rocm_jax/jax/_src/lax/linalg.py
2024-09-20 07:52:33 -07:00

2718 lines
98 KiB
Python

# Copyright 2018 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from collections.abc import Callable
import functools
from functools import partial
import math
from typing import Any, Literal, TypeVar, overload
import numpy as np
from jax import lax
from jax._src import ad_util
from jax._src import api
from jax._src import config
from jax._src import core
from jax._src import dispatch
from jax._src import dtypes
from jax._src import util
from jax._src.core import (
Primitive, ShapedArray, raise_to_shaped, is_constant_dim, is_constant_shape)
from jax._src.extend import ffi
from jax._src.interpreters import ad
from jax._src.interpreters import batching
from jax._src.interpreters import mlir
from jax._src.lax import control_flow
from jax._src.lax import eigh as lax_eigh
from jax._src.lax import lax as lax_internal
from jax._src.lax import svd as lax_svd
from jax._src.lax.lax import (
standard_primitive, standard_unop, naryop_dtype_rule, _float, _complex,
_input_dtype)
from jax._src.lib import gpu_linalg
from jax._src.lib import gpu_solver
from jax._src.lib import gpu_sparse
from jax._src.lib import lapack
from jax._src.lib import version as jaxlib_version
from jax._src.lib.mlir import ir
from jax._src.lib.mlir.dialects import chlo
from jax._src.lib.mlir.dialects import hlo
from jax._src.typing import Array, ArrayLike
TFun = TypeVar('TFun', bound=Callable[..., Any])
def _broadcasted_iotas(*sizes):
ones = (1,) * (len(sizes) - 1)
shapes = (util.tuple_insert(ones, i, s) for i, s in enumerate(sizes))
return [lax.broadcasted_iota('int32', shape, i) for i, shape in enumerate(shapes)]
def _tril(m: Array, k:int = 0) -> Array:
*_, N, M = m.shape
mask = lax_internal._tri(bool, (N, M), k)
return lax.select(lax.broadcast(mask, m.shape[:-2]), m, lax.zeros_like_array(m))
def _triu(m: Array, k:int = 0) -> Array:
*_, N, M = m.shape
mask = lax_internal._tri(bool, (N, M), k - 1)
return lax.select(lax.broadcast(mask, m.shape[:-2]), lax.zeros_like_array(m), m)
def _construct_diagonal(s: Array) -> Array:
"""Construct a (batched) diagonal matrix"""
i = lax.iota('int32', s.shape[-1])
return lax.full((*s.shape, s.shape[-1]), 0, s.dtype).at[..., i, i].set(s)
def _extract_diagonal(s: Array) -> Array:
"""Extract the diagonal from a batched matrix"""
i = lax.iota('int32', min(s.shape[-2], s.shape[-1]))
return s[..., i, i]
def _broadcast_to(x: Array, shape: tuple[int, ...]) -> Array:
assert x.ndim <= len(shape)
return lax.broadcast_in_dim(x, shape, range(len(shape) - x.ndim, len(shape)))
# traceables
def cholesky(x: Array, *, symmetrize_input: bool = True) -> Array:
"""Cholesky decomposition.
Computes the Cholesky decomposition
.. math::
A = L . L^H
of square matrices, :math:`A`, such that :math:`L`
is lower triangular. The matrices of :math:`A` must be positive-definite and
either Hermitian, if complex, or symmetric, if real.
Args:
x: A batch of square Hermitian (symmetric if real) positive-definite
matrices with shape ``[..., n, n]``.
symmetrize_input: If ``True``, the matrix is symmetrized before Cholesky
decomposition by computing :math:`\\frac{1}{2}(x + x^H)`. If ``False``,
only the lower triangle of ``x`` is used; the upper triangle is ignored
and not accessed.
Returns:
The Cholesky decomposition as a matrix with the same dtype as ``x`` and
shape ``[..., n, n]``. If Cholesky decomposition fails, returns a matrix
full of NaNs. The behavior on failure may change in the future.
"""
if symmetrize_input:
x = symmetrize(x)
return _tril(cholesky_p.bind(x))
def eig(x: ArrayLike, *, compute_left_eigenvectors: bool = True,
compute_right_eigenvectors: bool = True) -> list[Array]:
"""Eigendecomposition of a general matrix.
Nonsymmetric eigendecomposition is at present only implemented on CPU.
Args:
x: A batch of square matrices with shape ``[..., n, n]``.
compute_left_eigenvectors: If true, the left eigenvectors will be computed.
compute_right_eigenvectors: If true, the right eigenvectors will be
computed.
Returns:
The eigendecomposition of ``x``, which is a tuple of the form
``(w, vl, vr)`` where ``w`` are the eigenvalues, ``vl`` are the left
eigenvectors, and ``vr`` are the right eigenvectors. ``vl`` and ``vr`` are
optional and will only be included if ``compute_left_eigenvectors`` or
``compute_right_eigenvectors`` respectively are ``True``.
If the eigendecomposition fails, then arrays full of NaNs will be returned
for that batch element.
"""
return eig_p.bind(x, compute_left_eigenvectors=compute_left_eigenvectors,
compute_right_eigenvectors=compute_right_eigenvectors)
def eigh(
x: Array,
*,
lower: bool = True,
symmetrize_input: bool = True,
sort_eigenvalues: bool = True,
subset_by_index: tuple[int, int] | None = None,
) -> tuple[Array, Array]:
r"""Eigendecomposition of a Hermitian matrix.
Computes the eigenvectors and eigenvalues of a complex Hermitian or real
symmetric square matrix.
Args:
x: A batch of square complex Hermitian or real symmetric matrices with shape
``[..., n, n]``.
lower: If ``symmetrize_input`` is ``False``, describes which triangle of the
input matrix to use. If ``symmetrize_input`` is ``False``, only the
triangle given by ``lower`` is accessed; the other triangle is ignored and
not accessed.
symmetrize_input: If ``True``, the matrix is symmetrized before the
eigendecomposition by computing :math:`\frac{1}{2}(x + x^H)`.
sort_eigenvalues: If ``True``, the eigenvalues will be sorted in ascending
order. If ``False`` the eigenvalues are returned in an
implementation-defined order.
subset_by_index: Optional 2-tuple [start, end] indicating the range of
indices of eigenvalues to compute. For example, is ``range_select`` =
[n-2,n], then ``eigh`` computes the two largest eigenvalues and their
eigenvectors.
Returns:
A tuple ``(v, w)``.
``v`` is an array with the same dtype as ``x`` such that ``v[..., :, i]`` is
the normalized eigenvector corresponding to eigenvalue ``w[..., i]``.
``w`` is an array with the same dtype as ``x`` (or its real counterpart if
complex) with shape ``[..., d]`` containing the eigenvalues of ``x`` in
ascending order(each repeated according to its multiplicity).
If ``subset_by_index`` is ``None`` then ``d`` is equal to ``n``. Otherwise
``d`` is equal to ``subset_by_index[1] - subset_by_index[0]``.
"""
if symmetrize_input:
x = symmetrize(x)
v, w = eigh_p.bind(
x,
lower=lower,
sort_eigenvalues=sort_eigenvalues,
subset_by_index=subset_by_index,
)
return v, w
def cholesky_update(r_matrix: ArrayLike, w_vector: ArrayLike) -> Array:
"""Given a Cholesky decomposition A = R.T @ R and a vector w,
computes the Cholesky decomposition of A + w @ w.T in O(N^2) time.
Args:
r_matrix: An upper-triangular matrix (R) such that A = R.T @ R.
w_vector: A vector (w) for rank-1 update.
Returns:
A new R' matrix being the Cholesky decomposition of A + w @ w.T.
"""
return cholesky_update_p.bind(r_matrix, w_vector)
def symmetric_product(
a_matrix: ArrayLike, c_matrix: ArrayLike,
alpha: float = 1., beta: float = 0.,
symmetrize_output=False):
"""Computes C = alpha * A @ A.T + beta * C (where C is symmetric)."""
result = symmetric_product_p.bind(a_matrix, c_matrix, alpha=alpha, beta=beta)
if symmetrize_output:
upper_half = lax.transpose(
_tril(result, k=-1),
(*range(result.ndim - 2), result.ndim - 1, result.ndim - 2))
result = _tril(result, k=0) + upper_half
return result
def lu_pivots_to_permutation(pivots: ArrayLike, permutation_size: int) -> Array:
"""Converts the pivots (row swaps) returned by LU to a permutation.
We build a permutation rather than applying `pivots` directly to the rows
of a matrix because lax loops aren't differentiable.
Args:
pivots: an int32 array of shape (..., k) of row swaps to perform
permutation_size: the size of the output permutation. Has to be >= k.
Returns:
An int32 array of shape (..., permutation_size).
"""
permutation = lu_pivots_to_permutation_p.bind(
pivots, permutation_size=permutation_size)
return permutation
def lu(x: ArrayLike) -> tuple[Array, Array, Array]:
"""LU decomposition with partial pivoting.
Computes the matrix decomposition:
.. math::
P.A = L.U
where :math:`P` is a permutation of the rows of :math:`A`, :math:`L` is a
lower-triangular matrix with unit-diagonal elements, and :math:`U` is an
upper-triangular matrix.
Args:
x: A batch of matrices with shape ``[..., m, n]``.
Returns:
A tuple ``(lu, pivots, permutation)``.
``lu`` is a batch of matrices with the same shape and dtype as ``x``
containing the :math:`L` matrix in its lower triangle and the :math:`U`
matrix in its upper triangle. The (unit) diagonal elements of :math:`L` are
not represented explicitly.
``pivots`` is an int32 array with shape ``[..., min(m, n)]`` representing a
sequence of row swaps that should be performed on :math:`A`.
``permutation`` is an alternative representation of the sequence of row
swaps as a permutation, represented as an int32 array with shape
``[..., m]``.
"""
lu, pivots, permutation = lu_p.bind(x)
return lu, pivots, permutation
def qr(x: ArrayLike, *, full_matrices: bool = True) -> tuple[Array, Array]:
"""QR decomposition.
Computes the QR decomposition
.. math::
A = Q . R
of matrices :math:`A`, such that :math:`Q` is a unitary (orthogonal) matrix,
and :math:`R` is an upper-triangular matrix.
Args:
x: A batch of matrices with shape ``[..., m, n]``.
full_matrices: Determines if full or reduced matrices are returned; see
below.
Returns:
A pair of arrays ``(q, r)``.
Array ``q`` is a unitary (orthogonal) matrix,
with shape ``[..., m, m]`` if ``full_matrices=True``, or
``[..., m, min(m, n)]`` if ``full_matrices=False``.
Array ``r`` is an upper-triangular matrix with shape ``[..., m, n]`` if
``full_matrices=True``, or ``[..., min(m, n), n]`` if
``full_matrices=False``.
"""
q, r = qr_p.bind(x, full_matrices=full_matrices)
return q, r
@overload
def svd(
x: ArrayLike,
*,
full_matrices: bool = True,
compute_uv: Literal[True],
subset_by_index: tuple[int, int] | None = None,
) -> tuple[Array, Array, Array]:
...
@overload
def svd(
x: ArrayLike,
*,
full_matrices: bool = True,
compute_uv: Literal[False],
subset_by_index: tuple[int, int] | None = None,
) -> Array:
...
@overload
def svd(
x: ArrayLike,
*,
full_matrices: bool = True,
compute_uv: bool = True,
subset_by_index: tuple[int, int] | None = None,
) -> Array | tuple[Array, Array, Array]:
...
# TODO: Add `max_qdwh_iterations` to the function signature for TPU SVD.
def svd(
x: ArrayLike,
*,
full_matrices: bool = True,
compute_uv: bool = True,
subset_by_index: tuple[int, int] | None = None,
) -> Array | tuple[Array, Array, Array]:
"""Singular value decomposition.
Returns the singular values if compute_uv is False, otherwise returns a triple
containing the left singular vectors, the singular values and the adjoint of
the right singular vectors.
"""
result = svd_p.bind(
x,
full_matrices=full_matrices,
compute_uv=compute_uv,
subset_by_index=subset_by_index,
)
if compute_uv:
s, u, v = result
return u, s, v
else:
s, = result
return s
def triangular_solve(a: ArrayLike, b: ArrayLike, *,
left_side: bool = False, lower: bool = False,
transpose_a: bool = False, conjugate_a: bool = False,
unit_diagonal: bool = False) -> Array:
r"""Triangular solve.
Solves either the matrix equation
.. math::
\mathit{op}(A) . X = B
if ``left_side`` is ``True`` or
.. math::
X . \mathit{op}(A) = B
if ``left_side`` is ``False``.
``A`` must be a lower or upper triangular square matrix, and where
:math:`\mathit{op}(A)` may either transpose :math:`A` if ``transpose_a``
is ``True`` and/or take its complex conjugate if ``conjugate_a`` is ``True``.
Args:
a: A batch of matrices with shape ``[..., m, m]``.
b: A batch of matrices with shape ``[..., m, n]`` if ``left_side`` is
``True`` or shape ``[..., n, m]`` otherwise.
left_side: describes which of the two matrix equations to solve; see above.
lower: describes which triangle of ``a`` should be used. The other triangle
is ignored.
transpose_a: if ``True``, the value of ``a`` is transposed.
conjugate_a: if ``True``, the complex conjugate of ``a`` is used in the
solve. Has no effect if ``a`` is real.
unit_diagonal: if ``True``, the diagonal of ``a`` is assumed to be unit
(all 1s) and not accessed.
Returns:
A batch of matrices the same shape and dtype as ``b``.
