mirror of
https://github.com/ROCm/jax.git
synced 2025-04-25 13:46:08 +00:00
598 lines
25 KiB
Python
598 lines
25 KiB
Python
# Copyright 2022 Google LLC
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import builtins
|
|
from functools import partial
|
|
import operator
|
|
from typing import Optional, Tuple, Union
|
|
import warnings
|
|
|
|
import numpy as np
|
|
|
|
import jax
|
|
from jax import core
|
|
from jax import lax
|
|
from jax._src import api
|
|
from jax._src import dtypes
|
|
from jax._src.numpy.ndarray import ndarray
|
|
from jax._src.numpy.util import _broadcast_to, _check_arraylike, _complex_elem_type, _where, _wraps
|
|
from jax._src.lax import lax as lax_internal
|
|
from jax._src.util import canonicalize_axis as _canonicalize_axis, maybe_named_axis
|
|
|
|
|
|
_all = builtins.all
|
|
_lax_const = lax_internal._const
|
|
|
|
|
|
def _asarray(a):
|
|
# simplified version of jnp.asarray() for local use.
|
|
return a if isinstance(a, ndarray) else api.device_put(a)
|
|
|
|
def _isscalar(element):
|
|
if hasattr(element, '__jax_array__'):
|
|
element = element.__jax_array__()
|
|
return dtypes.is_python_scalar(element) or np.isscalar(element)
|
|
|
|
def _moveaxis(a, source: int, destination: int):
|
|
# simplified version of jnp.moveaxis() for local use.
|
|
_check_arraylike("moveaxis", a)
|
|
a = _asarray(a)
|
|
source = _canonicalize_axis(source, np.ndim(a))
|
|
destination = _canonicalize_axis(destination, np.ndim(a))
|
|
perm = [i for i in range(np.ndim(a)) if i != source]
|
|
perm.insert(destination, source)
|
|
return lax.transpose(a, perm)
|
|
|
|
def _upcast_f16(dtype):
|
|
if dtype in [np.float16, dtypes.bfloat16]:
|
|
return np.dtype('float32')
|
|
return dtype
|
|
|
|
def _reduction(a, name, np_fun, op, init_val, has_identity=True,
|
|
preproc=None, bool_op=None, upcast_f16_for_computation=False,
|
|
axis=None, dtype=None, out=None, keepdims=False, initial=None,
|
|
where_=None, parallel_reduce=None):
|
|
bool_op = bool_op or op
|
|
# Note: we must accept out=None as an argument, because numpy reductions delegate to
|
|
# object methods. For example `np.sum(x)` will call `x.sum()` if the `sum()` method
|
|
# exists, passing along all its arguments.
|
|
if out is not None:
|
|
raise NotImplementedError(f"The 'out' argument to jnp.{name} is not supported.")
|
|
_check_arraylike(name, a)
|
|
lax_internal._check_user_dtype_supported(dtype, name)
|
|
axis = core.concrete_or_error(None, axis, f"axis argument to jnp.{name}().")
|
|
|
|
if initial is None and not has_identity:
|
|
if not _all(core.greater_equal_dim(d, 1) for d in np.shape(a)):
|
|
raise ValueError(f"zero-size array to reduction operation {name} which has no identity")
|
|
if where_ is not None:
|
|
raise ValueError(f"reduction operation {name} does not have an identity, so to use a "
|
|
f"where mask one has to specify 'initial'")
|
|
|
|
a = a if isinstance(a, ndarray) else _asarray(a)
|
|
a = preproc(a) if preproc else a
|
|
pos_dims, dims = _reduction_dims(a, axis)
|
|
result_dtype = dtypes.canonicalize_dtype(dtype or dtypes.dtype(np_fun(np.ones((), dtype=dtypes.dtype(a)))))
|
|
if upcast_f16_for_computation and dtypes.issubdtype(result_dtype, np.inexact):
|
|
computation_dtype = _upcast_f16(result_dtype)
|
|
else:
|
|
computation_dtype = result_dtype
|
|
a = lax.convert_element_type(a, computation_dtype)
