rocm_jax/jax/_src/test_util.py
2024-09-20 07:52:33 -07:00

2224 lines
74 KiB
Python

# Copyright 2018 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pyformat: disable
from __future__ import annotations
import collections
from collections.abc import Callable, Generator, Iterable, Sequence
from contextlib import ExitStack, contextmanager
import datetime
import functools
from functools import partial
import inspect
import logging
import math
import os
import re
import sys
import tempfile
import textwrap
from typing import Any, TextIO
import unittest
import warnings
import zlib
from absl.testing import absltest
from absl.testing import parameterized
import jax
from jax import lax
from jax._src import api
from jax._src import array
from jax._src import config
from jax._src import core
from jax._src import dispatch
from jax._src import dtypes as _dtypes
from jax._src import linear_util as lu
from jax._src import monitoring
from jax._src import pjit as pjit_lib
from jax._src import stages
from jax._src import xla_bridge
from jax._src.cloud_tpu_init import running_in_cloud_tpu_vm
from jax._src.interpreters import mlir
from jax._src.interpreters import pxla
from jax._src.lib import xla_client as xc
from jax._src.numpy.util import promote_dtypes, promote_dtypes_inexact
from jax._src.public_test_util import ( # noqa: F401
_assert_numpy_allclose, _check_dtypes_match, _default_tolerance, _dtype, check_close, check_grads,
check_jvp, check_vjp, default_gradient_tolerance, default_tolerance, rand_like, tolerance)
from jax._src.util import unzip2
from jax.experimental.compilation_cache import compilation_cache
from jax.tree_util import tree_all, tree_flatten, tree_map, tree_unflatten
import numpy as np
import numpy.random as npr
# This submodule includes private test utilities that are not exported to
# jax.test_util. Functionality appearing here is for internal use only, and
# may be changed or removed at any time and without any deprecation cycle.
_TEST_DUT = config.string_flag(
'jax_test_dut', '',
help=
'Describes the device under test in case special consideration is required.'
)
NUM_GENERATED_CASES = config.int_flag(
'jax_num_generated_cases',
int(os.getenv('JAX_NUM_GENERATED_CASES', '10')),
help='Number of generated cases to test')
_MAX_CASES_SAMPLING_RETRIES = config.int_flag(
'max_cases_sampling_retries',
int(os.getenv('JAX_MAX_CASES_SAMPLING_RETRIES', '100')),
'Number of times a failed test sample should be retried. '
'When an unseen case cannot be generated in this many trials, the '
'sampling process is terminated.'
)
_SKIP_SLOW_TESTS = config.bool_flag(
'jax_skip_slow_tests',
config.bool_env('JAX_SKIP_SLOW_TESTS', False),
help='Skip tests marked as slow (> 5 sec).'
)
_TEST_TARGETS = config.string_flag(
'test_targets', os.getenv('JAX_TEST_TARGETS', ''),
'Regular expression specifying which tests to run, called via re.search on '
'the test name. If empty or unspecified, run all tests.'
)
_EXCLUDE_TEST_TARGETS = config.string_flag(
'exclude_test_targets', os.getenv('JAX_EXCLUDE_TEST_TARGETS', ''),
'Regular expression specifying which tests NOT to run, called via re.search '
'on the test name. If empty or unspecified, run all tests.'
)
TEST_WITH_PERSISTENT_COMPILATION_CACHE = config.bool_flag(
'jax_test_with_persistent_compilation_cache',
config.bool_env('JAX_TEST_WITH_PERSISTENT_COMPILATION_CACHE', False),
help='If enabled, the persistent compilation cache will be enabled for all '
'test cases. This can be used to increase compilation cache coverage.')
HYPOTHESIS_PROFILE = config.string_flag(
'hypothesis_profile',
os.getenv('JAX_HYPOTHESIS_PROFILE', 'deterministic'),
help=('Select the hypothesis profile to use for testing. Available values: '
'deterministic, interactive'),
)
# We sanitize test names to ensure they work with "unitttest -k" and
# "pytest -k" test filtering. pytest accepts '[' and ']' but unittest -k
# does not. We replace sequences of problematic characters with a single '_'.
kSanitizeNameRE = re.compile(r"[ \"'\[\](){}<>=,._]+")
def sanitize_test_name(s: str) -> str:
return kSanitizeNameRE.sub("_", s)
def num_float_bits(dtype):
return _dtypes.finfo(_dtypes.canonicalize_dtype(dtype)).bits
def to_default_dtype(arr):
"""Convert a value to an array with JAX's default dtype.
This is generally used for type conversions of values returned by numpy functions,
to make their dtypes take into account the state of the ``jax_enable_x64`` and
``jax_default_dtype_bits`` flags.
"""
arr = np.asarray(arr)
dtype = _dtypes._default_types.get(arr.dtype.kind)
return arr.astype(_dtypes.canonicalize_dtype(dtype)) if dtype else arr
def with_jax_dtype_defaults(func, use_defaults=True):
"""Return a version of a function with outputs that match JAX's default dtypes.
This is generally used to wrap numpy functions within tests, in order to make
their default output dtypes match those of corresponding JAX functions, taking
into account the state of the ``jax_enable_x64`` and ``jax_default_dtype_bits``
flags.
Args:
use_defaults : whether to convert any given output to the default dtype. May be
a single boolean, in which case it specifies the conversion for all outputs,
or may be a pytree with the same structure as the function output.
"""
@functools.wraps(func)
def wrapped(*args, **kwargs):
result = func(*args, **kwargs)
if isinstance(use_defaults, bool):
return tree_map(to_default_dtype, result) if use_defaults else result
else:
f = lambda arr, use_default: to_default_dtype(arr) if use_default else arr
return tree_map(f, result, use_defaults)
return wrapped
def is_sequence(x):
try:
iter(x)
except TypeError:
return False
else:
return True
def _normalize_tolerance(tol):
tol = tol or 0
if isinstance(tol, dict):
return {np.dtype(k): v for k, v in tol.items()}
else:
return dict.fromkeys(_default_tolerance, tol)
def join_tolerance(tol1, tol2):
tol1 = _normalize_tolerance(tol1)
tol2 = _normalize_tolerance(tol2)
out = tol1
for k, v in tol2.items():
out[k] = max(v, tol1.get(k, 0))
return out
def check_eq(xs, ys, err_msg=''):
assert_close = partial(_assert_numpy_allclose, err_msg=err_msg)
tree_all(tree_map(assert_close, xs, ys))
@contextmanager
def _capture_output(fp: TextIO) -> Generator[Callable[[], str], None, None]:
"""Context manager to capture all output written to a given file object.
Unlike ``contextlib.redirect_stdout``, this context manager works for
any file object and also for both pure Python and native code.
Example::
with capture_output(sys.stdout) as get_output:
print(42)
print("Captured": get_output())
Yields:
A function returning the captured output. The function must be called
*after* the context is no longer active.
"""
# ``None`` means nothing has not been captured yet.
captured = None
def get_output() -> str:
if captured is None:
raise ValueError("get_output() called while the context is active.")
return captured
with tempfile.NamedTemporaryFile(mode="w+", encoding='utf-8') as f:
original_fd = os.dup(fp.fileno())
os.dup2(f.fileno(), fp.fileno())
try:
yield get_output
finally:
# Python also has its own buffers, make sure everything is flushed.
fp.flush()
os.fsync(fp.fileno())
f.seek(0)
captured = f.read()
os.dup2(original_fd, fp.fileno())
capture_stdout = partial(_capture_output, sys.stdout)
capture_stderr = partial(_capture_output, sys.stderr)
@contextmanager
def count_device_put():
batched_device_put = pxla.batched_device_put
count = [0]
def make_fn_and_count(fn):
def fn_and_count(*args, **kwargs):
count[0] += 1
# device_put handlers might call `dispatch.device_put` (e.g. on an
# underlying payload or several). We only want to count these
# recursive puts once, so we skip counting more than the outermost
# one in such a call stack.
pxla.batched_device_put = batched_device_put
try:
return fn(*args, **kwargs)
finally:
pxla.batched_device_put = batched_device_put_and_count
return fn_and_count
batched_device_put_and_count = make_fn_and_count(batched_device_put)
pxla.batched_device_put = batched_device_put_and_count
try:
yield count
finally:
pxla.batched_device_put = batched_device_put
@contextmanager
def count_primitive_compiles():
dispatch.xla_primitive_callable.cache_clear()
count = [-1]
try:
yield count
finally:
count[0] = dispatch.xla_primitive_callable.cache_info().misses
@contextmanager
def count_device_put_fast_path_hit():
original_fn = xc.batched_copy_array_to_devices_with_sharding
count = [0]
def batched_copy_array_to_devices_with_sharding_and_count(*args, **kwargs):
count[0] += 1
return original_fn(*args, **kwargs)
xc.batched_copy_array_to_devices_with_sharding = batched_copy_array_to_devices_with_sharding_and_count
try:
yield count
finally:
xc.batched_copy_array_to_devices_with_sharding = original_fn
@contextmanager
def count_pjit_cpp_cache_miss():
original_pjit_lower = pjit_lib._pjit_lower
count = [0]
def pjit_lower_and_count(*args, **kwargs):
count[0] += 1
return original_pjit_lower(*args, **kwargs)
pjit_lib._pjit_lower = pjit_lower_and_count
try:
yield count
finally:
pjit_lib._pjit_lower = original_pjit_lower
@contextmanager
def count_cached_compilation_cache_miss():
original_cached_compilation = pxla._cached_compilation
count = [0]
def cached_compilation_and_count(*args, **kwargs):
count[0] += 1
return original_cached_compilation(*args, **kwargs)
pxla._cached_compilation = cached_compilation_and_count
try:
yield count
finally:
pxla._cached_compilation = original_cached_compilation
@contextmanager
def count_jit_tracing_cache_miss():
original_create_pjit_jaxpr = pjit_lib._create_pjit_jaxpr
count = [0]
@lu.cache
def create_pjit_jaxpr_and_count(*args):
count[0] += 1
return original_create_pjit_jaxpr(*args)
pjit_lib._create_pjit_jaxpr = create_pjit_jaxpr_and_count
try:
yield count
finally:
pjit_lib._create_pjit_jaxpr = original_create_pjit_jaxpr
@contextmanager
def count_jit_infer_params_cache_miss():
original_infer_params_impl = pjit_lib._infer_params_impl
count = collections.defaultdict(int)
def infer_params_impl_and_count(fun, *args, **kw):
count[fun] += 1
return original_infer_params_impl(fun, *args, **kw)
pjit_lib._infer_params_impl = infer_params_impl_and_count
try:
yield count
finally:
pjit_lib._infer_params_impl = original_infer_params_impl
@contextmanager
def count_aot_jit_cpp_cache_miss():
original_call = stages.Compiled.call
count = [0]
def compiled_call_count(*args, **kwargs):
count[0] += 1
return original_call(*args, **kwargs)
stages.Compiled.call = compiled_call_count
try:
yield count
finally:
stages.Compiled.call = original_call
@contextmanager
def count_jit_and_pmap_lowerings():