"""
conjugate_a = conjugate_a and dtypes.issubdtype(lax.dtype(a), np.complexfloating)
singleton = np.ndim(b) == np.ndim(a) - 1
if singleton:
b = lax.expand_dims(b, (-1 if left_side else -2,))
out = triangular_solve_p.bind(
a, b, left_side=left_side, lower=lower, transpose_a=transpose_a,
conjugate_a=conjugate_a, unit_diagonal=unit_diagonal)
if singleton:
out = out[..., 0] if left_side else out[..., 0, :]
return out
# utilities
def _broadcasted_matvec(a: Array, b: Array) -> Array:
# This is a broadcasted dot_general with signature (...,n,m),(...,m)->(...,n)
assert a.ndim >= 2
assert b.ndim >= 1
batch_shape = lax.broadcast_shapes(a.shape[:-2], b.shape[:-1])
n_batch = len(batch_shape)
a = _broadcast_to(a, (*batch_shape, *a.shape[-2:]))
b = _broadcast_to(b, (*batch_shape, b.shape[-1]))
dimension_numbers = (([a.ndim - 1], [b.ndim - 1]), (list(range(n_batch)), list(range(n_batch))))
return lax.dot_general(a, b, dimension_numbers=dimension_numbers, precision=lax.Precision.HIGHEST)
def _check_solve_shapes(a: Array, b: Array):
if not (a.ndim >= 2 and b.ndim in [a.ndim, a.ndim - 1] and
a.shape[-1] == a.shape[-2] == b.shape[a.ndim - 2]):
raise ValueError(
"The arguments to solve must have shapes a=[..., m, m] and "
f"b=[..., m, k] or b=[..., m]; got a={a.shape} and b={b.shape}")
def _solve(a: Array, b: Array) -> Array:
_check_solve_shapes(a, b)
# Broadcast leading dimensions of b to the shape of a, as is required by
# custom_linear_solve.
out_shape = tuple(d_a if d_b == 1 else d_b
for d_a, d_b in zip(a.shape[:-1] + (1,), b.shape))
b = lax.broadcast_in_dim(b, out_shape, range(b.ndim))
# With custom_linear_solve, we can reuse the same factorization when
# computing sensitivities. This is considerably faster.
lu_, _, permutation = lu(lax.stop_gradient(a))
custom_solve = partial(
lax.custom_linear_solve,
lambda x: _broadcasted_matvec(a, x),
solve=lambda _, x: lu_solve(lu_, permutation, x, trans=0),
transpose_solve=lambda _, x: lu_solve(lu_, permutation, x, trans=1))
if a.ndim == b.ndim + 1:
# b.shape == [..., m]
return custom_solve(b)
else:
# b.shape == [..., m, k]
return api.vmap(custom_solve, b.ndim - 1, max(a.ndim, b.ndim) - 1)(b)
def _T(x: Array) -> Array:
return lax.transpose(x, (*range(x.ndim - 2), x.ndim - 1, x.ndim - 2))
def _H(x: Array) -> Array:
return _T(x).conj()
def symmetrize(x: Array) -> Array: return (x + _H(x)) / 2
# primitives
_cpu_lapack_types = {np.dtype(np.float32), np.dtype(np.float64),
np.dtype(np.complex64), np.dtype(np.complex128)}
# Cholesky decomposition
def _cholesky_jvp_rule(primals, tangents):
x, = primals
sigma_dot, = tangents
L = _tril(cholesky_p.bind(x))
# Forward-mode rule from https://arxiv.org/pdf/1602.07527.pdf
def phi(X):
l = _tril(X)
return l / lax.expand_dims(
lax_internal._const(X, 1) + lax_internal._eye(X.dtype, (X.shape[-1], X.shape[-1])),
range(l.ndim - 2))
tmp = triangular_solve(L, sigma_dot, left_side=False, transpose_a=True,
conjugate_a=True, lower=True)
L_dot = lax.batch_matmul(L, phi(triangular_solve(
L, tmp, left_side=True, transpose_a=False, lower=True)),
precision=lax.Precision.HIGHEST)
return L, L_dot
def _cholesky_batching_rule(batched_args, batch_dims):
x, = batched_args
bd, = batch_dims
x = batching.moveaxis(x, bd, 0)
return cholesky(x), 0
cholesky_p = standard_unop(_float | _complex, 'cholesky')
ad.primitive_jvps[cholesky_p] = _cholesky_jvp_rule
batching.primitive_batchers[cholesky_p] = _cholesky_batching_rule
def _cholesky_lowering(ctx, x):
return [hlo.cholesky(x, lower=ir.BoolAttr.get(True))]
mlir.register_lowering(cholesky_p, _cholesky_lowering)
def _cholesky_cpu_lowering(ctx, operand):
operand_aval, = ctx.avals_in
out_aval, = ctx.avals_out
batch_dims = operand_aval.shape[:-2]
op_shape_vals = mlir.eval_dynamic_shape_as_ivals(ctx, operand_aval.shape)
ctx_arg = (ctx,)
result, info = lapack.potrf_hlo(*ctx_arg, operand_aval.dtype, operand,
lower=True, a_shape_vals=op_shape_vals)
ok = mlir.compare_hlo(
info, mlir.full_like_aval(ctx, 0, ShapedArray(batch_dims, np.dtype(np.int32))),
"EQ", "SIGNED")
select_aval = ShapedArray(batch_dims + (1, 1), np.dtype(np.bool_))
return [_broadcasting_select_hlo(
ctx,
mlir.broadcast_in_dim(ctx, ok,
select_aval,
broadcast_dimensions=range(len(batch_dims))),
select_aval,
result, out_aval, _nan_like_hlo(ctx, out_aval), out_aval)]
mlir.register_lowering(
cholesky_p, _cholesky_cpu_lowering, platform='cpu')
# Cholesky update
def _cholesky_update_abstract_eval(r_matrix, w_vector):
r_dtype = dtypes.canonicalize_dtype(r_matrix.dtype)
w_dtype = dtypes.canonicalize_dtype(w_vector.dtype)
if not (r_dtype == w_dtype and r_dtype in (np.float32, np.float64)):
raise NotImplementedError(
"Rank-1 Cholesky update is only implemented for float32 and float64.")
if not (r_matrix.ndim == 2 and w_vector.ndim == 1
and r_matrix.shape[-2] == r_matrix.shape[-1]
and r_matrix.shape[-2] == w_vector.shape[-1]):
raise ValueError(
"Rank-1 update to Cholesky decomposition takes a square matrix "
"and a vector as inputs. Got shapes {}, {} instead".format(
r_matrix.shape, w_vector.shape))
return ShapedArray(r_matrix.shape, r_matrix.dtype)
def _cholesky_update_gpu_lowering_rule(target_name_prefix, ctx, r_matrix, w_vector):
# TODO(b/360781533): Remove guard after 3 week forward compatibility period.
if ctx.is_forward_compat():
r_matrix_aval, _ = ctx.avals_in
try:
[platform] = ctx.module_context.platforms
except ValueError:
raise ValueError(
"Can only lower cholesky_update on a single platform."
) from None
if platform != "cuda":
raise NotImplementedError(
"Can only lower fast cholesky_update on CUDA."
)
return gpu_linalg.cuda_cholesky_update(
r_matrix, w_vector, r_matrix_aval.dtype)
rule = ffi.ffi_lowering(f"{target_name_prefix}_cholesky_update_ffi",
operand_output_aliases={0: 0, 1: 1})
sub_ctx = ctx.replace(avals_out=ctx.avals_in)
return rule(sub_ctx, r_matrix, w_vector)[:1]
def _cholesky_update_jax_fn(R, z):
def _drotg(x, y):
"""Get coefs for Givens rotation in a numerically stable way."""
def _drotg_nonzero(x, y):
abs_x = abs(x)
abs_y = abs(y)
denominator = lax.select(abs_x > abs_y, abs_x, abs_y)
x /= denominator
y /= denominator
rh = 1 / lax.sqrt(x ** 2 + y ** 2)
return x * rh, -y * rh
one_and_zero = (
np.array(1., dtype=x.dtype),
np.array(0., dtype=x.dtype),
)
return lax.cond(y == 0, lambda x, y: one_and_zero, _drotg_nonzero, x, y)
def _drot(
first_vector: Array, second_vector: Array,
c_coef: float, s_coef: float) -> tuple[Array, Array]:
return (
c_coef * first_vector - s_coef * second_vector,
c_coef * second_vector + s_coef * first_vector)
n = z.shape[0]
for k in range(n):
c, s = _drotg(R[k, k], z[k])
row_k, z = _drot(R[k, :], z, c, s)
R = R.at[k, :].set(row_k)
return R
cholesky_update_p = Primitive('cholesky_update')
cholesky_update_p.multiple_results = False
cholesky_update_p.def_abstract_eval(_cholesky_update_abstract_eval)
cholesky_update_p.def_impl(partial(dispatch.apply_primitive, cholesky_update_p))
mlir.register_lowering(
cholesky_update_p, partial(_cholesky_update_gpu_lowering_rule, "cu"),
platform='cuda')
mlir.register_lowering(
cholesky_update_p,
mlir.lower_fun(_cholesky_update_jax_fn, multiple_results=False))
# symmetric_update
def _symmetric_product_abstract_eval(a, c, *, alpha, beta):
a_dtype = dtypes.canonicalize_dtype(a.dtype)
c_dtype = dtypes.canonicalize_dtype(c.dtype)
if not (a_dtype == c_dtype and a_dtype in (np.float32, np.float64)):
raise NotImplementedError(
"Symmetric update is only implemented for float32 and float64.")
if not (a.ndim >= 2 and c.ndim >= 2
and a.shape[-2] == c.shape[-1]
and c.shape[-1] == c.shape[-2]):
raise ValueError(
"Symmetric update takes (maybe batched) matrices of matching shapes. "
"Got shapes {}, {} instead".format(a.shape, c.shape))
return ShapedArray(c.shape, c.dtype)
def _symmetric_product_batching_rule(batched_args, batch_dims, *, alpha, beta):
a_tensor, c_tensor = batched_args
a_bd, c_bd = batch_dims
a_tensor = batching.moveaxis(a_tensor, a_bd, 0)
c_tensor = batching.moveaxis(c_tensor, c_bd, 0)
return (
symmetric_product_p.bind(a_tensor, c_tensor, alpha=alpha, beta=beta), 0)
symmetric_product_p = Primitive('symmetric_update')
symmetric_product_p.multiple_results = False
symmetric_product_p.def_abstract_eval(_symmetric_product_abstract_eval)
symmetric_product_p.def_impl(
partial(dispatch.apply_primitive, symmetric_product_p))
batching.primitive_batchers[
symmetric_product_p] = _symmetric_product_batching_rule
def _symmetric_product_gpu_lowering(
platform, ctx, a_tensor, c_tensor, alpha, beta):
a_aval, c_aval = ctx.avals_in[:2]
dtype = a_aval.dtype
alpha_aval = beta_aval = ShapedArray((), dtype)
alpha_array = mlir.full_like_aval(ctx, alpha, alpha_aval)
beta_array = mlir.full_like_aval(ctx, beta, beta_aval)
rule = ffi.ffi_lowering(f"{platform}solver_syrk_ffi",
operand_output_aliases={1: 0})
ctx = ctx.replace(avals_in=[a_aval, c_aval, alpha_aval, beta_aval])
return rule(ctx, a_tensor, c_tensor, alpha_array, beta_array, transpose=False)
def _symmetric_product_jax_fn(a, c, *, alpha, beta):
a_T = lax.transpose(a, (*range(a.ndim - 2), a.ndim - 1, a.ndim - 2))
return alpha * lax.batch_matmul(
a, a_T, precision=lax.Precision.HIGHEST) + beta * c
mlir.register_lowering(
symmetric_product_p,
partial(_symmetric_product_gpu_lowering, 'cu'), platform='cuda')
mlir.register_lowering(
symmetric_product_p,
mlir.lower_fun(_symmetric_product_jax_fn, multiple_results=False))
# Asymmetric eigendecomposition
def eig_impl(operand, *, compute_left_eigenvectors, compute_right_eigenvectors):
return dispatch.apply_primitive(
eig_p,
operand,
compute_left_eigenvectors=compute_left_eigenvectors,
compute_right_eigenvectors=compute_right_eigenvectors,
)
def eig_lower(*args, **kw):
raise NotImplementedError(
"Nonsymmetric eigendecomposition is only implemented on the CPU backend. "
"If your matrix is symmetric or Hermitian, you should use eigh instead.")