|
|
op = op if computation_dtype != np.bool_ else bool_op
|
|
# NB: in XLA, init_val must be an identity for the op, so the user-specified
|
|
# initial value must be applied afterward.
|
|
init_val = _reduction_init_val(a, init_val)
|
|
if where_ is not None:
|
|
a = _where(where_, a, init_val)
|
|
if pos_dims is not dims:
|
|
if parallel_reduce is None:
|
|
raise NotImplementedError(f"Named reductions not implemented for jnp.{name}()")
|
|
result = parallel_reduce(a, dims)
|
|
else:
|
|
result = lax.reduce(a, init_val, op, dims)
|
|
if initial is not None:
|
|
result = op(lax.convert_element_type(initial, a.dtype), result)
|
|
if keepdims:
|
|
result = lax.expand_dims(result, pos_dims)
|
|
return lax.convert_element_type(result, dtype or result_dtype)
|
|
|
|
def _canonicalize_axis_allow_named(x, rank):
|
|
return maybe_named_axis(x, lambda i: _canonicalize_axis(i, rank), lambda name: name)
|
|
|
|
def _reduction_dims(a, axis):
|
|
if axis is None:
|
|
return (tuple(range(np.ndim(a))),) * 2
|
|
elif not isinstance(axis, (np.ndarray, tuple, list)):
|
|
axis = (axis,)
|
|
canon_axis = tuple(_canonicalize_axis_allow_named(x, np.ndim(a))
|
|
for x in axis)
|
|
if len(canon_axis) != len(set(canon_axis)):
|
|
raise ValueError(f"duplicate value in 'axis': {axis}")
|
|
canon_pos_axis = tuple(x for x in canon_axis if isinstance(x, int))
|
|
if len(canon_pos_axis) != len(canon_axis):
|
|
return canon_pos_axis, canon_axis
|
|
else:
|
|
return canon_axis, canon_axis
|
|
|
|
def _reduction_init_val(a, init_val):
|
|
# This function uses np.* functions because lax pattern matches against the
|
|
# specific concrete values of the reduction inputs.
|
|
a_dtype = dtypes.canonicalize_dtype(dtypes.dtype(a))
|
|
if a_dtype == 'bool':
|
|
return np.array(init_val > 0, dtype=a_dtype)
|
|
try:
|
|
return np.array(init_val, dtype=a_dtype)
|
|
except OverflowError:
|
|
assert dtypes.issubdtype(a_dtype, np.integer)
|
|
sign, info = np.sign(init_val), dtypes.iinfo(a_dtype)
|
|
return np.array(info.min if sign < 0 else info.max, dtype=a_dtype)
|
|
|
|
def _cast_to_bool(operand):
|
|
with warnings.catch_warnings():
|
|
warnings.filterwarnings("ignore", category=np.ComplexWarning)
|
|
return lax.convert_element_type(operand, np.bool_)
|
|
|
|
|
|
def _ensure_optional_axes(x):
|
|
def force(x):
|
|
if x is None:
|
|
return None
|
|
try:
|
|
return operator.index(x)
|
|
except TypeError:
|
|
return tuple(i if isinstance(i, str) else operator.index(i) for i in x)
|
|
return core.concrete_or_error(
|
|
force, x, "The axis argument must be known statically.")