# No need to clear any caches since we generally jit and pmap fresh callables
# in tests.
mlir_lower = mlir.lower_jaxpr_to_module
count = [0]
def mlir_lower_and_count(*args, **kwargs):
count[0] += 1
return mlir_lower(*args, **kwargs)
mlir.lower_jaxpr_to_module = mlir_lower_and_count
try:
yield count
finally:
mlir.lower_jaxpr_to_module = mlir_lower
@contextmanager
def count_jax_array_shard_arg_calls():
# No need to clear any caches since we generally jit and pmap fresh callables
# in tests.
array_shard_arg = array._array_shard_arg
count = [0]
def array_shard_arg_and_count(*args, **kwargs):
count[0] += 1
return array_shard_arg(*args, **kwargs)
pxla.shard_arg_handlers[array.ArrayImpl] = array_shard_arg_and_count
try:
yield count
finally:
pxla.shard_arg_handlers[array.ArrayImpl] = array_shard_arg
@contextmanager
def count_jit_compilation_cache_miss():
# No need to clear any caches since we generally jit and pmap fresh callables
# in tests.
jit_compilation = pxla._cached_compilation
count = [0]
def compile_and_count(*args, **kwargs):
count[0] += 1
return jit_compilation(*args, **kwargs)
pxla._cached_compilation = compile_and_count
try:
yield count
finally:
pxla._cached_compilation = jit_compilation
@contextmanager
def count_subjaxpr_to_hlo_conversion(fun_name: str):
# No need to clear any caches since we generally jit and pmap fresh callables
# in tests.
mlir_lower = mlir.lower_jaxpr_to_fun
count = [0]
def mlir_lower_and_count(ctx, name, *args, **kwargs):
if name == fun_name:
count[0] += 1
return mlir_lower(ctx, name, *args, **kwargs)
mlir.lower_jaxpr_to_fun = mlir_lower_and_count
try:
yield count
finally:
mlir.lower_jaxpr_to_fun = mlir_lower
@contextmanager
def assert_num_jit_and_pmap_compilations(times):
with count_jit_and_pmap_lowerings() as count:
yield
if count[0] != times:
raise AssertionError(f"Expected exactly {times} XLA compilations, "
f"but executed {count[0]}")
def device_under_test():
return _TEST_DUT.value or xla_bridge.get_backend().platform
def supported_dtypes():
if device_under_test() == "tpu":
types = {np.bool_, np.int8, np.int16, np.int32, np.uint8, np.uint16,
np.uint32, _dtypes.bfloat16, np.float16, np.float32, np.complex64}
elif device_under_test() == "METAL":
types = {np.int32, np.uint32, np.float32}
else:
types = {np.bool_, np.int8, np.int16, np.int32, np.int64,
np.uint8, np.uint16, np.uint32, np.uint64,
_dtypes.bfloat16, np.float16, np.float32, np.float64,
np.complex64, np.complex128}
if not config.enable_x64.value:
types -= {np.uint64, np.int64, np.float64, np.complex128}
return types
def is_device_rocm():
return 'rocm' in xla_bridge.get_backend().platform_version
def is_device_cuda():
return 'cuda' in xla_bridge.get_backend().platform_version
def is_cloud_tpu():
return running_in_cloud_tpu_vm
# Returns True if it is not cloud TPU. If it is cloud TPU, returns True if it is
# built at least `date``.
# TODO(b/327203806): after libtpu adds a XLA version and the oldest support
# libtpu contains the XLA version, remove using built time to skip tests.
def if_cloud_tpu_at_least(date: datetime.date):
if not is_cloud_tpu():
return True
# The format of Cloud TPU platform_version is like:
# PJRT C API
# TFRT TPU v2
# Built on Oct 30 2023 03:04:42 (1698660263) cl/577737722
platform_version = xla_bridge.get_backend().platform_version.split('\n')[-1]
results = re.findall(r'\(.*?\)', platform_version)
if len(results) != 1:
return True
build_date = date.fromtimestamp(int(results[0][1:-1]))
return build_date >= date
def pjrt_c_api_version_at_least(major_version: int, minor_version: int):
pjrt_c_api_versions = xla_bridge.backend_pjrt_c_api_version()
if pjrt_c_api_versions is None:
return True
return pjrt_c_api_versions >= (major_version, minor_version)
def get_tpu_version() -> int:
if device_under_test() != "tpu":
raise ValueError("Device is not TPU")
kind = jax.devices()[0].device_kind
if kind.endswith(' lite'):
kind = kind[:-len(' lite')]
assert kind[:-1] == "TPU v", kind
return int(kind[-1])
def is_device_tpu_at_least(version: int) -> bool:
if device_under_test() != "tpu":
return False
return get_tpu_version() >= version
def is_device_tpu(version: int | None = None, variant: str = "") -> bool:
if device_under_test() != "tpu":
return False
if version is None:
return True
device_kind = jax.devices()[0].device_kind
expected_version = f"v{version}{variant}"
# Special case v5e until the name is updated in device_kind
if expected_version == "v5e":
return "v5 lite" in device_kind
elif expected_version == "v6e":
return "v6 lite" in device_kind
return expected_version in device_kind
def is_cuda_compute_capability_at_least(capability: str) -> bool:
if not is_device_cuda():
return False
d, *_ = jax.local_devices(backend="gpu")
target = tuple(int(x) for x in capability.split("."))
current = tuple(int(x) for x in d.compute_capability.split("."))
return current >= target
def _get_device_tags():
"""returns a set of tags defined for the device under test"""
if is_device_rocm():
device_tags = {device_under_test(), "rocm"}
elif is_device_cuda():
device_tags = {device_under_test(), "cuda"}
elif device_under_test() == "METAL":
device_tags = {device_under_test(), "gpu"}
else:
device_tags = {device_under_test()}
return device_tags
def test_device_matches(device_types: Iterable[str]) -> bool:
assert not isinstance(
device_types, str
), 'device_types should be a list of strings'
tags = _get_device_tags()
for device_type in device_types:
assert isinstance(device_type, str), device_type
if device_type in tags:
return True
return False
test_device_matches.__test__ = False # This isn't a test case, pytest.
def _device_filter(predicate):
def skip(test_method):
@functools.wraps(test_method)
def test_method_wrapper(self, *args, **kwargs):
device_tags = _get_device_tags()
if not predicate():
test_name = getattr(test_method, '__name__', '[unknown test]')
raise unittest.SkipTest(
f"{test_name} not supported on device with tags {device_tags}.")
return test_method(self, *args, **kwargs)
return test_method_wrapper
return skip
def skip_on_devices(*disabled_devices):
"""A decorator for test methods to skip the test on certain devices."""
return _device_filter(lambda: not test_device_matches(disabled_devices))
def run_on_devices(*enabled_devices):
"""A decorator for test methods to run the test only on certain devices."""
return _device_filter(lambda: test_device_matches(enabled_devices))
def device_supports_buffer_donation():
"""A decorator for test methods to run the test only on devices that support
buffer donation."""
return _device_filter(
lambda: test_device_matches(mlir._platforms_with_donation)
)
@contextmanager
def set_host_platform_device_count(nr_devices: int):
"""Context manager to set host platform device count if not specified by user.
This should only be used by tests at the top level in setUpModule(); it will
not work correctly if applied to individual test cases.