def eig_abstract_eval(operand, *, compute_left_eigenvectors,
compute_right_eigenvectors):
if isinstance(operand, ShapedArray):
if operand.ndim < 2 or operand.shape[-2] != operand.shape[-1]:
raise ValueError("Argument to nonsymmetric eigendecomposition must have "
"shape [..., n, n], got shape {}".format(operand.shape))
batch_dims = operand.shape[:-2]
n = operand.shape[-1]
dtype = np.complex64 if dtypes.finfo(operand.dtype).bits == 32 else np.complex128
dtype = dtypes.canonicalize_dtype(dtype)
vl = vr = operand.update(shape=batch_dims + (n, n), dtype=dtype)
w = operand.update(shape=batch_dims + (n,), dtype=dtype)
else:
raise NotImplementedError
output = [w]
if compute_left_eigenvectors:
output.append(vl)
if compute_right_eigenvectors:
output.append(vr)
return tuple(output)
def _eig_cpu_lowering(ctx, operand, *, compute_left_eigenvectors,
compute_right_eigenvectors):
operand_aval, = ctx.avals_in
out_aval = ctx.avals_out[0]
batch_dims = operand_aval.shape[:-2]
op_shape_vals = mlir.eval_dynamic_shape_as_ivals(ctx, operand_aval.shape)
ctx_args = (ctx,)
w, vl, vr, info = lapack.geev_hlo(*ctx_args, operand_aval.dtype, operand,
input_shape_vals=op_shape_vals,
jobvl=compute_left_eigenvectors,
jobvr=compute_right_eigenvectors)
ok = mlir.compare_hlo(
info, mlir.full_like_aval(ctx, 0, ShapedArray(batch_dims, np.dtype(np.int32))),
"EQ", "SIGNED")
select_w_aval = ShapedArray(batch_dims + (1,), np.dtype(np.bool_))
w = _broadcasting_select_hlo(
ctx,
mlir.broadcast_in_dim(ctx, ok, select_w_aval,
broadcast_dimensions=range(len(batch_dims))),
select_w_aval,
w, out_aval, _nan_like_hlo(ctx, out_aval), out_aval)
output = [w]
if compute_left_eigenvectors:
aval = ctx.avals_out[len(output)]
select_vl_aval = ShapedArray(batch_dims + (1, 1), np.dtype(np.bool_))
vl = _broadcasting_select_hlo(
ctx,
mlir.broadcast_in_dim(ctx, ok, select_vl_aval,
broadcast_dimensions=range(len(batch_dims))),
select_vl_aval,
vl, aval, _nan_like_hlo(ctx, aval), aval)
output.append(vl)
if compute_right_eigenvectors:
aval = ctx.avals_out[len(output)]
select_vr_aval = ShapedArray(batch_dims + (1, 1), np.dtype(np.bool_))
vr = _broadcasting_select_hlo(
ctx,
mlir.broadcast_in_dim(ctx, ok, select_vr_aval,
broadcast_dimensions=range(len(batch_dims))),
select_vr_aval,
vr, aval, _nan_like_hlo(ctx, aval), aval)
output.append(vr)
return output
def eig_batching_rule(batched_args, batch_dims, *, compute_left_eigenvectors,
compute_right_eigenvectors):
x, = batched_args
bd, = batch_dims
x = batching.moveaxis(x, bd, 0)
return (eig_p.bind(x, compute_left_eigenvectors=compute_left_eigenvectors,
compute_right_eigenvectors=compute_right_eigenvectors),
(0,) * (1 + compute_left_eigenvectors + compute_right_eigenvectors))
def eig_jvp_rule(primals, tangents, *, compute_left_eigenvectors,
compute_right_eigenvectors):
if compute_left_eigenvectors or compute_right_eigenvectors:
raise NotImplementedError(
'The derivatives of eigenvectors are not implemented, only '
'eigenvalues. See '
'https://github.com/jax-ml/jax/issues/2748 for discussion.')
# Formula for derivative of eigenvalues w.r.t. a is eqn 4.60 in
# https://arxiv.org/abs/1701.00392
a, = primals
da, = tangents
l, v = eig(a, compute_left_eigenvectors=False)
return [l], [(_solve(v, da.astype(v.dtype)) * _T(v)).sum(-1)]
eig_p = Primitive('eig')
eig_p.multiple_results = True
eig_p.def_impl(eig_impl)
eig_p.def_abstract_eval(eig_abstract_eval)
mlir.register_lowering(eig_p, eig_lower)
mlir.register_lowering(eig_p, _eig_cpu_lowering, platform='cpu')
batching.primitive_batchers[eig_p] = eig_batching_rule
ad.primitive_jvps[eig_p] = eig_jvp_rule
# Symmetric/Hermitian eigendecomposition
def eigh_jacobi(x: ArrayLike, *, lower: bool = True,
sort_eigenvalues: bool = True) -> tuple[Array, Array]:
"""Helper Jacobi eigendecomposition implemented by XLA.
Used as a subroutine of QDWH-eig on TPU."""
w, v = eigh_jacobi_p.bind(x, lower=lower, sort_eigenvalues=sort_eigenvalues)
return w, v
def _eigh_jacobi_impl(operand, *, lower, sort_eigenvalues):
w, v = dispatch.apply_primitive(eigh_jacobi_p, operand, lower=lower,
sort_eigenvalues=sort_eigenvalues)
return w, v
def _eigh_jacobi_abstract_eval(operand, *, lower, sort_eigenvalues):
if isinstance(operand, ShapedArray):
if operand.ndim < 2 or operand.shape[-2] != operand.shape[-1]:
raise ValueError(
"Argument to symmetric eigendecomposition must have shape [..., n, n],"
"got shape {}".format(operand.shape))
batch_dims = operand.shape[:-2]
n = operand.shape[-1]
w = operand.update(shape=batch_dims + (n,),
dtype=lax_internal._complex_basetype(operand.dtype))
v = operand.update(shape=batch_dims + (n, n))
else:
w, v = operand, operand
return w, v
def _eigh_jacobi_lowering_rule(ctx, operand, lower, sort_eigenvalues):
operand_aval, = ctx.avals_in
if operand_aval.shape[-1] == 0:
reshape_aval = operand_aval.update(shape=operand_aval.shape[:-1])
return [
hlo.real(mlir.reshape(ctx, operand, reshape_aval)),
operand,
]
eigvals_type = mlir.aval_to_ir_type(ctx.avals_out[0])
eigvecs_type = mlir.aval_to_ir_type(ctx.avals_out[1])
result_types = [eigvecs_type, eigvals_type]
backend_config = f"{int(lower)},{int(sort_eigenvalues)},100,1e-6"
if any(not is_constant_shape(aval_out.shape)
for aval_out in ctx.avals_out):
result_shapes = [
mlir.eval_dynamic_shape_as_tensor(ctx, aval_out.shape)
# The custom call returns the results swapped
for aval_out in list(reversed(ctx.avals_out))
]
else:
result_shapes = None
op = mlir.custom_call(
"Eigh",
result_types=result_types,
operands=[operand],
backend_config=backend_config,
api_version=1,
result_shapes=result_shapes,
)
return op.results[1], op.results[0]
eigh_jacobi_p = Primitive('eigh_jacobi')
eigh_jacobi_p.multiple_results = True
eigh_jacobi_p.def_impl(_eigh_jacobi_impl)
eigh_jacobi_p.def_abstract_eval(_eigh_jacobi_abstract_eval)
mlir.register_lowering(eigh_jacobi_p, _eigh_jacobi_lowering_rule)
def _eigh_impl(operand, *, lower, sort_eigenvalues, subset_by_index):
v, w = dispatch.apply_primitive(
eigh_p,
operand,
lower=lower,
sort_eigenvalues=sort_eigenvalues,
subset_by_index=subset_by_index,
)
return v, w
def _eigh_abstract_eval(operand, *, lower, sort_eigenvalues, subset_by_index):
if isinstance(operand, ShapedArray):
if operand.ndim < 2 or operand.shape[-2] != operand.shape[-1]:
raise ValueError(
"Argument to symmetric eigendecomposition must have shape [..., n, n],"
"got shape {}".format(operand.shape))
batch_dims = operand.shape[:-2]
n = operand.shape[-1]
d = (
n
if subset_by_index is None
else subset_by_index[1] - subset_by_index[0]
)
v = operand.update(shape=batch_dims + (n, d))
w = operand.update(
shape=batch_dims + (d,),
dtype=lax_internal._complex_basetype(operand.dtype),
)
else:
v, w = operand, operand
return v, w
def _eigh_cpu_gpu_lowering(
syevd_impl, ctx, operand, *, lower, sort_eigenvalues, subset_by_index,
platform=None
):
del sort_eigenvalues # The CPU/GPU implementations always sort.
operand_aval, = ctx.avals_in
v_aval, w_aval = ctx.avals_out
n = operand_aval.shape[-1]
batch_dims = operand_aval.shape[:-2]
# The eigh implementation on CPU and GPU uses lapack helper routines to
# find the size of the workspace based on the non-batch dimensions.
# Therefore, we cannot yet support dynamic non-batch dimensions.
if not is_constant_shape(operand_aval.shape[-2:]):
raise NotImplementedError(
"Shape polymorphism for native lowering for eigh is implemented "
f"only for the batch dimensions: {operand_aval.shape}")
if not (subset_by_index is None or subset_by_index == (0, n)):
raise NotImplementedError("subset_by_index not implemented for CPU and GPU")
op_shape_vals = mlir.eval_dynamic_shape_as_ivals(ctx, operand_aval.shape)
cpu_args = []
if platform == "cpu":
ctx_args = (ctx,)
cpu_args.extend(ctx_args)
v, w, info = syevd_impl(*cpu_args, operand_aval.dtype, operand,
a_shape_vals=op_shape_vals, lower=lower)
zeros = mlir.full_like_aval(ctx, 0, ShapedArray(batch_dims, np.dtype(np.int32)))
ok = mlir.compare_hlo(info, zeros, "EQ", "SIGNED")
select_v_aval = ShapedArray(batch_dims + (1, 1), np.dtype(np.bool_))
v = _broadcasting_select_hlo(
ctx,
mlir.broadcast_in_dim(ctx, ok, select_v_aval,
broadcast_dimensions=range(len(batch_dims))),
select_v_aval,
v, v_aval, _nan_like_hlo(ctx, v_aval), v_aval)
select_w_aval = ShapedArray(batch_dims + (1,), np.dtype(np.bool_))
w = _broadcasting_select_hlo(
ctx,
mlir.broadcast_in_dim(ctx, ok, select_w_aval,
broadcast_dimensions=range(len(batch_dims))),
select_w_aval,
w, w_aval, _nan_like_hlo(ctx, w_aval), w_aval)
return [v, w]
def _eigh_tpu_impl(x, *, lower, sort_eigenvalues, subset_by_index):
*_, m, n = x.shape
assert m == n, (m, n)
termination_size = 256
if not is_constant_dim(m):
# TODO: maybe we can relax the check below for shape polymorphism?
raise NotImplementedError(
"Shape polymorphism for native lowering for eigh is implemented "
f"only for the batch dimensions: {x.shape}")
if m <= termination_size and (
subset_by_index is None or subset_by_index == (0, n)
):
eig_vals, eig_vecs = eigh_jacobi(x, lower=lower,
sort_eigenvalues=sort_eigenvalues)
return eig_vecs, eig_vals
def eigh_qdwh(x):
if len(x.shape) > 2:
return control_flow.map(eigh_qdwh, x)
# We should only look at elements from the lower/upper triangle. Reflects
# that triangle into the other triangle to form a Hermitian matrix.
if lower:
mask = lax_internal._tri(bool, (n, n), 0)
else:
mask = lax.bitwise_not(lax_internal._tri(bool, (n, n), -1))
if dtypes.issubdtype(x.dtype, np.complexfloating):
re = lax.select(mask, lax.real(x), _T(lax.real(x)))
if lower:
im_mask = lax_internal._tri(bool, (n, n), -1)
else:
im_mask = lax.bitwise_not(lax_internal._tri(bool, (n, n), 0))
im = lax.imag(x)
im = lax.select(im_mask, im, lax.full_like(im, 0))
im = lax.select(mask, im, -_T(im))
x = lax.complex(re, im)
else:
x = lax.select(mask, x, _T(x))
return lax_eigh.eigh(
x,
sort_eigenvalues=sort_eigenvalues,
termination_size=termination_size,
subset_by_index=subset_by_index,
)
eig_vals, eig_vecs = eigh_qdwh(x)
return eig_vecs, eig_vals
def _eigh_jvp_rule(
primals, tangents, *, lower, sort_eigenvalues, subset_by_index
):
(a,) = primals
n = a.shape[-1]
if not (subset_by_index is None or subset_by_index == (0, n)):
raise NotImplementedError(
"Derivatives not defined for partial eigen decomposition."
)
# Derivative for eigh in the simplest case of distinct eigenvalues.
# This is classic nondegenerate perurbation theory, but also see
# https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
# The general solution treating the case of degenerate eigenvalues is
# considerably more complicated. Ambitious readers may refer to the general
# methods below or refer to degenerate perturbation theory in physics.
# https://www.win.tue.nl/analysis/reports/rana06-33.pdf and
# https://people.orie.cornell.edu/aslewis/publications/99-clarke.pdf
a_dot, = tangents
v, w_real = eigh_p.bind(
symmetrize(a),
lower=lower,
sort_eigenvalues=sort_eigenvalues,
subset_by_index=subset_by_index,
)
# for complex numbers we need eigenvalues to be full dtype of v, a:
w = w_real.astype(a.dtype)
eye_n = lax_internal._eye(a.dtype, (n, n))
# carefully build reciprocal delta-eigenvalue matrix, avoiding NaNs.
Fmat = lax.integer_pow(eye_n + w[..., np.newaxis, :] - w[..., np.newaxis], -1) - eye_n
# eigh impl doesn't support batch dims, but future-proof the grad.
dot = partial(lax.dot if a.ndim == 2 else lax.batch_matmul,
precision=lax.Precision.HIGHEST)
vdag_adot_v = dot(dot(_H(v), a_dot), v)
dv = dot(v, Fmat * vdag_adot_v)
dw = _extract_diagonal(vdag_adot_v.real)
return (v, w_real), (dv, dw)
def _eigh_batching_rule(
batched_args, batch_dims, *, lower, sort_eigenvalues, subset_by_index
):
x, = batched_args
bd, = batch_dims
x = batching.moveaxis(x, bd, 0)
return eigh_p.bind(
x,
lower=lower,
sort_eigenvalues=sort_eigenvalues,
subset_by_index=subset_by_index,
), (0, 0)
eigh_p = Primitive('eigh')
eigh_p.multiple_results = True
eigh_p.def_impl(_eigh_impl)
eigh_p.def_abstract_eval(_eigh_abstract_eval)
ad.primitive_jvps[eigh_p] = _eigh_jvp_rule
batching.primitive_batchers[eigh_p] = _eigh_batching_rule
mlir.register_lowering(
eigh_p, partial(_eigh_cpu_gpu_lowering, lapack.syevd_hlo, platform='cpu'),
platform='cpu')
if gpu_solver is not None:
mlir.register_lowering(
eigh_p, partial(_eigh_cpu_gpu_lowering, gpu_solver.cuda_syevd,
platform='cuda'),
platform='cuda')
mlir.register_lowering(
eigh_p, partial(_eigh_cpu_gpu_lowering, gpu_solver.rocm_syevd,
platform='rocm'),
platform='rocm')
mlir.register_lowering(
eigh_p, mlir.lower_fun(_eigh_tpu_impl, multiple_results=True),
platform='tpu')
_triangular_solve_dtype_rule = partial(
naryop_dtype_rule, _input_dtype, (_float | _complex, _float | _complex),
'triangular_solve')
def _triangular_solve_shape_rule(a, b, *, left_side=False, **unused_kwargs):
if a.ndim < 2:
msg = "triangular_solve requires a.ndim to be at least 2, got {}."