|
|
|
|
|
|
@partial(api.jit, static_argnames=('axis', 'dtype', 'keepdims'), inline=True)
|
|
def _reduce_sum(a, axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
|
dtype=None, out=None, keepdims=None, initial=None, where=None):
|
|
return _reduction(a, "sum", np.sum, lax.add, 0,
|
|
bool_op=lax.bitwise_or, upcast_f16_for_computation=True,
|
|
axis=axis, dtype=dtype, out=out, keepdims=keepdims,
|
|
initial=initial, where_=where, parallel_reduce=lax.psum)
|
|
|
|
@_wraps(np.sum, skip_params=['out'])
|
|
def sum(a, axis: Optional[Union[int, Tuple[int, ...]]] = None, dtype=None,
|
|
out=None, keepdims=None, initial=None, where=None):
|
|
return _reduce_sum(a, axis=_ensure_optional_axes(axis), dtype=dtype, out=out,
|
|
keepdims=keepdims, initial=initial, where=where)
|
|
|
|
|
|
@partial(api.jit, static_argnames=('axis', 'dtype', 'keepdims'), inline=True)
|
|
def _reduce_prod(a, axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
|
dtype=None, out=None, keepdims=None, initial=None, where=None):
|
|
return _reduction(a, "prod", np.prod, lax.mul, 1,
|
|
bool_op=lax.bitwise_and, upcast_f16_for_computation=True,
|
|
axis=axis, dtype=dtype, out=out, keepdims=keepdims,
|
|
initial=initial, where_=where)
|
|
|
|
@_wraps(np.prod, skip_params=['out'])
|
|
def prod(a, axis: Optional[Union[int, Tuple[int, ...]]] = None, dtype=None,
|
|
out=None, keepdims=None, initial=None, where=None):
|
|
return _reduce_prod(a, axis=_ensure_optional_axes(axis), dtype=dtype,
|
|
out=out, keepdims=keepdims, initial=initial, where=where)
|
|
|
|
|
|
@partial(api.jit, static_argnames=('axis', 'keepdims'), inline=True)
|
|
def _reduce_max(a, axis: Optional[Union[int, Tuple[int, ...]]] = None, out=None,
|
|
keepdims=None, initial=None, where=None):
|
|
return _reduction(a, "max", np.max, lax.max, -np.inf, has_identity=False,
|
|
axis=axis, out=out, keepdims=keepdims,
|
|
initial=initial, where_=where, parallel_reduce=lax.pmax)
|
|
|
|
@_wraps(np.max, skip_params=['out'])
|
|
def max(a, axis: Optional[Union[int, Tuple[int, ...]]] = None, out=None,
|
|
keepdims=None, initial=None, where=None):
|
|
return _reduce_max(a, axis=_ensure_optional_axes(axis), out=out,
|
|
keepdims=keepdims, initial=initial, where=where)
|
|
|
|
@partial(api.jit, static_argnames=('axis', 'keepdims'), inline=True)
|
|
def _reduce_min(a, axis: Optional[Union[int, Tuple[int, ...]]] = None, out=None,
|
|
keepdims=None, initial=None, where=None):
|
|
return _reduction(a, "min", np.min, lax.min, np.inf, has_identity=False,
|
|
axis=axis, out=out, keepdims=keepdims,
|
|
initial=initial, where_=where, parallel_reduce=lax.pmin)
|
|
|
|
@_wraps(np.min, skip_params=['out'])
|
|
def min(a, axis: Optional[Union[int, Tuple[int, ...]]] = None, out=None,
|
|
keepdims=None, initial=None, where=None):
|
|
return _reduce_min(a, axis=_ensure_optional_axes(axis), out=out,
|
|
keepdims=keepdims, initial=initial, where=where)
|
|
|
|
@partial(api.jit, static_argnames=('axis', 'keepdims'), inline=True)
|
|
def _reduce_all(a, axis: Optional[Union[int, Tuple[int, ...]]] = None, out=None,
|
|
keepdims=None, *, where=None):
|
|
return _reduction(a, "all", np.all, lax.bitwise_and, True, preproc=_cast_to_bool,
|
|
axis=axis, out=out, keepdims=keepdims, where_=where)
|
|
|
|
@_wraps(np.all, skip_params=['out'])
|
|
def all(a, axis: Optional[Union[int, Tuple[int, ...]]] = None, out=None,
|
|
keepdims=None, *, where=None):
|
|
return _reduce_all(a, axis=_ensure_optional_axes(axis), out=out,
|
|
keepdims=keepdims, where=where)
|
|
|
|
@partial(api.jit, static_argnames=('axis', 'keepdims'), inline=True)