"""
prev_xla_flags = os.getenv("XLA_FLAGS")
flags_str = prev_xla_flags or ""
# Don't override user-specified device count, or other XLA flags.
if "xla_force_host_platform_device_count" not in flags_str:
os.environ["XLA_FLAGS"] = (flags_str +
f" --xla_force_host_platform_device_count={nr_devices}")
# Clear any cached backends so new CPU backend will pick up the env var.
xla_bridge.get_backend.cache_clear()
try:
yield
finally:
if prev_xla_flags is None:
del os.environ["XLA_FLAGS"]
else:
os.environ["XLA_FLAGS"] = prev_xla_flags
xla_bridge.get_backend.cache_clear()
def skip_on_flag(flag_name, skip_value):
"""A decorator for test methods to skip the test when flags are set."""
def skip(test_method): # pylint: disable=missing-docstring
@functools.wraps(test_method)
def test_method_wrapper(self, *args, **kwargs):
flag_value = config._read(flag_name)
if flag_value == skip_value:
test_name = getattr(test_method, '__name__', '[unknown test]')
raise unittest.SkipTest(
f"{test_name} not supported when FLAGS.{flag_name} is {flag_value}")
return test_method(self, *args, **kwargs)
return test_method_wrapper
return skip
def pytest_mark_if_available(marker: str):
"""A decorator for test classes or methods to pytest.mark if installed."""
def wrap(func_or_class):
try:
import pytest
except ImportError:
return func_or_class
return getattr(pytest.mark, marker)(func_or_class)
return wrap
def is_running_under_pytest():
return "pytest" in sys.modules
def skip_under_pytest(reason: str):
"""A decorator for test methods to skip the test when run under pytest."""
reason = "Running under pytest: " + reason
def skip(test_method):
return unittest.skipIf(is_running_under_pytest(), reason)(test_method)
return skip
def format_test_name_suffix(opname, shapes, dtypes):
arg_descriptions = (format_shape_dtype_string(shape, dtype)
for shape, dtype in zip(shapes, dtypes))
return '{}_{}'.format(opname.capitalize(), '_'.join(arg_descriptions))
# We use special symbols, represented as singleton objects, to distinguish
# between NumPy scalars, Python scalars, and 0-D arrays.
class ScalarShape:
def __len__(self): return 0
def __getitem__(self, i): raise IndexError(f"index {i} out of range.")
class _NumpyScalar(ScalarShape): pass
class _PythonScalar(ScalarShape): pass
NUMPY_SCALAR_SHAPE = _NumpyScalar()
PYTHON_SCALAR_SHAPE = _PythonScalar()
# Some shape combinations don't make sense.
def is_valid_shape(shape, dtype):
if shape == PYTHON_SCALAR_SHAPE:
return dtype == np.dtype(type(np.array(0, dtype=dtype).item()))
return True
def _dims_of_shape(shape):
"""Converts `shape` to a tuple of dimensions."""
if type(shape) in (list, tuple):
return shape
elif isinstance(shape, ScalarShape):
return ()
elif np.ndim(shape) == 0:
return (shape,)
else:
raise TypeError(type(shape))
def _cast_to_shape(value, shape, dtype):
"""Casts `value` to the correct Python type for `shape` and `dtype`."""
if shape is NUMPY_SCALAR_SHAPE:
# explicitly cast to NumPy scalar in case `value` is a Python scalar.
return np.dtype(dtype).type(value)
elif shape is PYTHON_SCALAR_SHAPE:
# explicitly cast to Python scalar via https://stackoverflow.com/a/11389998
return np.asarray(value).item()
elif type(shape) in (list, tuple):
assert np.shape(value) == tuple(shape)
return value
elif np.ndim(shape) == 0:
assert np.shape(value) == (shape,)
return value
else:
raise TypeError(type(shape))
def dtype_str(dtype):
return np.dtype(dtype).name
def format_shape_dtype_string(shape, dtype):
if isinstance(shape, np.ndarray):
return f'{dtype_str(dtype)}[{shape}]'
elif isinstance(shape, list):
shape = tuple(shape)
return _format_shape_dtype_string(shape, dtype)
@functools.lru_cache(maxsize=64)
def _format_shape_dtype_string(shape, dtype):
if shape is NUMPY_SCALAR_SHAPE:
return dtype_str(dtype)
elif shape is PYTHON_SCALAR_SHAPE:
return 'py' + dtype_str(dtype)
elif type(shape) is tuple:
shapestr = ','.join(str(dim) for dim in shape)
return f'{dtype_str(dtype)}[{shapestr}]'
elif type(shape) is int:
return f'{dtype_str(dtype)}[{shape},]'
else:
raise TypeError(type(shape))
def _rand_dtype(rand, shape, dtype, scale=1., post=lambda x: x):
"""Produce random values given shape, dtype, scale, and post-processor.
Args:
rand: a function for producing random values of a given shape, e.g. a
bound version of either np.RandomState.randn or np.RandomState.rand.
shape: a shape value as a tuple of positive integers.
dtype: a numpy dtype.
scale: optional, a multiplicative scale for the random values (default 1).
post: optional, a callable for post-processing the random values (default
identity).
Returns:
An ndarray of the given shape and dtype using random values based on a call
to rand but scaled, converted to the appropriate dtype, and post-processed.
"""
if _dtypes.issubdtype(dtype, np.unsignedinteger):
r = lambda: np.asarray(scale * abs(rand(*_dims_of_shape(shape)))).astype(dtype)
else:
r = lambda: np.asarray(scale * rand(*_dims_of_shape(shape))).astype(dtype)
if _dtypes.issubdtype(dtype, np.complexfloating):
vals = r() + 1.0j * r()
else:
vals = r()
return _cast_to_shape(np.asarray(post(vals), dtype), shape, dtype)
def rand_fullrange(rng, standardize_nans=False):
"""Random numbers that span the full range of available bits."""
def gen(shape, dtype, post=lambda x: x):
dtype = np.dtype(dtype)
size = dtype.itemsize * math.prod(_dims_of_shape(shape))
vals = rng.randint(0, np.iinfo(np.uint8).max, size=size, dtype=np.uint8)
vals = post(vals).view(dtype)
if shape is PYTHON_SCALAR_SHAPE:
# Sampling from the full range of the largest available uint type
# leads to overflows in this case; sample from signed ints instead.
if dtype == np.uint64:
vals = vals.astype(np.int64)
elif dtype == np.uint32 and not config.enable_x64.value:
vals = vals.astype(np.int32)
vals = vals.reshape(shape)
# Non-standard NaNs cause errors in numpy equality assertions.
if standardize_nans and np.issubdtype(dtype, np.floating):
vals[np.isnan(vals)] = np.nan
return _cast_to_shape(vals, shape, dtype)
return gen
def rand_default(rng, scale=3):
return partial(_rand_dtype, rng.randn, scale=scale)
def rand_nonzero(rng):
post = lambda x: np.where(x == 0, np.array(1, dtype=x.dtype), x)
return partial(_rand_dtype, rng.randn, scale=3, post=post)
def rand_positive(rng):
post = lambda x: x + 1
return partial(_rand_dtype, rng.rand, scale=2, post=post)
def rand_small(rng):
return partial(_rand_dtype, rng.randn, scale=1e-3)
def rand_not_small(rng, offset=10.):
post = lambda x: x + np.where(x > 0, offset, -offset)
return partial(_rand_dtype, rng.randn, scale=3., post=post)
def rand_small_positive(rng):
return partial(_rand_dtype, rng.rand, scale=2e-5)
def rand_uniform(rng, low=0.0, high=1.0):
assert low < high
post = lambda x: x * (high - low) + low
return partial(_rand_dtype, rng.rand, post=post)
def rand_some_equal(rng):
def post(x):
x_ravel = x.ravel()
if len(x_ravel) == 0:
return x
flips = rng.rand(*np.shape(x)) < 0.5
return np.where(flips, x_ravel[0], x)
return partial(_rand_dtype, rng.randn, scale=100., post=post)
def rand_some_inf(rng):
"""Return a random sampler that produces infinities in floating types."""
base_rand = rand_default(rng)
# TODO: Complex numbers are not correctly tested
# If blocks should be switched in order, and relevant tests should be fixed
def rand(shape, dtype):
"""The random sampler function."""
if not _dtypes.issubdtype(dtype, np.floating):
# only float types have inf
return base_rand(shape, dtype)
if _dtypes.issubdtype(dtype, np.complexfloating):
base_dtype = np.real(np.array(0, dtype=dtype)).dtype
out = (rand(shape, base_dtype) +
np.array(1j, dtype) * rand(shape, base_dtype))
return _cast_to_shape(out, shape, dtype)
dims = _dims_of_shape(shape)
posinf_flips = rng.rand(*dims) < 0.1
neginf_flips = rng.rand(*dims) < 0.1
vals = base_rand(shape, dtype)
vals = np.where(posinf_flips, np.array(np.inf, dtype=dtype), vals)
vals = np.where(neginf_flips, np.array(-np.inf, dtype=dtype), vals)
return _cast_to_shape(np.asarray(vals, dtype=dtype), shape, dtype)
return rand
def rand_some_nan(rng):
"""Return a random sampler that produces nans in floating types."""
base_rand = rand_default(rng)
def rand(shape, dtype):
"""The random sampler function."""
if _dtypes.issubdtype(dtype, np.complexfloating):
base_dtype = np.real(np.array(0, dtype=dtype)).dtype
out = (rand(shape, base_dtype) +
np.array(1j, dtype) * rand(shape, base_dtype))
return _cast_to_shape(out, shape, dtype)
if not _dtypes.issubdtype(dtype, np.floating):
# only float types have inf
return base_rand(shape, dtype)
dims = _dims_of_shape(shape)
r = rng.rand(*dims)
nan_flips = r < 0.1
neg_nan_flips = r < 0.05
vals = base_rand(shape, dtype)
vals = np.where(nan_flips, np.array(np.nan, dtype=dtype), vals)
vals = np.where(neg_nan_flips, np.array(-np.nan, dtype=dtype), vals)
return _cast_to_shape(np.asarray(vals, dtype=dtype), shape, dtype)
return rand
def rand_some_inf_and_nan(rng):
"""Return a random sampler that produces infinities in floating types."""
base_rand = rand_default(rng)
# TODO: Complex numbers are not correctly tested
# If blocks should be switched in order, and relevant tests should be fixed
def rand(shape, dtype):
"""The random sampler function."""