raise TypeError(msg.format(a.ndim))
if b.ndim < 2:
msg = "triangular_solve requires b.ndim to be at least 2, got {}."
raise TypeError(msg.format(b.ndim))
if a.shape[-1] != a.shape[-2]:
msg = ("triangular_solve requires the last two dimensions of a to be equal "
"in size, got a.shape of {}.")
raise TypeError(msg.format(a.shape))
if a.shape[:-2] != b.shape[:-2]:
msg = ("triangular_solve requires both arguments to have the same number "
"of dimensions and equal batch dimensions, got {} and {}.")
raise TypeError(msg.format(a.shape, b.shape))
common_dim = -2 if left_side else -1
if a.shape[-1] != b.shape[common_dim]:
msg = "Incompatible shapes for arguments to triangular_solve: {} and {}."
raise TypeError(msg.format(a.shape, b.shape))
return b.shape
def _triangular_solve_jvp_rule_a(
g_a, ans, a, b, *, left_side, lower, transpose_a, conjugate_a,
unit_diagonal):
m, n = b.shape[-2:]
k = 1 if unit_diagonal else 0
g_a = _tril(g_a, k=-k) if lower else _triu(g_a, k=k)
g_a = lax.neg(g_a)
g_a = _T(g_a) if transpose_a else g_a
g_a = g_a.conj() if conjugate_a else g_a
dot = partial(lax.dot if g_a.ndim == 2 else lax.batch_matmul,
precision=lax.Precision.HIGHEST)
def a_inverse(rhs):
return triangular_solve(a, rhs, left_side=left_side, lower=lower,
transpose_a=transpose_a, conjugate_a=conjugate_a,
unit_diagonal=unit_diagonal)
# triangular_solve is about the same cost as matrix multplication (~n^2 FLOPs
# for matrix/vector inputs). Order these operations in whichever order is
# cheaper.
if left_side:
assert g_a.shape[-2:] == a.shape[-2:] == (m, m) and ans.shape[-2:] == (m, n)
if m > n:
return a_inverse(dot(g_a, ans)) # A^{-1} (∂A X)
else:
return dot(a_inverse(g_a), ans) # (A^{-1} ∂A) X
else:
assert g_a.shape[-2:] == a.shape[-2:] == (n, n) and ans.shape[-2:] == (m, n)
if m < n:
return a_inverse(dot(ans, g_a)) # (X ∂A) A^{-1}
else:
return dot(ans, a_inverse(g_a)) # X (∂A A^{-1})
def _triangular_solve_transpose_rule(
cotangent, a, b, *, left_side, lower, transpose_a, conjugate_a,
unit_diagonal):
# Triangular solve is nonlinear in its first argument and linear in its second
# argument, analogous to `div` but swapped.
assert not ad.is_undefined_primal(a) and ad.is_undefined_primal(b)
if type(cotangent) is ad_util.Zero:
cotangent_b = ad_util.Zero(b.aval)
else:
cotangent_b = triangular_solve(a, cotangent, left_side=left_side,
lower=lower, transpose_a=not transpose_a,
conjugate_a=conjugate_a,
unit_diagonal=unit_diagonal)
return [None, cotangent_b]
def _triangular_solve_batching_rule(batched_args, batch_dims, *, left_side,
lower, transpose_a, conjugate_a,
unit_diagonal):
x, y = batched_args
bx, by = batch_dims
if bx is batching.not_mapped:
if left_side:
y = batching.moveaxis(y, by, -1)
y_flat = y.reshape(y.shape[:-2] + (y.shape[-2] * y.shape[-1],))
bdim_out = y.ndim - 1
else:
y = batching.moveaxis(y, by, -2)
y_flat = y.reshape(y.shape[:-3] + (y.shape[-3] * y.shape[-2], y.shape[-1]))
bdim_out = y.ndim - 2
out_flat = triangular_solve(
x, y_flat, left_side=left_side, lower=lower,
transpose_a=transpose_a, conjugate_a=conjugate_a,
unit_diagonal=unit_diagonal)
return out_flat.reshape(y.shape), bdim_out
else:
size = next(t.shape[i] for t, i in zip(batched_args, batch_dims)
if i is not None)
x = batching.bdim_at_front(x, bx, size)
y = batching.bdim_at_front(y, by, size)
return triangular_solve(x, y, left_side=left_side, lower=lower,
transpose_a=transpose_a, conjugate_a=conjugate_a,
unit_diagonal=unit_diagonal), 0
triangular_solve_p = standard_primitive(
_triangular_solve_shape_rule, _triangular_solve_dtype_rule,
'triangular_solve')
ad.defjvp2(triangular_solve_p,
_triangular_solve_jvp_rule_a,
lambda g_b, _, a, b, **kws: triangular_solve(a, g_b, **kws))
ad.primitive_transposes[triangular_solve_p] = _triangular_solve_transpose_rule
batching.primitive_batchers[triangular_solve_p] = _triangular_solve_batching_rule
def _triangular_solve_lowering(
ctx, a, b, *, left_side, lower, transpose_a, conjugate_a, unit_diagonal):
out_aval, = ctx.avals_out
if conjugate_a and not transpose_a:
a = chlo.ConjOp(a)
conjugate_a = False
if not transpose_a:
transpose = "NO_TRANSPOSE"
else:
transpose = "ADJOINT" if conjugate_a else "TRANSPOSE"
return [hlo.triangular_solve(
a, b, ir.BoolAttr.get(left_side),
ir.BoolAttr.get(lower), ir.BoolAttr.get(unit_diagonal),
hlo.TransposeAttr.get(transpose))]
mlir.register_lowering(triangular_solve_p, _triangular_solve_lowering)
def _triangular_solve_cpu_lower(
ctx, a, b, *, left_side, lower, transpose_a,
conjugate_a, unit_diagonal):
a_aval, b_aval = ctx.avals_in
if conjugate_a and not transpose_a:
a = chlo.conj(a)
conjugate_a = False
if len(a_aval.shape) == 2 and np.dtype(a_aval.dtype) in _cpu_lapack_types:
alpha = mlir.ir_constant(np.array(1, dtype=a_aval.dtype))
b_shape_vals = mlir.eval_dynamic_shape_as_ivals(ctx, b_aval.shape)
return lapack.trsm_hlo(
a_aval.dtype, alpha,
a, b, left_side, lower, transpose_a, conjugate_a, unit_diagonal,
b_shape_vals=b_shape_vals)
else:
# Fall back to the HLO implementation for unsupported types or batching.
# TODO: Consider swapping XLA for LAPACK in batched case
if transpose_a:
transpose = "ADJOINT" if conjugate_a else "TRANSPOSE"
else:
transpose = "NO_TRANSPOSE"
return [hlo.triangular_solve(a, b, ir.BoolAttr.get(left_side),
ir.BoolAttr.get(lower),
ir.BoolAttr.get(unit_diagonal),
hlo.TransposeAttr.get(transpose))]
mlir.register_lowering(triangular_solve_p, _triangular_solve_cpu_lower,
platform='cpu')
# Support operation for LU decomposition: Transformation of the pivots returned
# by LU decomposition into permutations.
# Define this outside lu_pivots_to_permutation to ensure fori_loop cache hits
def _lu_pivots_body_fn(i, permutation_and_swaps):
permutation, swaps = permutation_and_swaps
batch_dims = swaps.shape[:-1]
j = swaps[..., i]
iotas = _broadcasted_iotas(*batch_dims)
x = permutation[..., i]
y = permutation[(*iotas, j)]
permutation = permutation.at[..., i].set(y)
return permutation.at[(*iotas, j)].set(x), swaps
def _generic_lu_pivots_to_permutation(swaps, permutation_size):
"""Converts the pivots (row swaps) returned by LU to a permutation.
We build a permutation rather than applying `swaps` directly to the rows
of a matrix because lax loops aren't differentiable.
Args:
swaps: an array of shape (..., k) of row swaps to perform
permutation_size: the size of the output permutation. Should be >= k.
Returns:
An int32 array of shape (..., m).
"""
assert len(swaps.shape) >= 1
batch_dims = swaps.shape[:-1]
k = swaps.shape[-1]
m = permutation_size
permutation = lax.broadcasted_iota(np.int32, batch_dims + (m,),
len(batch_dims))
if m == 0 or k == 0:
return permutation
upper = np.array(k, np.int32) if is_constant_dim(k) else k
result, _ = lax.fori_loop(np.array(0, np.int32), upper, _lu_pivots_body_fn,
(permutation, swaps))
return result
def _lu_pivots_to_permutation_abstract_eval(pivots, *, permutation_size):
pivots = raise_to_shaped(pivots)
if isinstance(pivots, ShapedArray):
if pivots.ndim < 1 or pivots.dtype != np.dtype(np.int32):
raise ValueError(
'Argument to lu_pivots_to_permutation must have rank >= 1 and dtype '
'int32. Got shape={} and dtype={}'.format(pivots.shape, pivots.dtype))
pivots_size = pivots.shape[-1]
if not permutation_size >= pivots_size:
raise ValueError(
'Output permutation size {} has to exceed the trailing dimension of '
'the pivots. Got pivots size {}'.format(permutation_size, pivots_size))
return pivots.update(shape=(*pivots.shape[:-1], permutation_size))
else:
return pivots
def _lu_pivots_to_permutation_batching_rule(batched_args, batch_dims, *,
permutation_size):
x, = batched_args
bd, = batch_dims
x = batching.moveaxis(x, bd, 0)
return lu_pivots_to_permutation_p.bind(
x, permutation_size=permutation_size), 0
def _lu_pivots_to_permutation_gpu_lowering(platform, ctx, pivots, *,
permutation_size):
rule = ffi.ffi_lowering(f"{platform}_lu_pivots_to_permutation")
# TODO(b/358275922): remove unused once jaxlib v0.4.32 is the minimum version.
if ctx.is_forward_compat() or jaxlib_version < (0, 4, 32):
kwargs = dict(permutation_size=np.int32(permutation_size))
else:
kwargs = {}
return rule(ctx, pivots, **kwargs)
lu_pivots_to_permutation_p = Primitive('lu_pivots_to_permutation')
lu_pivots_to_permutation_p.multiple_results = False
lu_pivots_to_permutation_p.def_impl(
partial(dispatch.apply_primitive, lu_pivots_to_permutation_p))
lu_pivots_to_permutation_p.def_abstract_eval(
_lu_pivots_to_permutation_abstract_eval)
batching.primitive_batchers[lu_pivots_to_permutation_p] = (
_lu_pivots_to_permutation_batching_rule)
mlir.register_lowering(
lu_pivots_to_permutation_p,
mlir.lower_fun(_generic_lu_pivots_to_permutation, multiple_results=False))
mlir.register_lowering(
lu_pivots_to_permutation_p,
partial(_lu_pivots_to_permutation_gpu_lowering, "cu"),
platform='cuda')
mlir.register_lowering(
lu_pivots_to_permutation_p,
partial(_lu_pivots_to_permutation_gpu_lowering, "hip"),
platform='rocm')
# LU decomposition
# Computes a pivoted LU decomposition such that
# PA = LU
# In the style of LAPACK, LU are stored in the same matrix.
def _lu_unblocked(a):
"""Unblocked LU decomposition, as a rolled loop."""
m, n = a.shape
def body(k, state):
pivot, perm, a = state
m_idx = lax.iota('int32', m)
n_idx = lax.iota('int32', n)
if dtypes.issubdtype(a.dtype, np.complexfloating):
t = a[:, k]
magnitude = abs(t.real) + abs(t.imag)
else:
magnitude = abs(a[:, k])
i = lax.argmax(lax.select(m_idx >= k, magnitude, lax.full_like(magnitude, -np.inf)),
axis=0, index_dtype=pivot.dtype)
pivot = pivot.at[k].set(i)
a = a.at[[k, i],].set(a[[i, k],])
perm = perm.at[[i, k],].set(perm[[k, i],])
# a[k+1:, k] /= a[k, k], adapted for loop-invariant shapes
x = a[k, k]
a = a.at[:, k].set(lax.select((m_idx > k) & (x != 0), a[:, k] / x, a[:, k]))
# a[k+1:, k+1:] -= jnp.outer(a[k+1:, k], a[k, k+1:])
a_outer = a[:, k, None] * a[k, None]
a = a - lax.select((m_idx[:, None] > k) & (n_idx[None, :] > k),
a_outer, lax_internal._zeros(a_outer))
return pivot, perm, a
pivot = lax.full((min(m, n),), 0, dtype=np.int32)
perm = lax.iota('int32', m)
if m == 0 and n == 0:
# If the array is empty, the loop body never executes but tracing it to a
# jaxpr fails because the indexing cannot succeed.
return (pivot, perm, a)
return lax.fori_loop(0, min(m, n), body, (pivot, perm, a))
def _lu_blocked(a, block_size=128):
"""Blocked LU decomposition, as an unrolled loop."""