|
|
def _reduce_any(a, axis: Optional[Union[int, Tuple[int, ...]]] = None, out=None,
|
|
keepdims=None, *, where=None):
|
|
return _reduction(a, "any", np.any, lax.bitwise_or, False, preproc=_cast_to_bool,
|
|
axis=axis, out=out, keepdims=keepdims, where_=where)
|
|
|
|
@_wraps(np.any, skip_params=['out'])
|
|
def any(a, axis: Optional[Union[int, Tuple[int, ...]]] = None, out=None,
|
|
keepdims=None, *, where=None):
|
|
return _reduce_any(a, axis=_ensure_optional_axes(axis), out=out,
|
|
keepdims=keepdims, where=where)
|
|
|
|
product = prod
|
|
amin = min
|
|
amax = max
|
|
alltrue = all
|
|
sometrue = any
|
|
|
|
def _axis_size(a, axis):
|
|
if not isinstance(axis, (tuple, list)):
|
|
axis = (axis,)
|
|
size = 1
|
|
a_shape = np.shape(a)
|
|
for a in axis:
|
|
size *= maybe_named_axis(a, lambda i: a_shape[i], lambda name: lax.psum(1, name))
|
|
return size
|
|
|
|
@_wraps(np.mean, skip_params=['out'])
|
|
def mean(a, axis: Optional[Union[int, Tuple[int, ...]]] = None, dtype=None,
|
|
out=None, keepdims=False, *, where=None):
|
|
return _mean(a, _ensure_optional_axes(axis), dtype, out, keepdims,
|
|
where=where)
|
|
|
|
@partial(api.jit, static_argnames=('axis', 'dtype', 'keepdims'), inline=True)
|
|
def _mean(a, axis: Optional[Union[int, Tuple[int, ...]]] = None, dtype=None,
|
|
out=None, keepdims=False, *, where=None):
|
|
_check_arraylike("mean", a)
|
|
lax_internal._check_user_dtype_supported(dtype, "mean")
|
|
if out is not None:
|
|
raise NotImplementedError("The 'out' argument to jnp.mean is not supported.")
|
|
|
|
if where is None:
|
|
if axis is None:
|
|
normalizer = core.dimension_as_value(np.size(a))
|
|
else:
|
|
normalizer = core.dimension_as_value(_axis_size(a, axis))
|
|
else:
|
|
normalizer = sum(_broadcast_to(where, np.shape(a)), axis, dtype=dtype, keepdims=keepdims)
|
|
|
|
if dtype is None:
|
|
if dtypes.issubdtype(dtypes.dtype(a), np.bool_) or dtypes.issubdtype(dtypes.dtype(a), np.integer):
|
|
dtype = dtypes.float_
|
|
else:
|
|
dtype = dtypes.dtype(a)
|
|
dtype = dtypes.canonicalize_dtype(dtype)
|
|
|
|
return lax.div(
|
|
sum(a, axis, dtype=dtype, keepdims=keepdims, where=where),
|
|
lax.convert_element_type(normalizer, dtype))
|
|
|
|
@_wraps(np.average)
|
|
def average(a, axis: Optional[Union[int, Tuple[int, ...]]] = None, weights=None,
|
|
returned=False):
|
|
return _average(a, _ensure_optional_axes(axis), weights, returned)
|
|
|
|
@partial(api.jit, static_argnames=('axis', 'returned'), inline=True)
|
|
def _average(a, axis: Optional[Union[int, Tuple[int, ...]]] = None, weights=None,
|
|
returned=False):
|
|
a = _asarray(a)
|
|
|
|
if weights is None: # Treat all weights as 1
|
|
avg = mean(a, axis=axis)
|
|
if axis is None:
|
|
weights_sum = lax.full((), core.dimension_as_value(np.size(a)), dtype=avg.dtype)
|
|
else:
|
|
weights_sum = lax.full_like(avg, core.dimension_as_value(a.shape[axis]), dtype=avg.dtype)
|
|
else:
|
|
weights = _asarray(weights)
|
|
|
|
if dtypes.issubdtype(a.dtype, np.inexact):
|
|
out_dtype = dtypes.result_type(a.dtype, weights.dtype)
|
|
else:
|
|
out_dtype = dtypes.result_type(a.dtype, weights.dtype, dtypes.float_)
|
|
out_dtype = dtypes.canonicalize_dtype(out_dtype)
|
|
|
|
a_shape = np.shape(a)
|
|
a_ndim = len(a_shape)
|
|
weights_shape = np.shape(weights)
|
|
axis = None if axis is None else _canonicalize_axis(axis, a_ndim)
|
|
|
|
if a_shape != weights_shape:
|
|
# Make sure the dimensions work out
|
|
if axis is None:
|
|
raise ValueError("Axis must be specified when shapes of a and "
|
|
"weights differ.")