if not _dtypes.issubdtype(dtype, np.floating):
# only float types have inf
return base_rand(shape, dtype)
if _dtypes.issubdtype(dtype, np.complexfloating):
base_dtype = np.real(np.array(0, dtype=dtype)).dtype
out = (rand(shape, base_dtype) +
np.array(1j, dtype) * rand(shape, base_dtype))
return _cast_to_shape(out, shape, dtype)
dims = _dims_of_shape(shape)
posinf_flips = rng.rand(*dims) < 0.1
neginf_flips = rng.rand(*dims) < 0.1
nan_flips = rng.rand(*dims) < 0.1
vals = base_rand(shape, dtype)
vals = np.where(posinf_flips, np.array(np.inf, dtype=dtype), vals)
vals = np.where(neginf_flips, np.array(-np.inf, dtype=dtype), vals)
vals = np.where(nan_flips, np.array(np.nan, dtype=dtype), vals)
return _cast_to_shape(np.asarray(vals, dtype=dtype), shape, dtype)
return rand
# TODO(mattjj): doesn't handle complex types
def rand_some_zero(rng):
"""Return a random sampler that produces some zeros."""
base_rand = rand_default(rng)
def rand(shape, dtype):
"""The random sampler function."""
dims = _dims_of_shape(shape)
zeros = rng.rand(*dims) < 0.5
vals = base_rand(shape, dtype)
vals = np.where(zeros, np.array(0, dtype=dtype), vals)
return _cast_to_shape(np.asarray(vals, dtype=dtype), shape, dtype)
return rand
def rand_int(rng, low=0, high=None):
def fn(shape, dtype):
nonlocal high
gen_dtype = dtype if np.issubdtype(dtype, np.integer) else np.int64
if low == 0 and high is None:
if np.issubdtype(dtype, np.integer):
high = np.iinfo(dtype).max
else:
raise ValueError("rand_int requires an explicit `high` value for "
"non-integer types.")
return rng.randint(low, high=high, size=shape,
dtype=gen_dtype).astype(dtype)
return fn
def rand_unique_int(rng, high=None):
def fn(shape, dtype):
return rng.choice(np.arange(high or math.prod(shape), dtype=dtype),
size=shape, replace=False)
return fn
def rand_bool(rng):
def generator(shape, dtype):
return _cast_to_shape(
np.asarray(rng.rand(*_dims_of_shape(shape)) < 0.5, dtype=dtype),
shape, dtype)
return generator
def check_raises(thunk, err_type, msg):
try:
thunk()
assert False
except err_type as e:
assert str(e).startswith(msg), f"\n{e}\n\n{msg}\n"
def check_raises_regexp(thunk, err_type, pattern):
try:
thunk()
assert False
except err_type as e:
assert re.match(pattern, str(e)), f"{e}\n\n{pattern}\n"
def iter_eqns(jaxpr):
# TODO(necula): why doesn't this search in params?
yield from jaxpr.eqns
for subjaxpr in core.subjaxprs(jaxpr):
yield from iter_eqns(subjaxpr)
def assert_dot_precision(expected_precision, fun, *args):
jaxpr = api.make_jaxpr(fun)(*args)
precisions = [eqn.params['precision'] for eqn in iter_eqns(jaxpr.jaxpr)
if eqn.primitive == lax.dot_general_p]
for precision in precisions:
msg = f"Unexpected precision: {expected_precision} != {precision}"
if isinstance(precision, tuple):
assert precision[0] == expected_precision, msg
assert precision[1] == expected_precision, msg
else:
assert precision == expected_precision, msg
def assert_dot_preferred_element_type(expected, fun, *args, **kwargs):
jaxpr = api.make_jaxpr(partial(fun, **kwargs))(*args)
pref_eltypes = [eqn.params['preferred_element_type'] for eqn in iter_eqns(jaxpr.jaxpr)
if eqn.primitive == lax.dot_general_p]
for pref_eltype in pref_eltypes:
msg = f"Unexpected preferred_element_type: {expected} != {pref_eltype}"
assert expected == pref_eltype, msg
def cases_from_gens(*gens):
sizes = [1, 3, 10]
cases_per_size = int(NUM_GENERATED_CASES.value / len(sizes)) + 1
for size in sizes:
for i in range(cases_per_size):
yield (f'_{size}_{i}',) + tuple(gen(size) for gen in gens)
def named_cases_from_sampler(gen):
seen = set()
retries = 0
rng = npr.RandomState(42)
def choose_one(x):
if not isinstance(x, (list, tuple)):
x = list(x)
return [x[rng.randint(len(x))]]
while (len(seen) < NUM_GENERATED_CASES.value and
retries < _MAX_CASES_SAMPLING_RETRIES.value):
retries += 1
cases = list(gen(choose_one))
if not cases:
continue
if len(cases) > 1:
raise RuntimeError("Generator is expected to only return a single case when sampling")
case = cases[0]
if case["testcase_name"] in seen:
continue
retries = 0
seen.add(case["testcase_name"])
yield case
# Random sampling for every parameterized test is expensive. Do it once and
# cache the result.
@functools.cache
def _choice(n, m):
rng = np.random.RandomState(42)
return rng.choice(n, size=m, replace=False)
def sample_product_testcases(*args, **kw):
"""Non-decorator form of sample_product."""
args = [list(arg) for arg in args]
kw = [(k, list(v)) for k, v in kw.items()]
n = math.prod(len(a) for a in args) * math.prod(len(v) for _, v in kw)
testcases = []
for i in _choice(n, min(n, NUM_GENERATED_CASES.value)):
testcase = {}
for a in args:
testcase.update(a[i % len(a)])
i //= len(a)
for k, v in kw:
testcase[k] = v[i % len(v)]
i //= len(v)
testcases.append(testcase)
return testcases
def sample_product(*args, **kw):
"""Decorator that samples from a cartesian product of test cases.
Similar to absltest.parameterized.product(), except that it samples from the
cartesian product rather than returning the whole thing.
Arguments:
*args: each positional argument is a list of dictionaries. The entries
in a dictionary correspond to name=value argument pairs; one dictionary
will be chosen for each test case. This allows multiple parameters to be
correlated.
**kw: each keyword argument is a list of values. One value will be chosen
for each test case.
"""
return parameterized.parameters(*sample_product_testcases(*args, **kw))
class JaxTestLoader(absltest.TestLoader):
def getTestCaseNames(self, testCaseClass):
names = super().getTestCaseNames(testCaseClass)
if _TEST_TARGETS.value:
pattern = re.compile(_TEST_TARGETS.value)
names = [name for name in names
if pattern.search(f"{testCaseClass.__name__}.{name}")]
if _EXCLUDE_TEST_TARGETS.value:
pattern = re.compile(_EXCLUDE_TEST_TARGETS.value)
names = [name for name in names
if not pattern.search(f"{testCaseClass.__name__}.{name}")]
return names
def with_config(**kwds):
"""Test case decorator for subclasses of JaxTestCase"""
def decorator(cls):
assert inspect.isclass(cls) and issubclass(cls, JaxTestCase), "@with_config can only wrap JaxTestCase class definitions."
cls._default_config = {}
for b in cls.__bases__:
cls._default_config.update(b._default_config)
cls._default_config.update(kwds)
return cls
return decorator
def promote_like_jnp(fun, inexact=False):
"""Decorator that promotes the arguments of `fun` to `jnp.result_type(*args)`.
jnp and np have different type promotion semantics; this decorator allows
tests make an np reference implementation act more like a jnp
implementation.
"""
_promote = promote_dtypes_inexact if inexact else promote_dtypes
def wrapper(*args, **kw):
flat_args, tree = tree_flatten(args)
args = tree_unflatten(tree, _promote(*flat_args))
return fun(*args, **kw)
return wrapper
@contextmanager
def global_config_context(**kwds):
original_config = {}
try:
for key, value in kwds.items():
original_config[key] = config._read(key)
config.update(key, value)
yield
finally:
for key, value in original_config.items():
config.update(key, value)
class NotPresent:
def __repr__(self):
return "<not present>"
@contextmanager
def assert_global_configs_unchanged():
starting_config = jax.config.values.copy()
yield
ending_config = jax.config.values
if starting_config == ending_config:
return
differing = {k: (starting_config.get(k, NotPresent()), ending_config.get(k, NotPresent()))
for k in (starting_config.keys() | ending_config.keys())
if (k not in starting_config or k not in ending_config
or starting_config[k] != ending_config[k])}
raise AssertionError(f"Test changed global config values. Differing values are: {differing}")
class JaxTestCase(parameterized.TestCase):
"""Base class for JAX tests including numerical checks and boilerplate."""
_default_config = {
'jax_enable_checks': True,
'jax_numpy_dtype_promotion': 'strict',
'jax_numpy_rank_promotion': 'raise',
'jax_traceback_filtering': 'off',
'jax_legacy_prng_key': 'error',
}
_compilation_cache_exit_stack: ExitStack | None = None
# TODO(mattjj): this obscures the error messages from failures, figure out how
# to re-enable it
# def tearDown(self) -> None:
# assert core.reset_trace_state()
def setUp(self):
super().setUp()
self.enter_context(assert_global_configs_unchanged())
# We use the adler32 hash for two reasons.
# a) it is deterministic run to run, unlike hash() which is randomized.
# b) it returns values in int32 range, which RandomState requires.
self._rng = npr.RandomState(zlib.adler32(self._testMethodName.encode()))
@classmethod
def setUpClass(cls):
cls._compilation_cache_exit_stack = ExitStack()
stack = cls._compilation_cache_exit_stack
stack.enter_context(global_config_context(**cls._default_config))
if TEST_WITH_PERSISTENT_COMPILATION_CACHE.value:
stack.enter_context(config.enable_compilation_cache(True))
stack.enter_context(config.raise_persistent_cache_errors(True))
stack.enter_context(config.persistent_cache_min_compile_time_secs(0))
stack.enter_context(config.persistent_cache_min_entry_size_bytes(0))
tmp_dir = stack.enter_context(tempfile.TemporaryDirectory())
compilation_cache.set_cache_dir(tmp_dir)
stack.callback(lambda: compilation_cache.reset_cache())
@classmethod
def tearDownClass(cls):
cls._compilation_cache_exit_stack.close()
def rng(self):
return self._rng
def assertArraysEqual(self, x, y, *, check_dtypes=True, err_msg='',
allow_object_dtype=False, verbose=True):
"""Assert that x and y arrays are exactly equal."""
if check_dtypes:
self.assertDtypesMatch(x, y)
x = np.asarray(x)
y = np.asarray(y)
if (not allow_object_dtype) and (x.dtype == object or y.dtype == object):
# See https://github.com/jax-ml/jax/issues/17867
raise TypeError(
"assertArraysEqual may be poorly behaved when np.asarray casts to dtype=object. "
"If comparing PRNG keys, consider random_test.KeyArrayTest.assertKeysEqual. "
"If comparing collections of arrays, consider using assertAllClose. "
"To let this test proceed anyway, pass allow_object_dtype=True.")