m, n = a.shape
r = min(m, n)
pivot = lax.full((r,), 0, dtype=np.int32)
perm = lax.iota('int32', m)
for k in range(0, r, block_size):
b = min(r - k, block_size)
block_pivot, block_perm, lu_block = _lu_unblocked(a[k:, k:k+b])
pivot = pivot.at[k:k+b].set(block_pivot + k)
perm = perm.at[k:].set(perm[block_perm + k])
a = a.at[k:, :].set(a[block_perm + k, :])
a = a.at[k:, k:k+b].set(lu_block)
if k + b < n:
a = a.at[k:k+b, k+b:].set(
triangular_solve(a[k:k+b, k:k+b], a[k:k+b, k+b:], left_side=True,
lower=True, unit_diagonal=True))
a = a.at[k+b:, k+b:].add(-lax.dot(a[k+b:, k:k+b], a[k:k+b, k+b:],
precision=lax.Precision.HIGHEST))
return a, pivot, perm
def _lu_python(x):
"""Default LU decomposition in Python, where no better version exists."""
batch_dims = x.shape[:-2]
fn = _lu_blocked
for _ in range(len(batch_dims)):
fn = api.vmap(fn)
return fn(x)
def _lu_impl(operand):
lu, pivot, perm = dispatch.apply_primitive(lu_p, operand)
return lu, pivot, perm
def _lu_abstract_eval(operand):
operand = raise_to_shaped(operand)
if isinstance(operand, ShapedArray):
if operand.ndim < 2:
raise ValueError("Argument to LU decomposition must have ndims >= 2")
batch_dims = operand.shape[:-2]
m = operand.shape[-2]
n = operand.shape[-1]
pivot = operand.update(shape=batch_dims + (core.min_dim(m, n),),
dtype=np.int32)
perm = operand.update(shape=batch_dims + (m,), dtype=np.int32)
else:
pivot = operand
perm = operand
return operand, pivot, perm
def _lu_jvp_rule(primals, tangents):
a, = primals
a_dot, = tangents
lu, pivots, permutation = lu_p.bind(a)
a_shape = np.shape(a)
m, n = a_shape[-2:]
dtype = lax.dtype(a)
k = min(m, n)
batch_dims = a_shape[:-2]
iotas = _broadcasted_iotas(*batch_dims, 1)
x = a_dot[(*iotas[:-1], permutation, slice(None))]
# Differentiation of Matrix Functionals Using Triangular Factorization
# F. R. De Hoog, R. S. Anderssen, and M. A. Lukas
#
# LU = A
# ==> L'U + LU' = A'
# ==> inv(L) . L' + U' . inv(U) = inv(L) A' inv(U)
# ==> L' = L . tril(inv(L) . A' . inv(U), -1)
# U' = triu(inv(L) . A' . inv(U)) . U
ndims = len(a_shape)
l_padding = [(0, 0, 0)] * ndims
l_padding[-1] = (0, m - k, 0)
zero = lax_internal._const(lu, 0)
l = lax.pad(_tril(lu[..., :, :k], -1), zero, l_padding)
l = l + lax.expand_dims(lax_internal._eye(dtype, (m, m)), range(l.ndim - 2))
u_eye = lax.pad(lax_internal._eye(dtype, (n - k, n - k)), zero,
((k, 0, 0), (k, 0, 0)))
u_padding = [(0, 0, 0)] * ndims
u_padding[-2] = (0, n - k, 0)
u = (lax.pad(_triu(lu[..., :k, :]), zero, u_padding) +
lax.expand_dims(u_eye, range(lu.ndim - 2)))
la = triangular_solve(l, x, left_side=True, transpose_a=False, lower=True,
unit_diagonal=True)
lau = triangular_solve(u, la, left_side=False, transpose_a=False,
lower=False)
with config.default_matmul_precision("highest"):
l_dot = l @ _tril(lau, -1)
u_dot = _triu(lau) @ u
lu_dot = l_dot + u_dot
return (lu, pivots, permutation), (lu_dot, ad_util.Zero.from_primal_value(pivots),
ad_util.Zero.from_primal_value(permutation))
def _lu_batching_rule(batched_args, batch_dims):
x, = batched_args
bd, = batch_dims
x = batching.moveaxis(x, bd, 0)
return lu_p.bind(x), (0, 0, 0)
def _lu_cpu_gpu_lowering(getrf_impl, ctx, operand, *, platform: str,
target_name_prefix: str):
operand_aval, = ctx.avals_in
out_aval, pivot_aval, perm_aval = ctx.avals_out
batch_dims = operand_aval.shape[:-2]
info_aval = ShapedArray(batch_dims, np.dtype(np.int32))
m = operand_aval.shape[-2]
# TODO(b/357034884): Remove version gate on the forward compat flag after the
# 3 week compatibility window.
if ctx.is_forward_compat():
if not is_constant_shape(operand_aval.shape[-2:]):
raise NotImplementedError(
"Shape polymorphism for native lowering for lu on CPU and GPU is "
f"implemented only for the batch dimensions: {operand_aval.shape}")
if platform in ["cuda", "rocm"]:
if not is_constant_shape(operand_aval.shape):
raise NotImplementedError(
"Shape polymorphism for native serialization for lu on GPU is not "
f"implemented; b/261671778; {operand_aval.shape}")
lu, pivot, info = getrf_impl(operand_aval.dtype, operand)
else:
op_shape_vals = mlir.eval_dynamic_shape_as_ivals(ctx, operand_aval.shape)
lu, pivot, info = getrf_impl(
operand_aval.dtype, operand, a_shape_vals=op_shape_vals)
else:
if target_name_prefix == "cpu":
target_name = lapack.prepare_lapack_call("getrf_ffi", operand_aval.dtype)
else:
target_name = f"{target_name_prefix}solver_getrf_ffi"
# We manually construct the layouts because the input and output are
# expected to be in Fortran order.
nb = len(batch_dims)
layout = (nb, nb + 1) + tuple(range(nb - 1, -1, -1))
result_layouts = [layout, tuple(range(nb, -1, -1)),
tuple(range(nb - 1, -1, -1))]
rule = ffi.ffi_lowering(target_name, operand_layouts=[layout],
result_layouts=result_layouts,
operand_output_aliases={0: 0})
sub_ctx = ctx.replace(avals_out=[out_aval, pivot_aval, info_aval])
lu, pivot, info = rule(sub_ctx, operand)
# Subtract 1 from the pivot to get 0-based indices.
pivot = hlo.subtract(pivot, mlir.full_like_aval(ctx, 1, pivot_aval))
ok = mlir.compare_hlo(info, mlir.full_like_aval(ctx, 0, info_aval),
"GE", "SIGNED")
select_lu_aval = ShapedArray(batch_dims + (1, 1), np.dtype(np.bool_))
lu = _broadcasting_select_hlo(
ctx,
mlir.broadcast_in_dim(ctx, ok, select_lu_aval,
broadcast_dimensions=range(len(batch_dims))),
select_lu_aval,
lu, out_aval, _nan_like_hlo(ctx, out_aval), out_aval)
sub_ctx = ctx.replace(primitive=None, avals_in=[pivot_aval], avals_out=[perm_aval])
perm_fn = mlir.lower_fun(lambda x: lu_pivots_to_permutation(x, m),
multiple_results=False)
perm, = perm_fn(sub_ctx, pivot)
return [lu, pivot, perm]
def _lu_tpu_lowering_rule(ctx, operand):
result_types = [
mlir.aval_to_ir_type(ctx.avals_out[0]),
mlir.aval_to_ir_type(ctx.avals_out[1]),
mlir.aval_to_ir_type(ctx.avals_out[2])]
if any(not is_constant_shape(a.shape) for a in ctx.avals_out):
result_shapes = [
mlir.eval_dynamic_shape_as_tensor(ctx, a.shape)
for a in ctx.avals_out]
else:
result_shapes = None
op = mlir.custom_call(
"LuDecomposition",
result_types=result_types,
operands=[operand],
result_shapes=result_shapes)
return op.results
lu_p = Primitive('lu')
lu_p.multiple_results = True
lu_p.def_impl(_lu_impl)
lu_p.def_abstract_eval(_lu_abstract_eval)
mlir.register_lowering(lu_p, mlir.lower_fun(_lu_python, multiple_results=True))
ad.primitive_jvps[lu_p] = _lu_jvp_rule
batching.primitive_batchers[lu_p] = _lu_batching_rule
mlir.register_lowering(lu_p,
partial(_lu_cpu_gpu_lowering, lapack.getrf_hlo,
platform='cpu', target_name_prefix="cpu"),
platform='cpu')
mlir.register_lowering(
lu_p, partial(_lu_cpu_gpu_lowering, gpu_solver.cuda_getrf,
platform='cuda', target_name_prefix="cu"),
platform='cuda')
mlir.register_lowering(
lu_p, partial(_lu_cpu_gpu_lowering, gpu_solver.rocm_getrf,
platform='rocm', target_name_prefix="hip"),
platform='rocm')
mlir.register_lowering(lu_p, _lu_tpu_lowering_rule, platform='tpu')
def _lu_solve_core(lu: Array, permutation: Array, b: Array, trans: int) -> Array:
m = lu.shape[0]
x = lax.reshape(b, (m, math.prod(b.shape[1:])))
if trans == 0:
x = x[permutation, :]
x = triangular_solve(lu, x, left_side=True, lower=True, unit_diagonal=True)
x = triangular_solve(lu, x, left_side=True, lower=False)
elif trans == 1 or trans == 2:
conj = trans == 2
x = triangular_solve(lu, x, left_side=True, lower=False, transpose_a=True,
conjugate_a=conj)
x = triangular_solve(lu, x, left_side=True, lower=True, unit_diagonal=True,
transpose_a=True, conjugate_a=conj)
_, ind = lax.sort_key_val(permutation, lax.iota('int32', len(permutation)))
x = x[ind, :]
else:
raise ValueError(f"'trans' value must be 0, 1, or 2, got {trans}")
return lax.reshape(x, b.shape)
@partial(api.jit, static_argnums=(3,))
def _lu_solve(lu: Array, permutation: Array, b: Array, trans: int) -> Array:
if len(lu.shape) < 2 or lu.shape[-1] != lu.shape[-2]:
raise ValueError("last two dimensions of LU decomposition must be equal, "
"got shape {}".format(lu.shape))
if len(b.shape) < 1:
raise ValueError("b matrix must have rank >= 1, got shape {}"
.format(b.shape))
# Broadcasting follows NumPy's convention for linalg.solve: the RHS is
# treated as a (batched) vector if the number of dimensions differ by 1.
# Otherwise, broadcasting rules apply.
rhs_vector = lu.ndim == b.ndim + 1
if rhs_vector:
if b.shape[-1] != lu.shape[-1]:
raise ValueError("When LU decomposition matrix and b have the same "
"number of dimensions, last axis of LU decomposition "
"matrix (shape {}) and b array (shape {}) must match"
.format(lu.shape, b.shape))
b = b[..., np.newaxis]
else:
if b.shape[-2] != lu.shape[-1]:
raise ValueError("When LU decomposition matrix and b different "
"numbers of dimensions, last axis of LU decomposition "
"matrix (shape {}) and second to last axis of b array "
"(shape {}) must match"
.format(lu.shape, b.shape))
batch_shape = lax.broadcast_shapes(lu.shape[:-2], permutation.shape[:-1], b.shape[:-2])
lu = _broadcast_to(lu, (*batch_shape, *lu.shape[-2:]))
permutation = _broadcast_to(permutation, (*batch_shape, permutation.shape[-1]))
b = _broadcast_to(b, (*batch_shape, *b.shape[-2:]))
fn = _lu_solve_core
for _ in batch_shape:
fn = api.vmap(fn, in_axes=(0, 0, 0, None))
x = fn(lu, permutation, b, trans)
return x[..., 0] if rhs_vector else x
def lu_solve(lu: ArrayLike, permutation: ArrayLike, b: ArrayLike,
trans: int = 0) -> Array:
"""LU solve with broadcasting."""
return _lu_solve(lu, permutation, b, trans)
# QR decomposition
# QR decomposition is implemented as a composition of two lower-level primitives
# geqrf and orgqr. The names, while cryptic Fortran alphabet soup, are LAPACK's
# names for the primitives, and we stick with them for consistency.
def geqrf(a: ArrayLike) -> tuple[Array, Array]:
"""Computes the QR decomposition of a matrix.
Args:
a: an ``[..., m, n]`` batch of matrices, with floating-point or complex type.
Returns:
An ``(a, taus)`` pair where ``r`` is in the upper triangle of ``a``,
``q`` is represented in the lower triangle of ``a`` and in ``taus`` as
elementary Householder reflectors.