|
|
if len(weights_shape) != 1:
|
|
raise ValueError("1D weights expected when shapes of a and "
|
|
"weights differ.")
|
|
if not core.symbolic_equal_dim(weights_shape[0], a_shape[axis]):
|
|
raise ValueError("Length of weights not "
|
|
"compatible with specified axis.")
|
|
|
|
weights = _broadcast_to(weights, (a_ndim - 1) * (1,) + weights_shape)
|
|
weights = _moveaxis(weights, -1, axis)
|
|
|
|
weights_sum = sum(weights, axis=axis, dtype=out_dtype)
|
|
avg = sum(a * weights, axis=axis, dtype=out_dtype) / weights_sum
|
|
|
|
if returned:
|
|
if avg.shape != weights_sum.shape:
|
|
weights_sum = _broadcast_to(weights_sum, avg.shape)
|
|
return avg, weights_sum
|
|
return avg
|
|
|
|
|
|
@_wraps(np.var, skip_params=['out'])
|
|
def var(a, axis: Optional[Union[int, Tuple[int, ...]]] = None, dtype=None,
|
|
out=None, ddof=0, keepdims=False, *, where=None):
|
|
return _var(a, _ensure_optional_axes(axis), dtype, out, ddof, keepdims,
|
|
where=where)
|
|
|
|
@partial(api.jit, static_argnames=('axis', 'dtype', 'keepdims'))
|
|
def _var(a, axis: Optional[Union[int, Tuple[int, ...]]] = None, dtype=None,
|
|
out=None, ddof=0, keepdims=False, *, where=None):
|
|
_check_arraylike("var", a)
|
|
lax_internal._check_user_dtype_supported(dtype, "var")
|
|
if out is not None:
|
|
raise NotImplementedError("The 'out' argument to jnp.var is not supported.")
|
|
|
|
computation_dtype, dtype = _var_promote_types(dtypes.dtype(a), dtype)
|
|
a = a.astype(computation_dtype)
|
|
a_mean = mean(a, axis, dtype=computation_dtype, keepdims=True, where=where)
|
|
centered = lax.sub(a, a_mean)
|
|
if dtypes.issubdtype(centered.dtype, np.complexfloating):
|
|
centered = lax.real(lax.mul(centered, lax.conj(centered)))
|
|
else:
|
|
centered = lax.square(centered)
|
|
|
|
if where is None:
|
|
if axis is None:
|
|
normalizer = core.dimension_as_value(np.size(a))
|
|
else:
|
|
normalizer = core.dimension_as_value(_axis_size(a, axis))
|
|
else:
|
|
normalizer = sum(_broadcast_to(where, np.shape(a)), axis, dtype=dtype, keepdims=keepdims)
|
|
normalizer = normalizer - ddof
|
|
|
|
result = sum(centered, axis, keepdims=keepdims, where=where)
|
|
out = lax.div(result, lax.convert_element_type(normalizer, result.dtype))
|
|
return lax.convert_element_type(out, dtype)
|
|
|
|
|
|
def _var_promote_types(a_dtype, dtype):
|
|
if dtype:
|
|
if (not dtypes.issubdtype(dtype, np.complexfloating) and
|
|
dtypes.issubdtype(a_dtype, np.complexfloating)):
|
|
msg = ("jax.numpy.var does not yet support real dtype parameters when "
|
|
"computing the variance of an array of complex values. The "
|
|
"semantics of numpy.var seem unclear in this case. Please comment "
|
|
"on https://github.com/google/jax/issues/2283 if this behavior is "
|
|
"important to you.")