# Work around https://github.com/numpy/numpy/issues/18992
with np.errstate(over='ignore'):
np.testing.assert_array_equal(x, y, err_msg=err_msg,
verbose=verbose)
def assertArraysAllClose(self, x, y, *, check_dtypes=True, atol=None,
rtol=None, err_msg=''):
"""Assert that x and y are close (up to numerical tolerances)."""
self.assertEqual(x.shape, y.shape)
atol = max(tolerance(_dtype(x), atol), tolerance(_dtype(y), atol))
rtol = max(tolerance(_dtype(x), rtol), tolerance(_dtype(y), rtol))
_assert_numpy_allclose(x, y, atol=atol, rtol=rtol, err_msg=err_msg)
if check_dtypes:
self.assertDtypesMatch(x, y)
def assertDtypesMatch(self, x, y, *, canonicalize_dtypes=True):
if not config.enable_x64.value and canonicalize_dtypes:
self.assertEqual(_dtypes.canonicalize_dtype(_dtype(x), allow_extended_dtype=True),
_dtypes.canonicalize_dtype(_dtype(y), allow_extended_dtype=True))
else:
self.assertEqual(_dtype(x), _dtype(y))
def assertAllClose(self, x, y, *, check_dtypes=True, atol=None, rtol=None,
canonicalize_dtypes=True, err_msg=''):
"""Assert that x and y, either arrays or nested tuples/lists, are close."""
if isinstance(x, dict):
self.assertIsInstance(y, dict)
self.assertEqual(set(x.keys()), set(y.keys()))
for k in x.keys():
self.assertAllClose(x[k], y[k], check_dtypes=check_dtypes, atol=atol,
rtol=rtol, canonicalize_dtypes=canonicalize_dtypes,
err_msg=err_msg)
elif is_sequence(x) and not hasattr(x, '__array__'):
self.assertTrue(is_sequence(y) and not hasattr(y, '__array__'))
self.assertEqual(len(x), len(y))
for x_elt, y_elt in zip(x, y):
self.assertAllClose(x_elt, y_elt, check_dtypes=check_dtypes, atol=atol,
rtol=rtol, canonicalize_dtypes=canonicalize_dtypes,
err_msg=err_msg)
elif hasattr(x, '__array__') or np.isscalar(x):
self.assertTrue(hasattr(y, '__array__') or np.isscalar(y))
if check_dtypes:
self.assertDtypesMatch(x, y, canonicalize_dtypes=canonicalize_dtypes)
x = np.asarray(x)
y = np.asarray(y)
self.assertArraysAllClose(x, y, check_dtypes=False, atol=atol, rtol=rtol,
err_msg=err_msg)
elif x == y:
return
else:
raise TypeError((type(x), type(y)))
def assertMultiLineStrippedEqual(self, expected, what):
"""Asserts two strings are equal, after dedenting and stripping each line."""
expected = textwrap.dedent(expected)
what = textwrap.dedent(what)
ignore_space_re = re.compile(r'\s*\n\s*')
expected_clean = re.sub(ignore_space_re, '\n', expected.strip())
what_clean = re.sub(ignore_space_re, '\n', what.strip())
if what_clean != expected_clean:
# Print it so we can copy-and-paste it into the test
print(f"Found\n{what}\n")
self.assertMultiLineEqual(expected_clean, what_clean,
msg=f"Found\n{what}\nExpecting\n{expected}")
@contextmanager
def assertNoWarnings(self):
with warnings.catch_warnings():
warnings.simplefilter("error")
yield
def _CompileAndCheck(self, fun, args_maker, *, check_dtypes=True, tol=None,
rtol=None, atol=None, check_cache_misses=True):
"""Helper method for running JAX compilation and allclose assertions."""
args = args_maker()
def wrapped_fun(*args):
self.assertTrue(python_should_be_executing)
return fun(*args)
python_should_be_executing = True
python_ans = fun(*args)
python_shapes = tree_map(lambda x: np.shape(x), python_ans)
np_shapes = tree_map(lambda x: np.shape(np.asarray(x)), python_ans)
self.assertEqual(python_shapes, np_shapes)
cache_misses = dispatch.xla_primitive_callable.cache_info().misses
python_ans = fun(*args)
if check_cache_misses:
self.assertEqual(
cache_misses, dispatch.xla_primitive_callable.cache_info().misses,
"Compilation detected during second call of {} in op-by-op "
"mode.".format(fun))
cfun = api.jit(wrapped_fun)
python_should_be_executing = True
monitored_ans = cfun(*args)
python_should_be_executing = False
compiled_ans = cfun(*args)
self.assertAllClose(python_ans, monitored_ans, check_dtypes=check_dtypes,
atol=atol or tol, rtol=rtol or tol)
self.assertAllClose(python_ans, compiled_ans, check_dtypes=check_dtypes,
atol=atol or tol, rtol=rtol or tol)
args = args_maker()
python_should_be_executing = True
python_ans = fun(*args)
python_should_be_executing = False
compiled_ans = cfun(*args)
self.assertAllClose(python_ans, compiled_ans, check_dtypes=check_dtypes,
atol=atol or tol, rtol=rtol or tol)
def _CheckAgainstNumpy(self, numpy_reference_op, lax_op, args_maker,
check_dtypes=True, tol=None, atol=None, rtol=None,
canonicalize_dtypes=True):
args = args_maker()
lax_ans = lax_op(*args)
numpy_ans = numpy_reference_op(*args)
self.assertAllClose(numpy_ans, lax_ans, check_dtypes=check_dtypes,
atol=atol or tol, rtol=rtol or tol,
canonicalize_dtypes=canonicalize_dtypes)
_PJIT_IMPLEMENTATION = jax.jit
_PJIT_IMPLEMENTATION._name = "jit"
_NOOP_JIT_IMPLEMENTATION = lambda x, *args, **kwargs: x
_NOOP_JIT_IMPLEMENTATION._name = "noop"
JIT_IMPLEMENTATION = (
_PJIT_IMPLEMENTATION,
_NOOP_JIT_IMPLEMENTATION,
)
class BufferDonationTestCase(JaxTestCase):
def assertDeleted(self, x):
self.assertTrue(x.is_deleted())
def assertNotDeleted(self, x):
self.assertFalse(x.is_deleted())
@contextmanager
def ignore_warning(*, message='', category=Warning, **kw):
with warnings.catch_warnings():
warnings.filterwarnings("ignore", message=message, category=category, **kw)
yield
# -------------------- Mesh parametrization helpers --------------------
MeshSpec = list[tuple[str, int]]
@contextmanager
def with_mesh(named_shape: MeshSpec) -> Generator[None, None, None]:
"""Test utility for setting up meshes given mesh data from `schedules`."""
# This is similar to the `with_mesh` function above, but isn't a decorator.
axis_names, shape = unzip2(named_shape)
size = math.prod(shape)
local_devices = list(jax.local_devices())
if len(local_devices) < size:
raise unittest.SkipTest(f"Test requires {size} local devices")
mesh_devices = np.array(local_devices[:size]).reshape(shape) # type: ignore
with jax.sharding.Mesh(mesh_devices, axis_names):
yield
def with_mesh_from_kwargs(f):
return lambda *args, **kwargs: with_mesh(kwargs['mesh'])(f)(*args, **kwargs)
def with_and_without_mesh(f):
return parameterized.named_parameters(
{"testcase_name": name, "mesh": mesh, "axis_resources": axis_resources}
for name, mesh, axis_resources in (
('', (), ()),
('Mesh', (('x', 2),), (('i', 'x'),))
))(with_mesh_from_kwargs(f))
def create_mesh(mesh_shape, axis_names, iota_order=False):
size = math.prod(mesh_shape)
if len(jax.devices()) < size:
raise unittest.SkipTest(f"Test requires {size} global devices.")
if iota_order:
devices = sorted(jax.devices(), key=lambda d: d.id)
mesh_devices = np.array(devices[:size]).reshape(mesh_shape)
return jax.sharding.Mesh(mesh_devices, axis_names)
else:
return jax.make_mesh(mesh_shape, axis_names)
class _cached_property:
null = object()
def __init__(self, method):
self._method = method
self._value = self.null
def __get__(self, obj, cls):
if self._value is self.null:
self._value = self._method(obj)
return self._value
class _LazyDtypes:
"""A class that unifies lists of supported dtypes.
These could be module-level constants, but device_under_test() is not always
known at import time, so we need to define these lists lazily.