"""
a_out, taus = geqrf_p.bind(a)
return a_out, taus
def _geqrf_abstract_eval(operand):
if not isinstance(operand, ShapedArray):
raise NotImplementedError("Unsupported aval in geqrf_abstract_eval: "
f"{operand.aval}")
if operand.ndim < 2:
raise ValueError("Argument to QR decomposition must have ndims >= 2")
*batch_dims, m, n = operand.shape
taus = operand.update(shape=(*batch_dims, min(m, n)))
return operand, taus
def _geqrf_batching_rule(batched_args, batch_dims):
x, = batched_args
bd, = batch_dims
return geqrf(batching.moveaxis(x, bd, 0)), (0, 0)
def _geqrf_lowering_rule(ctx, operand):
ts_type = mlir.aval_to_ir_type(ctx.avals_out[0])
r_type = mlir.aval_to_ir_type(ctx.avals_out[1])
result_types = [ts_type, r_type]
if any(not is_constant_shape(aval_out.shape)
for aval_out in ctx.avals_out):
result_shapes = [
mlir.eval_dynamic_shape_as_tensor(ctx, aval_out.shape)
for aval_out in ctx.avals_out
]
else:
result_shapes = None
op = mlir.custom_call(
"Qr",
result_types=result_types,
operands=[operand],
api_version=1,
result_shapes=result_shapes
)
return op.results
def _geqrf_cpu_gpu_lowering(geqrf_impl, batched_geqrf_impl, ctx, a, *,
platform: str):
a_aval, taus_aval = ctx.avals_out
*batch_dims, m, n = a_aval.shape
# It should be possible to support fully-dynamic shapes, but since
# the last two dimensions (m, n) are used in more involved ways, we only
# support dynamic dimensions for the batch size for now.
if not is_constant_shape([m, n]):
raise NotImplementedError(
"Shape polymorphism for native serialization for qr on CPU and GPU is "
f"implemented only for the batch dimensions: {a_aval.shape}")
batch = math.prod(batch_dims)
if batch == 0 or m == 0 or n == 0:
return mlir.full_like_aval(ctx, 0, a_aval), mlir.full_like_aval(ctx, 0, taus_aval)
if not is_constant_shape(a_aval.shape):
if platform in ["cuda", "rocm"]:
# TODO(necula): remove the platform kwarg when we implement GPU support.
raise NotImplementedError(
"Shape polymorphism for native serialization for QR is not "
f"implemented, try to upgrade jaxlib; b/261671778; {a_aval.shape}")
if (batched_geqrf_impl is not None and batch > 1 and m // batch <= 128 and
n // batch <= 128):
a_out, taus = batched_geqrf_impl(a_aval.dtype, a)
else:
if platform in ["cuda", "rocm"]:
a_out, taus, info_geqrf = geqrf_impl(a_aval.dtype, a)
else:
a_shape_vals = mlir.eval_dynamic_shape_as_ivals(ctx, a_aval.shape)
ctx_args = (
(ctx,) if platform == "cpu" else ()
)
a_out, taus, *maybe_info_geqrf = geqrf_impl(
*ctx_args, a_aval.dtype, a, a_shape_vals=a_shape_vals
)
if not ctx.is_forward_compat():
# Skip the info parameter verification for the FFI kernel.
return a_out, taus
# TODO(b/344892332): This parameter will no longer be needed after
# the forward compatibility period
info_geqrf = maybe_info_geqrf[0]
zeros = mlir.full_like_aval(ctx, 0, ShapedArray(batch_dims, np.dtype(np.int32)))
ok = mlir.compare_hlo(info_geqrf, zeros, "EQ", "SIGNED")
select_ok_a_aval = ShapedArray(batch_dims + [1, 1], np.dtype(np.bool_))
ok_a = mlir.broadcast_in_dim(ctx, ok, select_ok_a_aval,
broadcast_dimensions=range(len(batch_dims)))
a_out = _broadcasting_select_hlo(ctx, ok_a, select_ok_a_aval, a_out, a_aval, _nan_like_hlo(ctx, a_aval), a_aval)
select_ok_taus_aval = ShapedArray(batch_dims + [1], np.dtype(np.bool_))
ok_taus = mlir.broadcast_in_dim(ctx, ok, select_ok_taus_aval,
broadcast_dimensions=range(len(batch_dims)))
taus = _broadcasting_select_hlo(ctx, ok_taus, select_ok_taus_aval, taus, taus_aval, _nan_like_hlo(ctx, taus_aval), taus_aval)
return a_out, taus
geqrf_p = Primitive('geqrf')
geqrf_p.multiple_results = True
geqrf_p.def_impl(partial(dispatch.apply_primitive, geqrf_p))
geqrf_p.def_abstract_eval(_geqrf_abstract_eval)
batching.primitive_batchers[geqrf_p] = _geqrf_batching_rule
mlir.register_lowering(geqrf_p, _geqrf_lowering_rule)
mlir.register_lowering(
geqrf_p, partial(_geqrf_cpu_gpu_lowering, lapack.geqrf_hlo, None,
platform='cpu'),
platform='cpu')
mlir.register_lowering(
geqrf_p,
partial(_geqrf_cpu_gpu_lowering, gpu_solver.cuda_geqrf,
gpu_solver.cuda_geqrf_batched,
platform='cuda'),
platform='cuda')
mlir.register_lowering(
geqrf_p,
partial(_geqrf_cpu_gpu_lowering, gpu_solver.rocm_geqrf,
gpu_solver.rocm_geqrf_batched,
platform='rocm'),
platform='rocm')
# householder_product: product of elementary Householder reflectors
def householder_product(a: ArrayLike, taus: ArrayLike) -> Array:
"""Product of elementary Householder reflectors.
Args:
a: A matrix with shape ``[..., m, n]``, whose lower triangle contains
elementary Householder reflectors.
taus: A vector with shape ``[..., k]``, where ``k < min(m, n)``, containing
the scalar factors of the elementary Householder reflectors.
Returns:
A batch of orthogonal (unitary) matrices with the same shape as ``a``,
containing the products of the elementary Householder reflectors.
"""
return householder_product_p.bind(a, taus)
def _householder_product_abstract_eval(a, taus):
if not isinstance(a, ShapedArray) or not isinstance(taus, ShapedArray):
raise NotImplementedError("Unsupported aval in householder_product_abstract_eval: "
f"{a.aval} {taus.aval}")
if a.ndim < 2:
raise ValueError("Argument to Householder product must have ndims >= 2")
*batch_dims, m, n = a.shape
*taus_batch_dims, k = taus.shape
if a.dtype != taus.dtype or batch_dims != taus_batch_dims or k > min(m, n):
raise ValueError(f"Type mismatch for Householder product: {a=} {taus=}")
if m < n:
raise ValueError("Householder product inputs must have at least as many "
f"rows as columns, got shape {a.shape}")
return a
def _householder_product_batching_rule(batched_args, batch_dims):
a, taus = batched_args
b_a, b_taus, = batch_dims
return householder_product(batching.moveaxis(a, b_a, 0),
batching.moveaxis(taus, b_taus, 0)), (0,)
def _householder_product_lowering_rule(ctx, a, taus):
aval_out, = ctx.avals_out
if not is_constant_shape(aval_out.shape):
result_shapes = [
mlir.eval_dynamic_shape_as_tensor(ctx, aval_out.shape)]
else:
result_shapes = None
op = mlir.custom_call(
"ProductOfElementaryHouseholderReflectors",
result_types=[mlir.aval_to_ir_type(aval_out)],
operands=[a, taus],
api_version=1,
result_shapes=result_shapes)
return [op.result]
def _householder_product_cpu_gpu_lowering(orgqr_impl, ctx, a, taus, *,
platform: str):
a_aval, taus_aval = ctx.avals_in
*batch_dims, m, n = a_aval.shape
if not is_constant_shape([m, n]):
raise NotImplementedError(
"Shape polymorphism for native serialization for householder_product on "
f"CPU and GPU is implemented only for the batch dimensions: {a_aval.shape}")
if m == 0 or n == 0:
return [mlir.full_like_aval(ctx, 0, a_aval)]
if platform in ["rocm", "cuda"]:
# TODO(necula): remove the platform kwarg when we implement GPU support.
if not is_constant_shape(a_aval.shape):
raise NotImplementedError(
"Shape polymorphism for native serialization for householder_product "
f"on GPU is not implemented; b/261671778; {a_aval.shape}")
a, info_orgqr = orgqr_impl(a_aval.dtype, a, taus)
else:
ctx_args = (
(ctx,) if platform == "cpu" else ()
)
a_shape_vals = mlir.eval_dynamic_shape_as_ivals(ctx, a_aval.shape)
tau_shape_vals = mlir.eval_dynamic_shape_as_ivals(ctx, taus_aval.shape)
a, *maybe_info_orgqr = orgqr_impl(*ctx_args, a_aval.dtype, a, taus,
a_shape_vals=a_shape_vals,
tau_shape_vals=tau_shape_vals)
if not ctx.is_forward_compat():
# Skip the info parameter verification for the FFI kernel.
return [a]
# TODO(b/344892332): This parameter will no longer be needed after
# the forward compatibility period
info_orgqr = maybe_info_orgqr[0]
zeros = mlir.full_like_aval(ctx, 0, ShapedArray(batch_dims, np.dtype(np.int32)))
ok = mlir.compare_hlo(info_orgqr, zeros, "EQ", "SIGNED")
select_a_aval = ShapedArray(batch_dims + [1, 1], np.dtype(np.bool_))
ok = mlir.broadcast_in_dim(ctx, ok, select_a_aval,
broadcast_dimensions=range(len(batch_dims)))
a = _broadcasting_select_hlo(ctx, ok, select_a_aval, a, a_aval, _nan_like_hlo(ctx, a_aval), a_aval)
return [a]
householder_product_p = Primitive('householder_product')
householder_product_p.def_impl(partial(dispatch.apply_primitive, householder_product_p))
householder_product_p.def_abstract_eval(_householder_product_abstract_eval)
batching.primitive_batchers[householder_product_p] = _householder_product_batching_rule
mlir.register_lowering(householder_product_p, _householder_product_lowering_rule)
mlir.register_lowering(
householder_product_p,
partial(_householder_product_cpu_gpu_lowering, lapack.orgqr_hlo,
platform='cpu'),
platform='cpu')
mlir.register_lowering(
householder_product_p,
partial(_householder_product_cpu_gpu_lowering, gpu_solver.cuda_orgqr,
platform='cuda'),
platform='cuda')
mlir.register_lowering(
householder_product_p,
partial(_householder_product_cpu_gpu_lowering, gpu_solver.rocm_orgqr,
platform='rocm'),
platform='rocm')
def _qr_impl(operand, *, full_matrices):
q, r = dispatch.apply_primitive(qr_p, operand, full_matrices=full_matrices)
return q, r
def _qr_abstract_eval(operand, *, full_matrices):
if isinstance(operand, ShapedArray):
if operand.ndim < 2:
raise ValueError("Argument to QR decomposition must have ndims >= 2")
*batch_dims, m, n = operand.shape
k = m if full_matrices else min(m, n)
q = operand.update(shape=(*batch_dims, m, k))
r = operand.update(shape=(*batch_dims, k, n))
else:
q = operand
r = operand
return q, r
def qr_jvp_rule(primals, tangents, *, full_matrices):
# See j-towns.github.io/papers/qr-derivative.pdf for a terse derivation.
x, = primals
dx, = tangents
q, r = qr_p.bind(x, full_matrices=False)
*_, m, n = x.shape
if m < n or (full_matrices and m != n):
raise NotImplementedError(
"Unimplemented case of QR decomposition derivative")
dx_rinv = triangular_solve(r, dx) # Right side solve by default
qt_dx_rinv = _H(q) @ dx_rinv
qt_dx_rinv_lower = _tril(qt_dx_rinv, -1)
do = qt_dx_rinv_lower - _H(qt_dx_rinv_lower) # This is skew-symmetric
# The following correction is necessary for complex inputs
I = lax.expand_dims(lax_internal._eye(do.dtype, (n, n)), range(qt_dx_rinv.ndim - 2))
do = do + I * (qt_dx_rinv - qt_dx_rinv.real.astype(qt_dx_rinv.dtype))
dq = q @ (do - qt_dx_rinv) + dx_rinv
dr = (qt_dx_rinv - do) @ r
return (q, r), (dq, dr)
def _qr_batching_rule(batched_args, batch_dims, *, full_matrices):
x, = batched_args
bd, = batch_dims
x = batching.moveaxis(x, bd, 0)
return qr_p.bind(x, full_matrices=full_matrices), (0, 0)
def _qr_lowering(a, *, full_matrices):
*batch_dims, m, n = a.shape
if m == 0 or n == 0:
k = m if full_matrices else min(m, n)
q = lax.broadcast_in_dim(lax_internal._eye(a.dtype, (m, k)),
(*batch_dims, m, k),
(len(batch_dims), len(batch_dims) + 1))
r = lax.full((*batch_dims, k, n), 0, dtype=a.dtype)
return q, r
r, taus = geqrf(a)
if m < n:
q = householder_product(r[..., :m, :m], taus)
elif full_matrices:
pads = [(0, 0, 0)] * (len(batch_dims) + 1) + [(0, m - n, 0)]
q = lax.pad(r, lax_internal._zero(r), pads)
q = householder_product(q, taus)
else:
q = householder_product(r, taus)
r = r[..., :n, :n]
r = _triu(r)
return q, r
qr_p = Primitive('qr')
qr_p.multiple_results = True
qr_p.def_impl(_qr_impl)
qr_p.def_abstract_eval(_qr_abstract_eval)
ad.primitive_jvps[qr_p] = qr_jvp_rule
batching.primitive_batchers[qr_p] = _qr_batching_rule
mlir.register_lowering(qr_p, mlir.lower_fun(_qr_lowering))
# Singular value decomposition
def _svd_impl(operand, *, full_matrices, compute_uv, subset_by_index=None):
return dispatch.apply_primitive(
svd_p,
operand,
full_matrices=full_matrices,
compute_uv=compute_uv,
subset_by_index=subset_by_index,
)
def _svd_abstract_eval(operand, *, full_matrices, compute_uv, subset_by_index):
if isinstance(operand, ShapedArray):
batch_dims = operand.shape[:-2]
m = operand.shape[-2]
n = operand.shape[-1]
rank = min(m, n)
if subset_by_index is not None:
if full_matrices and subset_by_index != (0, rank):
raise ValueError("full_matrices and subset_by_index cannot both be set")
rank = min(rank, subset_by_index[1] - subset_by_index[0])
s = operand.update(
shape=batch_dims + (rank,),
dtype=lax_internal._complex_basetype(operand.dtype),
)
if compute_uv:
u = operand.update(shape=batch_dims + (m, m if full_matrices else rank))
vt = operand.update(shape=batch_dims + (n if full_matrices else rank, n))
return s, u, vt
else:
return s,
else:
raise NotImplementedError
@config.default_matmul_precision("float32")
def _svd_jvp_rule(
primals, tangents, *, full_matrices, compute_uv, subset_by_index
):
A, = primals
dA, = tangents
s, U, Vt = svd_p.bind(
A, full_matrices=False, compute_uv=True, subset_by_index=subset_by_index
)
if compute_uv and full_matrices:
# TODO: implement full matrices case, documented here: https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
raise NotImplementedError(
"Singular value decomposition JVP not implemented for full matrices")
Ut, V = _H(U), _H(Vt)
s_dim = s[..., None, :]
dS = Ut @ dA @ V
ds = _extract_diagonal(dS.real)
if not compute_uv:
return (s,), (ds,)
s_diffs = (s_dim + _T(s_dim)) * (s_dim - _T(s_dim))
s_diffs_zeros = lax_internal._eye(s.dtype, (s.shape[-1], s.shape[-1])) # jnp.ones((), dtype=A.dtype) * (s_diffs == 0.) # is 1. where s_diffs is 0. and is 0. everywhere else
s_diffs_zeros = lax.expand_dims(s_diffs_zeros, range(s_diffs.ndim - 2))
F = 1 / (s_diffs + s_diffs_zeros) - s_diffs_zeros
dSS = s_dim.astype(A.dtype) * dS # dS.dot(jnp.diag(s))
SdS = _T(s_dim.astype(A.dtype)) * dS # jnp.diag(s).dot(dS)
s_zeros = (s == 0).astype(s.dtype)
s_inv = 1 / (s + s_zeros) - s_zeros
s_inv_mat = _construct_diagonal(s_inv)
dUdV_diag = .5 * (dS - _H(dS)) * s_inv_mat.astype(A.dtype)
dU = U @ (F.astype(A.dtype) * (dSS + _H(dSS)) + dUdV_diag)
dV = V @ (F.astype(A.dtype) * (SdS + _H(SdS)))
m, n = A.shape[-2:]
if m > n:
dAV = dA @ V
dU = dU + (dAV - U @ (Ut @ dAV)) / s_dim.astype(A.dtype)
if n > m:
dAHU = _H(dA) @ U
dV = dV + (dAHU - V @ (Vt @ dAHU)) / s_dim.astype(A.dtype)
return (s, U, Vt), (ds, dU, _H(dV))
def _empty_svd(a, *, full_matrices, compute_uv):
batch_shape = a.shape[:-2]
m, n = a.shape[-2:]
s = lax.full(batch_shape + (0,), 0, dtype=lax_internal._complex_basetype(a.dtype))
if not compute_uv:
return (s,)
if full_matrices:
size = max(m, n)
u = lax.broadcast_in_dim(lax_internal._eye(a.dtype, (size, size)),
(*batch_shape, size, size),
(len(batch_shape), len(batch_shape) + 1))
else:
u = lax.full(batch_shape + (m, n), 0, dtype=a.dtype)
v = lax.full(batch_shape + (0, 0), 0, dtype=a.dtype)
if m < n:
u, v = v, u
return s, u, v
def _svd_cpu_gpu_lowering(
gesvd_impl,
ctx,
operand,
*,
full_matrices,
compute_uv,
subset_by_index,
platform: str,
):
operand_aval, = ctx.avals_in
s_aval = ctx.avals_out[0]
m, n = operand_aval.shape[-2:]
