dtypes: pytree whose leaves have ``shape`` and ``dtype`` attributes,
|
|
whose structure matches the expected output of the callback function at runtime.
|
|
:class:`jax.ShapeDtypeStruct` is often used to define leaf values.
|
|
*args: arguments to be passed to the callback function
|
|
sharding: optional sharding that specifies the device from which the callback should
|
|
be invoked.
|
|
vectorized: boolean specifying whether the callback function can operate in a
|
|
vectorized manner.
|
|
**kwargs: keyword arguments to be passed to the callback function
|
|
|
|
Returns:
|
|
result: a pytree of :class:`jax.Array` objects whose structure matches that of
|
|
``result_shape_dtypes``.
|
|
|
|
See Also:
|
|
- :func:`jax.experimental.io_callback`: callback designed for impure functions.
|
|
- :func:`jax.debug.callback`: callback designed for general-purpose debugging.
|
|
- :func:`jax.debug.print`: callback designed for printing.
|
|
|
|
.. _External Callbacks: https://jax.readthedocs.io/en/latest/notebooks/external_callbacks.html
|
|
"""
|
|
flat_args, in_tree = tree_util.tree_flatten((args, kwargs))
|
|
tree_util.tree_map(_check_shape_dtype, result_shape_dtypes)
|
|
result_avals = tree_util.tree_map(
|
|
lambda x: core.ShapedArray(x.shape, x.dtype), result_shape_dtypes)
|
|
flat_result_avals, out_tree = tree_util.tree_flatten(result_avals)
|
|
out_flat = pure_callback_p.bind(
|
|
*flat_args,
|
|
callback=_FlatCallback(callback, in_tree),
|
|
result_avals=tuple(flat_result_avals),
|
|
sharding=sharding,
|
|
vectorized=vectorized,
|
|
)
|
|
return tree_util.tree_unflatten(out_tree, out_flat)
|
|
|
|
|
|
# IO Callback
|
|
|
|
io_callback_p = core.Primitive("io_callback")
|
|
io_callback_p.multiple_results = True
|
|
dispatch.prim_requires_devices_during_lowering.add(io_callback_p)
|
|
|
|
class IOEffect(effects.Effect):
|
|
__str__ = lambda _: "IO"
|
|
|
|
class OrderedIOEffect(effects.Effect):
|
|
__str__ = lambda _: "OrderedIO"
|
|
|
|
_IOEffect = IOEffect()
|
|
_OrderedIOEffect = OrderedIOEffect()
|
|
effects.lowerable_effects.add_type(IOEffect)
|
|
effects.lowerable_effects.add_type(OrderedIOEffect)
|
|
effects.control_flow_allowed_effects.add_type(IOEffect)
|
|
effects.control_flow_allowed_effects.add_type(OrderedIOEffect)
|
|
effects.ordered_effects.add_type(OrderedIOEffect)
|
|
effects.shardable_ordered_effects.add_type(OrderedIOEffect)
|
|
|
|
|
|
def io_callback_impl(
|
|
*args,
|
|
result_avals,
|
|
callback: _FlatCallback,
|
|
sharding: SingleDeviceSharding | None,
|
|
ordered: bool,
|
|
):
|
|
del result_avals, sharding, ordered
|
|
try:
|
|
cpu_device, *_ = jax.local_devices(backend="cpu")
|
|
except RuntimeError as e:
|
|
raise RuntimeError(
|
|
"jax.io_callback failed to find a local CPU device to place the"
|
|
" inputs on. Make sure \"cpu\" is listed in --jax_platforms or the"
|
|
" JAX_PLATFORMS environment variable."
|
|
) from e
|
|
args = jax.device_put(args, cpu_device)
|
|
with jax.default_device(cpu_device):
|
|
try:
|
|
return tree_util.tree_map(np.asarray, callback(*args))
|
|
except BaseException:
|
|
logger.exception("jax.io_callback failed")
|
|
raise
|
|
|
|
|
|
io_callback_p.def_impl(functools.partial(dispatch.apply_primitive,
|
|
io_callback_p))
|
|
|
|
|
|
@io_callback_p.def_effectful_abstract_eval
|
|
def io_callback_abstract_eval(
|
|
*avals,
|
|
callback: _FlatCallback,
|
|
result_avals,
|
|
sharding: SingleDeviceSharding | None,
|
|
ordered: bool,
|
|
):
|
|
del avals, sharding, callback
|
|
effect = _OrderedIOEffect if ordered else _IOEffect
|
|
return result_avals, {effect}
|
|
|
|
|
|
def io_callback_jvp_rule(*args, **kwargs):
|
|
del args, kwargs
|
|
raise ValueError("IO callbacks do not support JVP.")
|
|
ad.primitive_jvps[io_callback_p] = io_callback_jvp_rule
|
|
|
|
|
|
def io_callback_transpose_rule(*args, **kwargs):
|
|
del args, kwargs
|
|
raise ValueError("IO callbacks do not support transpose.")