"""
def supported(self, dtypes):
supported = supported_dtypes()
return type(dtypes)(d for d in dtypes if d in supported)
@_cached_property
def custom_floats(self):
return [np.dtype(t) for t in [
_dtypes.bfloat16, _dtypes.float8_e4m3b11fnuz,
_dtypes.float8_e4m3fn, _dtypes.float8_e4m3fnuz,
_dtypes.float8_e5m2, _dtypes.float8_e5m2fnuz]]
@_cached_property
def floating(self):
return self.supported([np.float32, np.float64])
@_cached_property
def all_floating(self):
return self.supported([_dtypes.bfloat16, np.float16, np.float32, np.float64])
@_cached_property
def integer(self):
return self.supported([np.int32, np.int64])
@_cached_property
def all_integer(self):
return self.supported([
_dtypes.int4, np.int8, np.int16, np.int32, np.int64])
@_cached_property
def unsigned(self):
return self.supported([np.uint32, np.uint64])
@_cached_property
def all_unsigned(self):
return self.supported([
_dtypes.uint4, np.uint8, np.uint16, np.uint32, np.uint64])
@_cached_property
def complex(self):
return self.supported([np.complex64, np.complex128])
@_cached_property
def boolean(self):
return self.supported([np.bool_])
@_cached_property
def inexact(self):
return self.floating + self.complex
@_cached_property
def all_inexact(self):
return self.all_floating + self.complex
@_cached_property
def numeric(self):
return self.floating + self.integer + self.unsigned + self.complex
@_cached_property
def all(self):
return (self.all_floating + self.all_integer + self.all_unsigned +
self.complex + self.boolean)
dtypes = _LazyDtypes()
def strict_promotion_if_dtypes_match(dtypes):
"""
Context manager to enable strict promotion if all dtypes match,
and enable standard dtype promotion otherwise.
"""
if all(dtype == dtypes[0] for dtype in dtypes):
return jax.numpy_dtype_promotion('strict')
return jax.numpy_dtype_promotion('standard')
_version_regex = re.compile(r"([0-9]+(?:\.[0-9]+)*)(?:(rc|dev).*)?")
def parse_version(v: str) -> tuple[int, ...]:
m = _version_regex.match(v)
if m is None:
raise ValueError(f"Unable to parse version '{v}'")
return tuple(int(x) for x in m.group(1).split('.'))
def numpy_version():
return parse_version(np.__version__)
def parameterized_filterable(*,
kwargs: Sequence[dict[str, Any]],
testcase_name: Callable[[dict[str, Any]], str] | None = None,
one_containing: str | None = None,
):
"""Decorator for named parameterized tests, with filtering support.
Works like ``parameterized.named_parameters``, except that it sanitizes the test
names so that we can use ``pytest -k`` and ``python test.py -k`` test filtering.
This means, e.g., that many special characters are replaced with `_`.
It also supports the ``one_containing`` arg to select one of the tests, while
leaving the name unchanged, which is useful for IDEs to be able to easily
pick up the enclosing test name.
Usage:
@jtu.parameterized_filterable(
# one_containing="a_4",
[dict(a=4, b=5),
dict(a=5, b=4)])
def test_my_test(self, *, a, b): ...
Args:
kwargs: Each entry is a set of kwargs to be passed to the test function.
testcase_name: Optionally, a function to construct the testcase_name from
one kwargs dict. If not given then ``kwargs`` may contain ``testcase_name`` and
otherwise the test case name is constructed as ``str(kwarg)``.
We sanitize the test names to work with -k test filters. See
``sanitize_test_name``.
one_containing: If given, then leaves the test name unchanged, and use
only one of the ``kwargs`` whose `testcase_name` includes ``one_containing``.
"""
# Ensure that all kwargs contain a testcase_name
kwargs_with_testcase_name: Sequence[dict[str, Any]]
if testcase_name is not None:
kwargs_with_testcase_name = [
dict(testcase_name=sanitize_test_name(str(testcase_name(kw))), **kw)
for kw in kwargs]
else:
for kw in kwargs:
testcase_name = kw.get("testcase_name")
if testcase_name is None:
testcase_name = "_".join(f"{k}={kw[k]}" # type: ignore
for k in sorted(kw.keys()))
kw["testcase_name"] = sanitize_test_name(testcase_name) # type: ignore
kwargs_with_testcase_name = kwargs
if one_containing is not None:
filtered = tuple(kw for kw in kwargs_with_testcase_name
if one_containing in kw["testcase_name"])
assert filtered, (
f"No testcase_name contains '{one_containing}'. "
"The testcase_name values are\n " +
"\n ".join(kw["testcase_name"] for kw in kwargs_with_testcase_name))
kw = filtered[0]
kw["testcase_name"] = ""
return parameterized.named_parameters([kw])
else:
return parameterized.named_parameters(*kwargs_with_testcase_name)
@contextmanager
def register_event_duration_listener(callback):
"""Manages registering/unregistering an event duration listener callback."""
try:
monitoring.register_event_duration_secs_listener(callback)
yield
finally:
monitoring._unregister_event_duration_listener_by_callback(callback)
@contextmanager
def set_env(**kwargs):
"""Context manager to temporarily set/unset one or more environment variables.
Examples:
>>> import os
>>> os.environ['my_var'] = 'original'
>>> with set_env(my_var=None, other_var='some_value'):
... print("my_var is set:", 'my_var' in os.environ)
... print("other_var =", os.environ['other_var'])
...
my_var is set: False
other_var = some_value
>>> os.environ['my_var']
'original'
>>> 'other_var' in os.environ
False
"""
original = {key: os.environ.pop(key, None) for key in kwargs}
os.environ.update({k: v for k, v in kwargs.items() if v is not None})
try:
yield
finally:
_ = [os.environ.pop(key, None) for key in kwargs]
os.environ.update({k: v for k, v in original.items() if v is not None})
def fwd_bwd_jaxprs(f, *example_args):
fwd_jaxpr, (y_shape, res_shape) = jax.make_jaxpr(
lambda *args: jax.vjp(f, *args), return_shape=True)(*example_args)
bwd_jaxpr = jax.make_jaxpr(lambda res, outs: res(outs))(res_shape, y_shape)
return fwd_jaxpr, bwd_jaxpr
def numpy_vecdot(x, y, axis):
"""Implementation of numpy.vecdot for testing on numpy < 2.0.0"""
if numpy_version() >= (2, 0, 0):
raise ValueError("should be calling vecdot directly on numpy 2.0.0")
x = np.moveaxis(x, axis, -1)
y = np.moveaxis(y, axis, -1)
x, y = np.broadcast_arrays(x, y)
return np.matmul(np.conj(x[..., None, :]), y[..., None])[..., 0, 0]
def complex_plane_sample(dtype, size_re=10, size_im=None):
"""Return a 2-D array of complex numbers that covers the complex plane
with a grid of samples.
The size of the grid is (3 + 2 * size_im) x (3 + 2 * size_re)
that includes infinity points, extreme finite points, and the
specified number of points from real and imaginary axis.
For example:
>>> print(complex_plane_sample(np.complex64, 0, 3))
[[-inf -infj 0. -infj inf -infj]
[-inf-3.4028235e+38j 0.-3.4028235e+38j inf-3.4028235e+38j]
[-inf-2.0000000e+00j 0.-2.0000000e+00j inf-2.0000000e+00j]
[-inf-1.1754944e-38j 0.-1.1754944e-38j inf-1.1754944e-38j]
[-inf+0.0000000e+00j 0.+0.0000000e+00j inf+0.0000000e+00j]
[-inf+1.1754944e-38j 0.+1.1754944e-38j inf+1.1754944e-38j]
[-inf+2.0000000e+00j 0.+2.0000000e+00j inf+2.0000000e+00j]
[-inf+3.4028235e+38j 0.+3.4028235e+38j inf+3.4028235e+38j]
[-inf +infj 0. +infj inf +infj]]
"""
if size_im is None:
size_im = size_re
finfo = np.finfo(dtype)
def make_axis_points(size):
prec_dps_ratio = 3.3219280948873626
logmin = logmax = finfo.maxexp / prec_dps_ratio
logtiny = finfo.minexp / prec_dps_ratio
axis_points = np.zeros(3 + 2 * size, dtype=finfo.dtype)
with warnings.catch_warnings():
# Silence RuntimeWarning: overflow encountered in cast
warnings.simplefilter("ignore")
half_neg_line = -np.logspace(logmin, logtiny, size, dtype=finfo.dtype)
half_line = -half_neg_line[::-1]
axis_points[-size - 1:-1] = half_line
axis_points[1:size + 1] = half_neg_line
if size > 1:
axis_points[1] = finfo.min
axis_points[-2] = finfo.max
if size > 0:
axis_points[size] = -finfo.tiny
axis_points[-size - 1] = finfo.tiny
axis_points[0] = -np.inf
axis_points[-1] = np.inf
return axis_points
real_axis_points = make_axis_points(size_re)
imag_axis_points = make_axis_points(size_im)
real_part = real_axis_points.reshape((-1, 3 + 2 * size_re)).repeat(3 + 2 * size_im, 0).astype(dtype)
imag_part = imag_axis_points.repeat(2).view(dtype)
imag_part.real[:] = 0
imag_part = imag_part.reshape((3 + 2 * size_im, -1)).repeat(3 + 2 * size_re, 1)
return real_part + imag_part
class vectorize_with_mpmath(np.vectorize):
"""Same as numpy.vectorize but using mpmath backend for function evaluation.