# Since the last two dimensions (m, n) are used to compute the workspace
# size, we support dynamic dimensions only for the batch size for now.
if not is_constant_shape([m, n]):
raise NotImplementedError(
"Shape polymorphism for native serialization for svd on CPU and GPU is "
f"implemented only for the batch dimensions: {operand_aval.shape}")
batch_dims = operand_aval.shape[:-2]
if not (subset_by_index is None or subset_by_index == (0, min(m, n))):
raise NotImplementedError("subset_by_index not implemented for CPU and GPU")
if m == 0 or n == 0:
return mlir.lower_fun(_empty_svd, multiple_results=True)(
ctx,
operand,
full_matrices=full_matrices,
compute_uv=compute_uv,
)
if platform in ["cuda", "rocm"]:
if not is_constant_shape(operand_aval.shape):
# TODO(necula): remove the platform kwarg when we implement GPU support.
raise NotImplementedError(
"Shape polymorphism for native serialization for SVD is not "
f"implemented, try to upgrade jaxlib; b/261671778; {operand_aval.shape}")
s, u, vt, info = gesvd_impl(operand_aval.dtype, operand,
full_matrices=full_matrices,
compute_uv=compute_uv)
else:
a_shape_vals = mlir.eval_dynamic_shape_as_ivals(ctx, operand_aval.shape)
ctx_args = (ctx,)
s, u, vt, info = gesvd_impl(*ctx_args, operand_aval.dtype, operand,
full_matrices=full_matrices,
compute_uv=compute_uv,
a_shape_vals=a_shape_vals)
zeros = mlir.full_like_aval(ctx, 0, ShapedArray(batch_dims, np.dtype(np.int32)))
ok = mlir.compare_hlo(info, zeros, "EQ", "SIGNED")
select_s_aval = ShapedArray(batch_dims + (1,), np.dtype(np.bool_))
s = _broadcasting_select_hlo(
ctx,
mlir.broadcast_in_dim(ctx, ok, select_s_aval,
broadcast_dimensions=range(len(batch_dims))),
select_s_aval,
s, s_aval, _nan_like_hlo(ctx, s_aval), s_aval)
result = [s]
if compute_uv:
u_aval, vt_aval = ctx.avals_out[1:]
select_u_aval = ShapedArray(batch_dims + (1, 1), np.dtype(np.bool_))
u = _broadcasting_select_hlo(
ctx,
mlir.broadcast_in_dim(ctx, ok, select_u_aval,
broadcast_dimensions=range(len(batch_dims))),
select_u_aval,
u, u_aval, _nan_like_hlo(ctx, u_aval), u_aval)
select_v_aval = ShapedArray(batch_dims + (1, 1), np.dtype(np.bool_))
vt = _broadcasting_select_hlo(
ctx,
mlir.broadcast_in_dim(ctx, ok, select_v_aval,
broadcast_dimensions=range(len(batch_dims))),
select_v_aval,
vt, vt_aval, _nan_like_hlo(ctx, vt_aval), vt_aval)
result += [u, vt]
return result
def _svd_tpu(a, *, full_matrices, compute_uv, subset_by_index):
batch_dims = a.shape[:-2]
fn = partial(
lax_svd.svd,
full_matrices=full_matrices,
compute_uv=compute_uv,
subset_by_index=subset_by_index,
)
for _ in range(len(batch_dims)):
fn = api.vmap(fn)
if compute_uv:
u, s, vh = fn(a)
return [s, u, vh]
else:
s = fn(a)
return [s]
def _svd_tpu_lowering_rule(
ctx, operand, *, full_matrices, compute_uv, subset_by_index
):
operand_aval, = ctx.avals_in
m, n = operand_aval.shape[-2:]
if m == 0 or n == 0:
return mlir.lower_fun(_empty_svd, multiple_results=True)(
ctx,
operand,
full_matrices=full_matrices,
compute_uv=compute_uv,
)
return mlir.lower_fun(_svd_tpu, multiple_results=True)(
ctx,
operand,
full_matrices=full_matrices,
compute_uv=compute_uv,
subset_by_index=subset_by_index,
)
def _svd_batching_rule(
batched_args, batch_dims, *, full_matrices, compute_uv, subset_by_index
):
x, = batched_args
bd, = batch_dims
x = batching.moveaxis(x, bd, 0)
outs = svd_p.bind(
x,
full_matrices=full_matrices,
compute_uv=compute_uv,
subset_by_index=subset_by_index,
)
if compute_uv:
return outs, (0, 0, 0)
else:
return outs, (0,)
svd_p = Primitive('svd')
svd_p.multiple_results = True
svd_p.def_impl(_svd_impl)
svd_p.def_abstract_eval(_svd_abstract_eval)
ad.primitive_jvps[svd_p] = _svd_jvp_rule
batching.primitive_batchers[svd_p] = _svd_batching_rule
mlir.register_lowering(
svd_p, partial(_svd_cpu_gpu_lowering, lapack.gesdd_hlo,
platform='cpu'),
platform='cpu')
mlir.register_lowering(
svd_p, partial(_svd_cpu_gpu_lowering, gpu_solver.cuda_gesvd,
platform='cuda'),
platform='cuda')
mlir.register_lowering(
svd_p, partial(_svd_cpu_gpu_lowering, gpu_solver.rocm_gesvd,
platform='rocm'),
platform='rocm')
mlir.register_lowering(svd_p, _svd_tpu_lowering_rule)
def _tridiagonal_solve_gpu_lowering(lowering, ctx, dl, d, du, b, *, m, n, ldb, t):
_, _, _, b_aval = ctx.avals_in
b_shape_vals = mlir.eval_dynamic_shape_as_ivals(ctx, b_aval.shape)
return [lowering(
dl, d, du, b, m=m, n=n, ldb=ldb, t=dtypes.canonicalize_dtype(t),
b_shape_vals=b_shape_vals)]
def _tridiagonal_solve_transpose_rule(cotangent, dl, d, du, b, *, m, n, ldb, t):
del m, n, ldb, t
# Tridiagonal solve is nonlinear in the tridiagonal arguments and linear
# otherwise.
assert not (ad.is_undefined_primal(dl) or ad.is_undefined_primal(d) or
ad.is_undefined_primal(du)) and ad.is_undefined_primal(b)
if type(cotangent) is ad_util.Zero:
cotangent_b = ad_util.Zero(b.aval)
else:
cotangent_b = tridiagonal_solve(dl, d, du, cotangent)
return [None, None, None, cotangent_b]
def _tridiagonal_solve_batching_rule(
batched_args, batch_dims, *, m, n, ldb, t):
del m, n, ldb, t
dl, d, du, b = batched_args
bdl, bd, bdu, bb = batch_dims
if (bdl is batching.not_mapped and
bd is batching.not_mapped and
bdu is batching.not_mapped):
b = batching.moveaxis(b, bb, -2)
b_flat = b.reshape(b.shape[:-3] + (b.shape[-3], b.shape[-2] * b.shape[-1]))
bdim_out = b.ndim - 2
out_flat = tridiagonal_solve(dl, d, du, b_flat)
return out_flat.reshape(b.shape), bdim_out
else:
size = next(t.shape[i] for t, i in zip(batched_args, batch_dims)
if i is not None)
dl = batching.bdim_at_front(dl, bdl, size)
d = batching.bdim_at_front(d, bd, size)
du = batching.bdim_at_front(du, bdu, size)
b = batching.bdim_at_front(b, bb, size)
return tridiagonal_solve(dl, d, du, b), 0
tridiagonal_solve_p = Primitive('tridiagonal_solve')
tridiagonal_solve_p.multiple_results = False
tridiagonal_solve_p.def_impl(
functools.partial(dispatch.apply_primitive, tridiagonal_solve_p))
tridiagonal_solve_p.def_abstract_eval(lambda dl, d, du, b, *, m, n, ldb, t: b)
ad.primitive_transposes[tridiagonal_solve_p] = _tridiagonal_solve_transpose_rule
batching.primitive_batchers[tridiagonal_solve_p] = _tridiagonal_solve_batching_rule
# TODO(tomhennigan): Consider AD rules using lax.custom_linear_solve?
mlir.register_lowering(
tridiagonal_solve_p,
partial(_tridiagonal_solve_gpu_lowering, gpu_sparse.cuda_gtsv2),
platform='cuda')
mlir.register_lowering(
tridiagonal_solve_p,
partial(_tridiagonal_solve_gpu_lowering, gpu_sparse.rocm_gtsv2),
platform='rocm')
def _tridiagonal_solve_jax(dl, d, du, b, **kw):
"""Pure JAX implementation of `tridiagonal_solve`."""
def prepend_zero(x):
return lax.concatenate(
[lax.full((1,) + x.shape[1:], 0, dtype=x.dtype), x[:-1]], dimension=0)
fwd1 = lambda tu_, x: x[1] / (x[0] - x[2] * tu_)
def fwd2(b_, x):
return (x[0] - x[3][np.newaxis, ...] * b_) / (
x[1] - x[3] * x[2])[np.newaxis, ...]
bwd1 = lambda x_, x: x[0] - x[1][np.newaxis, ...] * x_
double = lambda f, args: (f(*args), f(*args))
# Move relevant dimensions to the front for the scan.
moveaxis_fwd = lambda x: lax.transpose(x, (x.ndim - 1, *range(x.ndim - 1)))
moveaxis_bwd = lambda x: lax.transpose(x, (*range(1, x.ndim), 0))
dl = moveaxis_fwd(dl)
d = moveaxis_fwd(d)
du = moveaxis_fwd(du)
b = moveaxis_fwd(b)
b = moveaxis_fwd(b)
# Forward pass.
_, tu_ = lax.scan(lambda tu_, x: double(fwd1, (tu_, x)),
du[0] / d[0],
(d, du, dl),
unroll=32)
_, b_ = lax.scan(lambda b_, x: double(fwd2, (b_, x)),
b[0] / d[0:1],
(b, d, prepend_zero(tu_), dl),
unroll=32)
# Backsubstitution.
_, x_ = lax.scan(lambda x_, x: double(bwd1, (x_, x)),
b_[-1],
(b_[::-1], tu_[::-1]),
unroll=32)
result = x_[::-1]
result = moveaxis_bwd(result)
result = moveaxis_bwd(result)
return result
mlir.register_lowering(tridiagonal_solve_p, mlir.lower_fun(
_tridiagonal_solve_jax, multiple_results=False))
def tridiagonal_solve(dl: Array, d: Array, du: Array, b: Array) -> Array:
r"""Computes the solution of a tridiagonal linear system.
This function computes the solution of a tridiagonal linear system:
.. math::
A . X = B
Args:
dl: A batch of vectors with shape ``[..., m]``.
The lower diagonal of A: ``dl[i] := A[i, i-1]`` for i in ``[0,m)``.