|
|
ad.primitive_transposes[io_callback_p] = io_callback_transpose_rule
|
|
|
|
|
|
def io_callback_batching_rule(
|
|
args, dims, callback, result_avals, sharding, ordered
|
|
):
|
|
if ordered:
|
|
raise ValueError("Cannot `vmap` ordered IO callback.")
|
|
is_batched = [d is not batching.not_mapped for d in dims]
|
|
new_args = [arg if dim is batching.not_mapped else
|
|
batching.moveaxis(arg, dim, 0) for arg, dim in zip(args, dims)]
|
|
unbatched_args, batched_args = util.partition_list(is_batched, new_args)
|
|
def _batch_fun(batched_args):
|
|
merged = util.merge_lists(is_batched, unbatched_args, batched_args)
|
|
return io_callback_p.bind(*merged, callback=callback, sharding=sharding,
|
|
result_avals=result_avals, ordered=False)
|
|
out_vals = lax_map(_batch_fun, batched_args)
|
|
return out_vals, (0,) * len(out_vals)
|
|
batching.primitive_batchers[io_callback_p] = io_callback_batching_rule
|
|
|
|
|
|
def io_callback_lowering(ctx, *args, callback, sharding, ordered, **params):
|
|
def _callback(*flat_args):
|
|
return tuple(
|
|
io_callback_impl(
|
|
*flat_args,
|
|
callback=callback,
|
|
sharding=None, # unused.
|
|
ordered=ordered,
|
|
**params,
|
|
)
|
|
)
|
|
|
|
op_sharding = _callback_op_sharding(ctx.module_context.axis_context, sharding)
|
|
if ordered:
|
|
token = ctx.tokens_in.get(_OrderedIOEffect)
|
|
result, token, _ = mlir.emit_python_callback(
|
|
ctx,
|
|
_callback,
|
|
token,
|
|
list(args),
|
|
ctx.avals_in,
|
|
ctx.avals_out,
|
|
has_side_effect=True,
|
|
sharding=op_sharding,
|
|
)
|
|
ctx.set_tokens_out(mlir.TokenSet({_OrderedIOEffect: token}))
|
|
else:
|
|
result, token, _ = mlir.emit_python_callback(
|
|
ctx,
|
|
_callback,
|
|
None,
|
|
list(args),
|
|
ctx.avals_in,
|
|
ctx.avals_out,
|
|
has_side_effect=True,
|
|
sharding=op_sharding,
|
|
)
|
|
return result
|
|
|
|
|
|
mlir.register_lowering(io_callback_p, io_callback_lowering)
|
|
|
|
|
|
def io_callback(
|
|
callback: Callable[..., Any],
|
|
result_shape_dtypes: Any,
|
|
*args: Any,
|
|
sharding: SingleDeviceSharding | None = None,
|
|
ordered: bool = False,
|
|
**kwargs: Any,
|
|
):
|
|
"""Calls an impure Python callback.
|
|
|
|
For more explanation, see `External Callbacks`_.
|
|
|
|
Args:
|
|
callback: function to execute on the host. It is assumed to be an impure function.
|
|
If ``callback`` is pure, using :func:`jax.pure_callback` instead may lead to
|
|
more efficient execution.
|
|
result_shape_dtypes: pytree whose leaves have ``shape`` and ``dtype`` attributes,
|
|
whose structure matches the expected output of the callback function at runtime.
|
|
:class:`jax.ShapeDtypeStruct` is often used to define leaf values.
|
|
*args: arguments to be passed to the callback function
|
|
sharding: optional sharding that specifies the device from which the callback should
|
|
be invoked.
|
|
ordered: boolean specifying whether sequential calls to callback must be ordered.
|
|
**kwargs: keyword arguments to be passed to the callback function
|
|
|
|
Returns:
|
|
result: a pytree of :class:`jax.Array` objects whose structure matches that of
|
|
``result_shape_dtypes``.
|
|
|
|
See Also:
|
|
- :func:`jax.pure_callback`: callback designed for pure functions.
|
|
- :func:`jax.debug.callback`: callback designed for general-purpose debugging.
|
|
- :func:`jax.debug.print`: callback designed for printing.
|
|
|
|
.. _External Callbacks: https://jax.readthedocs.io/en/latest/notebooks/external_callbacks.html
|
|
"""
|
|
flat_args, in_tree = tree_util.tree_flatten((args, kwargs))
|
|
tree_util.tree_map(_check_shape_dtype, result_shape_dtypes)
|
|
flat_shape_dtypes, out_tree = tree_util.tree_flatten(result_shape_dtypes)
|
|
flat_result_avals = map(lambda x: core.ShapedArray(x.shape, x.dtype),
|
|
flat_shape_dtypes)
|
|
flat_args = map(core.raise_as_much_as_possible, flat_args)
|
|
out_flat = io_callback_p.bind(
|
|
*flat_args,
|
|
callback=_FlatCallback(callback, in_tree),
|
|
result_avals=tuple(flat_result_avals),
|
|
sharding=sharding,
|
|
ordered=ordered,
|
|
)
|
|
return tree_util.tree_unflatten(out_tree, out_flat)
|