"""
map_float_to_complex = dict(float16='complex32', float32='complex64', float64='complex128', float128='complex256', longdouble='clongdouble')
map_complex_to_float = {v: k for k, v in map_float_to_complex.items()}
float_prec = dict(
# float16=11,
float32=24,
float64=53,
# float128=113,
# longdouble=113
)
float_minexp = dict(
float16=-14,
float32=-126,
float64=-1022,
float128=-16382
)
float_maxexp = dict(
float16=16,
float32=128,
float64=1024,
float128=16384,
)
def __init__(self, *args, **kwargs):
mpmath = kwargs.pop('mpmath', None)
if mpmath is None:
raise ValueError('vectorize_with_mpmath: no mpmath argument specified')
self.extra_prec_multiplier = kwargs.pop('extra_prec_multiplier', 0)
self.extra_prec = kwargs.pop('extra_prec', 0)
self.mpmath = mpmath
self.contexts = dict()
self.contexts_inv = dict()
for fp_format, prec in self.float_prec.items():
ctx = self.mpmath.mp.clone()
ctx.prec = prec
self.contexts[fp_format] = ctx
self.contexts_inv[ctx] = fp_format
super().__init__(*args, **kwargs)
def get_context(self, x):
if isinstance(x, (np.ndarray, np.floating, np.complexfloating)):
fp_format = str(x.dtype)
fp_format = self.map_complex_to_float.get(fp_format, fp_format)
return self.contexts[fp_format]
raise NotImplementedError(f'get mpmath context from {type(x).__name__} instance')
def nptomp(self, x):
"""Convert numpy array/scalar to an array/instance of mpmath number type.
"""
if isinstance(x, np.ndarray):
return np.fromiter(map(self.nptomp, x.flatten()), dtype=object).reshape(x.shape)
elif isinstance(x, np.floating):
mpmath = self.mpmath
ctx = self.get_context(x)
prec, rounding = ctx._prec_rounding
if np.isposinf(x):
return ctx.make_mpf(mpmath.libmp.finf)
elif np.isneginf(x):
return ctx.make_mpf(mpmath.libmp.fninf)
elif np.isnan(x):
return ctx.make_mpf(mpmath.libmp.fnan)
elif np.isfinite(x):
mantissa, exponent = np.frexp(x)
man = int(np.ldexp(mantissa, prec))
exp = int(exponent - prec)
r = ctx.make_mpf(mpmath.libmp.from_man_exp(man, exp, prec, rounding))
assert ctx.isfinite(r), r._mpf_
return r
elif isinstance(x, np.complexfloating):
re, im = self.nptomp(x.real), self.nptomp(x.imag)
return re.context.make_mpc((re._mpf_, im._mpf_))
raise NotImplementedError(f'convert {type(x).__name__} instance to mpmath number type')
def mptonp(self, x):
"""Convert mpmath instance to numpy array/scalar type.
"""
if isinstance(x, np.ndarray) and x.dtype.kind == 'O':
x_flat = x.flatten()
item = x_flat[0]
ctx = item.context
fp_format = self.contexts_inv[ctx]
if isinstance(item, ctx.mpc):
dtype = getattr(np, self.map_float_to_complex[fp_format])
elif isinstance(item, ctx.mpf):
dtype = getattr(np, fp_format)
else:
dtype = None
if dtype is not None:
return np.fromiter(map(self.mptonp, x_flat), dtype=dtype).reshape(x.shape)
elif isinstance(x, self.mpmath.ctx_mp.mpnumeric):
ctx = x.context
if isinstance(x, ctx.mpc):
fp_format = self.contexts_inv[ctx]
dtype = getattr(np, self.map_float_to_complex[fp_format])
r = dtype().reshape(1).view(getattr(np, fp_format))
r[0] = self.mptonp(x.real)
r[1] = self.mptonp(x.imag)
return r.view(dtype)[0]
elif isinstance(x, ctx.mpf):
fp_format = self.contexts_inv[ctx]
dtype = getattr(np, fp_format)
if ctx.isfinite(x):
sign, man, exp, bc = self.mpmath.libmp.normalize(*x._mpf_, *ctx._prec_rounding)
assert bc >= 0, (sign, man, exp, bc, x._mpf_)
if exp + bc < self.float_minexp[fp_format]:
return -ctx.zero if sign else ctx.zero
if exp + bc > self.float_maxexp[fp_format]:
return ctx.ninf if sign else ctx.inf
man = dtype(-man if sign else man)
r = np.ldexp(man, exp)
assert np.isfinite(r), (x, r, x._mpf_, man)
return r
elif ctx.isnan(x):
return dtype(np.nan)
elif ctx.isinf(x):
return dtype(-np.inf if x._mpf_[0] else np.inf)
raise NotImplementedError(f'convert {type(x)} instance to numpy floating point type')
def __call__(self, *args, **kwargs):
mp_args = []
context = None
for a in args:
if isinstance(a, (np.ndarray, np.floating, np.complexfloating)):
mp_args.append(self.nptomp(a))
if context is None:
context = self.get_context(a)
else:
assert context is self.get_context(a)
else:
mp_args.append(a)
extra_prec = int(context.prec * self.extra_prec_multiplier) + self.extra_prec
with context.extraprec(extra_prec):
result = super().__call__(*mp_args, **kwargs)
if isinstance(result, tuple):
lst = []
for r in result:
if ((isinstance(r, np.ndarray) and r.dtype.kind == 'O')
or isinstance(r, self.mpmath.ctx_mp.mpnumeric)):
r = self.mptonp(r)
lst.append(r)
return tuple(lst)
if ((isinstance(result, np.ndarray) and result.dtype.kind == 'O')
or isinstance(result, self.mpmath.ctx_mp.mpnumeric)):
return self.mptonp(result)
return result
class numpy_with_mpmath:
"""Namespace of universal functions on numpy arrays that use mpmath
backend for evaluation and return numpy arrays as outputs.
"""
_provides = [
'abs', 'absolute', 'sqrt', 'exp', 'expm1', 'exp2',
'log', 'log1p', 'log10', 'log2',
'sin', 'cos', 'tan', 'arcsin', 'arccos', 'arctan',
'sinh', 'cosh', 'tanh', 'arcsinh', 'arccosh', 'arctanh',
'square', 'positive', 'negative', 'conjugate', 'sign', 'sinc',
'normalize',
]
_mp_names = dict(
abs='absmin', absolute='absmin',
log='ln',
arcsin='asin', arccos='acos', arctan='atan',
arcsinh='asinh', arccosh='acosh', arctanh='atanh',
)
def __init__(self, mpmath, extra_prec_multiplier=0, extra_prec=0):
self.mpmath = mpmath
for name in self._provides:
mp_name = self._mp_names.get(name, name)
if hasattr(self, name):
op = getattr(self, name)
else:
def op(x, mp_name=mp_name):
return getattr(x.context, mp_name)(x)
setattr(self, name, vectorize_with_mpmath(op, mpmath=mpmath, extra_prec_multiplier=extra_prec_multiplier, extra_prec=extra_prec))
# The following function methods operate on mpmath number instances.
# The corresponding function names must be listed in
# numpy_with_mpmath._provides list.
def square(self, x):
return x * x
def positive(self, x):
return x
def negative(self, x):
return -x
def sqrt(self, x):
ctx = x.context
if isinstance(x, ctx.mpc):
# Workaround mpmath 1.3 bug in sqrt(+-inf+-infj) evaluation (see mpmath/mpmath#776).
# TODO(pearu): remove this function when mpmath 1.4 or newer
# will be the required test dependency.
if ctx.isinf(x.imag):
return ctx.make_mpc((ctx.inf._mpf_, x.imag._mpf_))
return ctx.sqrt(x)
def expm1(self, x):
return x.context.expm1(x)
def log1p(self, x):
ctx = x.context
if isinstance(x, ctx.mpc):
# Workaround mpmath 1.3 bug in log(+-inf+-infj) evaluation (see mpmath/mpmath#774).
# TODO(pearu): remove this function when mpmath 1.4 or newer
# will be the required test dependency.
if ctx.isinf(x.real) and ctx.isinf(x.imag):
pi = ctx.pi
if x.real > 0 and x.imag > 0:
return ctx.make_mpc((x.real._mpf_, (pi / 4)._mpf_))
if x.real > 0 and x.imag < 0:
return ctx.make_mpc((x.real._mpf_, (-pi / 4)._mpf_))
if x.real < 0 and x.imag < 0:
return ctx.make_mpc(((-x.real)._mpf_, (-3 * pi / 4)._mpf_))
if x.real < 0 and x.imag > 0:
return ctx.make_mpc(((-x.real)._mpf_, (3 * pi / 4)._mpf_))
return ctx.log1p(x)
def tan(self, x):
ctx = x.context
if isinstance(x, ctx.mpc):
# Workaround mpmath 1.3 bug in tan(+-inf+-infj) evaluation (see mpmath/mpmath#781).
# TODO(pearu): remove this function when mpmath 1.4 or newer
# will be the required test dependency.
if ctx.isinf(x.imag) and (ctx.isinf(x.real) or ctx.isfinite(x.real)):
if x.imag > 0:
return ctx.make_mpc((ctx.zero._mpf_, ctx.one._mpf_))
return ctx.make_mpc((ctx.zero._mpf_, (-ctx.one)._mpf_))
if ctx.isinf(x.real) and ctx.isfinite(x.imag):
return ctx.make_mpc((ctx.nan._mpf_, ctx.nan._mpf_))
return ctx.tan(x)
def tanh(self, x):
ctx = x.context
if isinstance(x, ctx.mpc):
# Workaround mpmath 1.3 bug in tanh(+-inf+-infj) evaluation (see mpmath/mpmath#781).
# TODO(pearu): remove this function when mpmath 1.4 or newer
# will be the required test dependency.
if ctx.isinf(x.imag) and (ctx.isinf(x.real) or ctx.isfinite(x.real)):
if x.imag > 0:
return ctx.make_mpc((ctx.zero._mpf_, ctx.one._mpf_))
return ctx.make_mpc((ctx.zero._mpf_, (-ctx.one)._mpf_))
if ctx.isinf(x.real) and ctx.isfinite(x.imag):
return ctx.make_mpc((ctx.nan._mpf_, ctx.nan._mpf_))
return ctx.tanh(x)
def log2(self, x):
return x.context.ln(x) / x.context.ln2
def log10(self, x):
return x.context.ln(x) / x.context.ln10
def exp2(self, x):
return x.context.exp(x * x.context.ln2)
def arcsin(self, x):
ctx = x.context
if isinstance(x, ctx.mpc):