Note that ``dl[0] = 0``.
d: A batch of vectors with shape ``[..., m]``.
The middle diagonal of A: ``d[i] := A[i, i]`` for i in ``[0,m)``.
du: A batch of vectors with shape ``[..., m]``.
The upper diagonal of A: ``du[i] := A[i, i+1]`` for i in ``[0,m)``.
Note that ``dl[m - 1] = 0``.
b: Right hand side matrix.
Returns:
Solution ``X`` of tridiagonal system.
"""
if dl.shape != d.shape or d.shape != du.shape:
raise ValueError(
f'dl={dl.shape}, d={d.shape} and du={du.shape} must all be `[m]`')
m = dl.shape[-1]
if m < 3:
raise ValueError(f'm ({m}) must be >= 3')
ldb = b.shape[-2]
n = b.shape[-1]
if ldb < max(1, m):
raise ValueError(f'Leading dimension of b={ldb} must be ≥ max(1, {m})')
if dl.dtype != d.dtype or d.dtype != du.dtype or du.dtype != b.dtype:
raise ValueError(f'dl={dl.dtype}, d={d.dtype}, du={du.dtype} and '
f'b={b.dtype} must be the same dtype,')
t = dl.dtype
if t not in (np.float32, np.float64):
raise ValueError(f'Only f32/f64 are supported, got {t}')
return tridiagonal_solve_p.bind(dl, d, du, b, m=m, n=n, ldb=ldb, t=t)
# Schur Decomposition
def schur(x: ArrayLike, *,
compute_schur_vectors: bool = True,
sort_eig_vals: bool = False,
select_callable: Callable[..., Any] | None = None) -> tuple[Array, Array]:
return schur_p.bind(
x,
compute_schur_vectors=compute_schur_vectors,
sort_eig_vals=sort_eig_vals,
select_callable=select_callable)
def _schur_impl(operand, *, compute_schur_vectors, sort_eig_vals,
select_callable):
return dispatch.apply_primitive(
schur_p,
operand,
compute_schur_vectors=compute_schur_vectors,
sort_eig_vals=sort_eig_vals,
select_callable=select_callable)
def _schur_lowering(ctx, *args, **kwargs):
raise NotImplementedError(
"Schur decomposition is only implemented on the CPU backend.")
def _schur_abstract_eval(operand, *, compute_schur_vectors, sort_eig_vals,
select_callable):
if operand.ndim < 2 or operand.shape[-2] != operand.shape[-1]:
raise ValueError("Argument to Schur decomposition must have "
"shape [..., n, n], got shape {}".format(operand.shape))
batch_dims = operand.shape[:-2]
n = operand.shape[-1]
dtype = operand.dtype
dtype = dtypes.canonicalize_dtype(dtype)
T = operand.update(shape=batch_dims + (n, n), dtype=dtype)
vs = operand.update(shape=batch_dims + (n, n), dtype=dtype)
return (T, vs) if compute_schur_vectors else (T,)
def _schur_cpu_lowering(ctx, operand, *, compute_schur_vectors, sort_eig_vals,
select_callable):
operand_aval, = ctx.avals_in
batch_dims = operand_aval.shape[:-2]
a_shape_vals = mlir.eval_dynamic_shape_as_ivals(ctx, operand_aval.shape)
gees_result = lapack.gees_hlo(operand_aval.dtype, operand,
jobvs=compute_schur_vectors,
sort=sort_eig_vals,
select=select_callable,
a_shape_vals=a_shape_vals)
# Number of return values depends on value of sort_eig_vals.
T, vs, *_, info = gees_result
ok = mlir.compare_hlo(
info, mlir.full_like_aval(ctx, 0, ShapedArray(batch_dims, np.dtype(np.int32))),
"EQ", "SIGNED")
select_T_aval = ShapedArray(batch_dims + (1, 1), np.dtype(np.bool_))
T = _broadcasting_select_hlo(
ctx,
mlir.broadcast_in_dim(ctx, ok, select_T_aval,
broadcast_dimensions=range(len(batch_dims))),
select_T_aval,
T, ctx.avals_out[0],_nan_like_hlo(ctx, ctx.avals_out[0]), ctx.avals_out[0])
output = [T]
if compute_schur_vectors:
select_vs_aval = ShapedArray(batch_dims + (1, 1), np.dtype(np.bool_))
vs = _broadcasting_select_hlo(
ctx,
mlir.broadcast_in_dim(ctx, ok, select_vs_aval,
broadcast_dimensions=range(len(batch_dims))),
select_vs_aval,
vs, ctx.avals_out[1], _nan_like_hlo(ctx, ctx.avals_out[1]), ctx.avals_out[1])
output.append(vs)
return output
def _schur_batching_rule(batched_args, batch_dims, *, compute_schur_vectors,
sort_eig_vals, select_callable):
x, = batched_args
bd, = batch_dims
x = batching.moveaxis(x, bd, 0)
return schur_p.bind(
x,
compute_schur_vectors=compute_schur_vectors,
sort_eig_vals=sort_eig_vals,
select_callable=select_callable), (0,) * (1 + compute_schur_vectors)
def _schur_jvp_rule(primals, tangents, **kwds):
raise NotImplementedError(
'The differentiation rules for the Schur factorization have not been implemented.'
)
schur_p = Primitive('schur')
schur_p.multiple_results = True
schur_p.def_impl(_schur_impl)
schur_p.def_abstract_eval(_schur_abstract_eval)
mlir.register_lowering(schur_p, _schur_lowering)
mlir.register_lowering(schur_p, _schur_cpu_lowering, platform='cpu')
batching.primitive_batchers[schur_p] = _schur_batching_rule
ad.primitive_jvps[schur_p] = _schur_jvp_rule
# hessenberg: Upper Hessenberg reduction
def hessenberg(a: ArrayLike) -> tuple[Array, Array]:
"""Reduces a square matrix to upper Hessenberg form.
Currently implemented on CPU only.
Args:
a: A floating point or complex square matrix or batch of matrices.
Returns:
A ``(a, taus)`` pair, where the upper triangle and first subdiagonal of ``a``
contain the upper Hessenberg matrix, and the elements below the first
subdiagonal contain the Householder reflectors. For each Householder
reflector ``taus`` contains the scalar factors of the elementary Householder
reflectors.
"""
return hessenberg_p.bind(a)
def _hessenberg_abstract_eval(a):
if a.dtype not in (np.float32, np.float64, np.complex64, np.complex128):
raise TypeError("hessenberg requires a.dtype to be float32, float64, "
f"complex64, or complex128, got {a.dtype}.")
if a.ndim < 2:
raise TypeError("hessenberg requires a.ndim to be at least 2, got "
f"{a.ndim}.")
if a.shape[-1] != a.shape[-2]:
raise TypeError("hessenberg requires the last two dimensions of a to be "
f"equal in size, got a.shape of {a.shape}.")
return [a, ShapedArray(a.shape[:-2] + (a.shape[-1] - 1,), a.dtype)]
hessenberg_p = Primitive("hessenberg")
hessenberg_p.def_impl(partial(dispatch.apply_primitive, hessenberg_p))
hessenberg_p.def_abstract_eval(_hessenberg_abstract_eval)
hessenberg_p.multiple_results = True
def _hessenberg_batching_rule(batched_args, batch_dims):
x, = batched_args
bd, = batch_dims
x = batching.moveaxis(x, bd, 0)
return hessenberg(x), 0
batching.primitive_batchers[hessenberg_p] = _hessenberg_batching_rule
def _hessenberg_cpu_hlo(ctx, a):
a_aval, = ctx.avals_in
batch_dims = a_aval.shape[:-2]
a, taus, info = lapack.gehrd_hlo(a_aval.dtype, a)
ok = mlir.compare_hlo(
info, mlir.full_like_aval(ctx, 0, ShapedArray(batch_dims, np.dtype(np.int32))),
"EQ", "SIGNED")
select_a_aval = ShapedArray(batch_dims + (1, 1), np.dtype(np.bool_))
select_taus_aval = ShapedArray(batch_dims + (1,), np.dtype(np.bool_))
return [
_broadcasting_select_hlo(
ctx,
mlir.broadcast_in_dim(ctx, ok, select_a_aval,
broadcast_dimensions=range(len(batch_dims))),
select_a_aval,
a, ctx.avals_out[0], _nan_like_hlo(ctx, ctx.avals_out[0]), ctx.avals_out[0]),
_broadcasting_select_hlo(
ctx,
mlir.broadcast_in_dim(ctx, ok, select_taus_aval,
broadcast_dimensions=range(len(batch_dims))),
select_taus_aval,
taus, ctx.avals_out[1], _nan_like_hlo(ctx, ctx.avals_out[1]), ctx.avals_out[1]),
]
mlir.register_lowering(hessenberg_p, _hessenberg_cpu_hlo, platform='cpu')
# tridiagonal: Upper Hessenberg reduction
def tridiagonal(a: ArrayLike, *, lower=True
) -> tuple[Array, Array, Array, Array]:
"""Reduces a symmetric/Hermitian matrix to tridiagonal form.
Currently implemented on CPU and GPU only.
Args:
a: A floating point or complex matrix or batch of matrices.
lower: Describes which triangle of the input matrices to use.
The other triangle is ignored and not accessed.
Returns:
A ``(a, d, e, taus)`` pair. If ``lower=True``, the diagonal and first subdiagonal of
matrix (or batch of matrices) ``a`` contain the tridiagonal representation,
and elements below the first subdiagonal contain the elementary Householder
reflectors, where additionally ``d`` contains the diagonal of the matrix and ``e`` contains
the first subdiagonal.If ``lower=False`` the diagonal and first superdiagonal of the
matrix contains the tridiagonal representation, and elements above the first
superdiagonal contain the elementary Householder reflectors, where
additionally ``d`` contains the diagonal of the matrix and ``e`` contains the
first superdiagonal. ``taus`` contains the scalar factors of the elementary
Householder reflectors.
"""
arr, d, e, taus, info = tridiagonal_p.bind(lax_internal.asarray(a), lower=lower)
def nans_like(arr):
if dtypes.issubdtype(arr.dtype, np.complexfloating):
return lax.full_like(arr, np.nan + 1j * np.nan)
return lax.full_like(arr, np.nan)
mask = lambda x: lax.broadcast_in_dim(info == 0, x.shape, range(info.ndim))
arr = lax.select(mask(arr), arr, nans_like(arr))
d = lax.select(mask(d), d, nans_like(d))
e = lax.select(mask(e), e, nans_like(e))
taus = lax.select(mask(taus), taus, nans_like(taus))
return arr, d, e, taus
def _tridiagonal_abstract_eval(a, *, lower):
if a.dtype not in (np.float32, np.float64, np.complex64, np.complex128):
raise TypeError("tridiagonal requires a.dtype to be float32, float64, "
f"complex64, or complex128, got {a.dtype}.")
if a.ndim < 2:
raise TypeError("tridiagonal requires a.ndim to be at least 2, got "
f"{a.ndim}.")
if a.shape[-1] != a.shape[-2]:
raise TypeError("tridiagonal requires the last two dimensions of a to be "
f"equal in size, got a.shape of {a.shape}.")
if a.shape[-1] == 0:
raise TypeError("tridiagonal requires the last two dimensions of a to be "
f"non-zero, got a.shape of {a.shape}.")
real_dtype = dtypes.finfo(a.dtype).dtype
return [
a,
ShapedArray(a.shape[:-2] + (a.shape[-1],), real_dtype),
ShapedArray(a.shape[:-2] + (a.shape[-1] - 1,), real_dtype),
ShapedArray(a.shape[:-2] + (a.shape[-1] - 1,), a.dtype),
ShapedArray(a.shape[:-2], np.int32)
]
tridiagonal_p = Primitive("tridiagonal")
tridiagonal_p.def_impl(partial(dispatch.apply_primitive, tridiagonal_p))
tridiagonal_p.def_abstract_eval(_tridiagonal_abstract_eval)
tridiagonal_p.multiple_results = True
def _tridiagonal_batching_rule(batched_args, batch_dims, *, lower):
x, = batched_args
bd, = batch_dims
x = batching.moveaxis(x, bd, 0)
return tridiagonal(x), 0
batching.primitive_batchers[tridiagonal_p] = _tridiagonal_batching_rule
def _tridiagonal_cpu_gpu_hlo(sytrd_impl, ctx, a, *, lower):
a_aval, = ctx.avals_in
a, d, e, taus, info = sytrd_impl(a_aval.dtype, a, lower=lower)
return a, d, e, taus, info
mlir.register_lowering(
tridiagonal_p, partial(_tridiagonal_cpu_gpu_hlo, lapack.sytrd_hlo),
platform='cpu')
mlir.register_lowering(
tridiagonal_p, partial(_tridiagonal_cpu_gpu_hlo, gpu_solver.cuda_sytrd),
platform='cuda')
mlir.register_lowering(
tridiagonal_p, partial(_tridiagonal_cpu_gpu_hlo, gpu_solver.rocm_sytrd),
platform='rocm')
# Utilities
def _nan_like_hlo(ctx: mlir.LoweringRuleContext, aval) -> ir.Value:
if dtypes.issubdtype(aval.dtype, np.complexfloating):
return mlir.full_like_aval(ctx, np.nan + np.nan * 1j, aval)
else:
return mlir.full_like_aval(ctx, np.nan, aval)
def _broadcasting_select_hlo(ctx, which, which_aval, x, x_aval, y, y_aval) -> ir.Value:
"""Wrapper around XLA `Select` that broadcasts its arguments."""
out_shapes = list(lax_internal.broadcast_shapes(
tuple(which_aval.shape), tuple(x_aval.shape), tuple(y_aval.shape)))
which, x, y = mlir.multi_broadcast_in_dim(ctx, (which, x, y),
(which_aval, x_aval, y_aval),
out_shapes)
return hlo.select(which, x, y)