# Workaround mpmath 1.3 bug in asin(+-inf+-infj) evaluation (see
# mpmath/mpmath#793).
# TODO(pearu): remove the if-block below when mpmath 1.4 or
# newer will be the required test dependency.
pi = ctx.pi
inf = ctx.inf
zero = ctx.zero
if ctx.isinf(x.real):
sign_real = -1 if x.real < 0 else 1
real = sign_real * pi / (4 if ctx.isinf(x.imag) else 2)
imag = -inf if x.imag < 0 else inf
return ctx.make_mpc((real._mpf_, imag._mpf_))
elif ctx.isinf(x.imag):
return ctx.make_mpc((zero._mpf_, x.imag._mpf_))
# On branch cut, mpmath.mp.asin returns different value compared
# to mpmath.fp.asin and numpy.arcsin (see
# mpmath/mpmath#786). The following if-block ensures
# compatibility with numpy.arcsin.
if x.real > 1 and x.imag == 0:
return ctx.asin(x).conjugate()
return ctx.asin(x)
def arccos(self, x):
ctx = x.context
if isinstance(x, ctx.mpc):
# Workaround mpmath 1.3 bug in acos(+-inf+-infj) evaluation (see
# mpmath/mpmath#793).
# TODO(pearu): remove the if-block below when mpmath 1.4 or
# newer will be the required test dependency.
pi = ctx.pi
inf = ctx.inf
zero = ctx.zero
if ctx.isinf(x.imag):
if ctx.isinf(x.real):
real = pi / 4 if x.real > 0 else 3 * pi / 4
else:
real = pi / 2
imag = inf if x.imag < 0 else -inf
return ctx.make_mpc((real._mpf_, imag._mpf_))
elif ctx.isinf(x.real):
inf = ctx.inf
sign_imag = -1 if x.imag < 0 else 1
real = zero if x.real > 0 else pi
return ctx.make_mpc((real._mpf_, (-sign_imag * inf)._mpf_))
# On branch cut, mpmath.mp.acos returns different value
# compared to mpmath.fp.acos and numpy.arccos. The
# following if-block ensures compatibility with
# numpy.arccos.
if x.imag == 0 and x.real > 1:
return -ctx.acos(x)
return ctx.acos(x)
def arcsinh(self, x):
ctx = x.context
if isinstance(x, ctx.mpc):
# Workaround mpmath 1.3 bug in asinh(+-inf+-infj) evaluation
# (see mpmath/mpmath#749).
# TODO(pearu): remove the if-block below when mpmath 1.4 or
# newer will be the required test dependency.
pi = ctx.pi
inf = ctx.inf
zero = ctx.zero
if ctx.isinf(x.imag):
sign_imag = -1 if x.imag < 0 else 1
real = -inf if x.real < 0 else inf
imag = sign_imag * pi / (4 if ctx.isinf(x.real) else 2)
return ctx.make_mpc((real._mpf_, imag._mpf_))
elif ctx.isinf(x.real):
return ctx.make_mpc((x.real._mpf_, zero._mpf_))
# On branch cut, mpmath.mp.asinh returns different value
# compared to mpmath.fp.asinh and numpy.arcsinh (see
# mpmath/mpmath#786). The following if-block ensures
# compatibility with numpy.arcsinh.
if x.real == 0 and x.imag < -1:
return (-ctx.asinh(x)).conjugate()
return ctx.asinh(x)
def arccosh(self, x):
ctx = x.context
if isinstance(x, ctx.mpc):
# Workaround mpmath 1.3 bug in acosh(+-inf+-infj) evaluation
# (see mpmath/mpmath#749).
pi = ctx.pi
inf = ctx.inf
zero = ctx.zero
if ctx.isinf(x.real):
sign_imag = -1 if x.imag < 0 else 1
imag = (
(3 if x.real < 0 else 1) * sign_imag * pi / 4
if ctx.isinf(x.imag)
else (sign_imag * pi if x.real < 0 else zero)
)
return ctx.make_mpc((inf._mpf_, imag._mpf_))
elif ctx.isinf(x.imag):
sign_imag = -1 if x.imag < 0 else 1
imag = sign_imag * pi / 2
return ctx.make_mpc((inf._mpf_, imag._mpf_))
return ctx.acosh(x)
def arctan(self, x):
ctx = x.context
if isinstance(x, ctx.mpc):
# Workaround mpmath 1.3 bug in atan(+-inf+-infj) evaluation
# (see mpmath/mpmath#775 with the fix).
# TODO(pearu): remove the if-block below when mpmath 1.4 or
# newer will be the required test dependency.
pi = ctx.pi
zero = ctx.zero
if ctx.isinf(x.real) or ctx.isinf(x.imag):
if x.real < 0:
return ctx.make_mpc(((-pi / 2)._mpf_, zero._mpf_))
return ctx.make_mpc(((pi / 2)._mpf_, zero._mpf_))
# On branch cut, mpmath.mp.atan returns different value compared
# to mpmath.fp.atan and numpy.arctan (see mpmath/mpmath#865).
# The following if-block ensures compatibility with
# numpy.arctan.
if x.real == 0 and x.imag < -1:
return (-ctx.atan(x)).conjugate()
return ctx.atan(x)
def arctanh(self, x):
ctx = x.context
if isinstance(x, ctx.mpc):
# Workaround mpmath 1.3 bug in atanh(+-inf+-infj) evaluation
# (see mpmath/mpmath#775 with the fix).
# TODO(pearu): remove the if-block below when mpmath 1.4 or
# newer will be the required test dependency.
pi = ctx.pi
zero = ctx.zero
if ctx.isinf(x.real) or ctx.isinf(x.imag):
if x.imag < 0:
return ctx.make_mpc((zero._mpf_, (-pi / 2)._mpf_))
return ctx.make_mpc((zero._mpf_, (pi / 2)._mpf_))
# On branch cut, mpmath.mp.atanh returns different value
# compared to mpmath.fp.atanh and numpy.arctanh. The following
# if-block ensures compatibility with numpy.arctanh.
if x.imag == 0 and x.real > 1:
return ctx.atanh(x).conjugate()
return ctx.atanh(x)
def normalize(self, exact, reference, value):
"""Normalize reference and value using precision defined by the
difference of exact and reference.
"""
def worker(ctx, s, e, r, v):
ss, sm, se, sbc = s._mpf_
es, em, ee, ebc = e._mpf_
rs, rm, re, rbc = r._mpf_
vs, vm, ve, vbc = v._mpf_
if not (ctx.isfinite(e) and ctx.isfinite(r) and ctx.isfinite(v)):
return r, v
me = min(se, ee, re, ve)
# transform mantissa parts to the same exponent base
sm_e = sm << (se - me)
em_e = em << (ee - me)
rm_e = rm << (re - me)
vm_e = vm << (ve - me)
# find matching higher and non-matching lower bits of e and r
sm_b = bin(sm_e)[2:] if sm_e else ''
em_b = bin(em_e)[2:] if em_e else ''
rm_b = bin(rm_e)[2:] if rm_e else ''
vm_b = bin(vm_e)[2:] if vm_e else ''
m = max(len(sm_b), len(em_b), len(rm_b), len(vm_b))
em_b = '0' * (m - len(em_b)) + em_b
rm_b = '0' * (m - len(rm_b)) + rm_b
c1 = 0
for b0, b1 in zip(em_b, rm_b):
if b0 != b1:
break
c1 += 1
c0 = m - c1
# truncate r and v mantissa
rm_m = rm_e >> c0
vm_m = vm_e >> c0
# normalized r and v
nr = ctx.make_mpf((rs, rm_m, -c1, len(bin(rm_m)) - 2)) if rm_m else (-ctx.zero if rs else ctx.zero)
nv = ctx.make_mpf((vs, vm_m, -c1, len(bin(vm_m)) - 2)) if vm_m else (-ctx.zero if vs else ctx.zero)
return nr, nv
ctx = exact.context
scale = abs(exact)
if isinstance(exact, ctx.mpc):
rr, rv = worker(ctx, scale, exact.real, reference.real, value.real)
ir, iv = worker(ctx, scale, exact.imag, reference.imag, value.imag)
return ctx.make_mpc((rr._mpf_, ir._mpf_)), ctx.make_mpc((rv._mpf_, iv._mpf_))
elif isinstance(exact, ctx.mpf):
return worker(ctx, scale, exact, reference, value)
else:
assert 0 # unreachable
# Hypothesis testing support
def setup_hypothesis(max_examples=30) -> None:
"""Sets up the hypothesis profiles.
Sets up the hypothesis testing profiles, and selects the one specified by
the ``JAX_HYPOTHESIS_PROFILE`` environment variable (or the
``--jax_hypothesis_profile`` configuration.
Args:
max_examples: the maximum number of hypothesis examples to try, when using
the default "deterministic" profile.
"""
try:
import hypothesis as hp
except (ModuleNotFoundError, ImportError):
return
hp.settings.register_profile(
"deterministic",
database=None,
derandomize=True,
deadline=None,
max_examples=max_examples,
print_blob=True,
)
hp.settings.register_profile(
"interactive",
parent=hp.settings.load_profile("deterministic"),
max_examples=1,
report_multiple_bugs=False,
verbosity=hp.Verbosity.verbose,
# Don't try and shrink
phases=(
hp.Phase.explicit,
hp.Phase.reuse,
hp.Phase.generate,
hp.Phase.target,
hp.Phase.explain,
),
)
profile = HYPOTHESIS_PROFILE.value
logging.info("Using hypothesis profile: %s", profile)
hp.settings.load_profile(profile)