|
|
raise ValueError(msg)
|
|
computation_dtype = dtypes.promote_types(a_dtype, dtype)
|
|
else:
|
|
if not dtypes.issubdtype(a_dtype, np.inexact):
|
|
dtype = dtypes.canonicalize_dtype(dtypes.float_)
|
|
computation_dtype = dtype
|
|
else:
|
|
dtype = _complex_elem_type(a_dtype)
|
|
computation_dtype = _upcast_f16(a_dtype)
|
|
return computation_dtype, dtype
|
|
|
|
|
|
@_wraps(np.std, skip_params=['out'])
|
|
def std(a, axis: Optional[Union[int, Tuple[int, ...]]] = None, dtype=None,
|
|
out=None, ddof=0, keepdims=False, *, where=None):
|
|
return _std(a, _ensure_optional_axes(axis), dtype, out, ddof, keepdims,
|
|
where=where)
|
|
|
|
@partial(api.jit, static_argnames=('axis', 'dtype', 'keepdims'))
|
|
def _std(a, axis: Optional[Union[int, Tuple[int, ...]]] = None, dtype=None,
|
|
out=None, ddof=0, keepdims=False, *, where=None):
|
|
_check_arraylike("std", a)
|
|
lax_internal._check_user_dtype_supported(dtype, "std")
|
|
if out is not None:
|
|
raise NotImplementedError("The 'out' argument to jnp.std is not supported.")
|
|
return lax.sqrt(var(a, axis=axis, dtype=dtype, ddof=ddof, keepdims=keepdims, where=where))
|
|
|
|
|
|
@_wraps(np.ptp, skip_params=['out'])
|
|
def ptp(a, axis: Optional[Union[int, Tuple[int, ...]]] = None, out=None,
|
|
keepdims=False):
|
|
return _ptp(a, _ensure_optional_axes(axis), out, keepdims)
|
|
|
|
@partial(api.jit, static_argnames=('axis', 'keepdims'))
|
|
def _ptp(a, axis: Optional[Union[int, Tuple[int, ...]]] = None, out=None,
|
|
keepdims=False):
|
|
_check_arraylike("ptp", a)
|
|
if out is not None:
|
|
raise NotImplementedError("The 'out' argument to jnp.ptp is not supported.")
|
|
x = amax(a, axis=axis, keepdims=keepdims)
|
|
y = amin(a, axis=axis, keepdims=keepdims)
|
|
return lax.sub(x, y)
|
|
|
|
|
|
@_wraps(np.count_nonzero)
|
|
@partial(api.jit, static_argnames=('axis', 'keepdims'))
|
|
def count_nonzero(a, axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
|
keepdims=False):
|
|
_check_arraylike("count_nonzero", a)
|
|
return sum(lax.ne(a, _lax_const(a, 0)), axis=axis,
|
|
dtype=dtypes.canonicalize_dtype(np.int_), keepdims=keepdims)
|
|
|
|
|
|
def _nan_reduction(a, name, jnp_reduction, init_val, nan_if_all_nan,
|
|
axis=None, keepdims=None, **kwargs):
|
|
_check_arraylike(name, a)
|
|
if not dtypes.issubdtype(dtypes.dtype(a), np.inexact):
|
|
return jnp_reduction(a, axis=axis, keepdims=keepdims, **kwargs)
|
|
|
|
out = jnp_reduction(_where(lax_internal._isnan(a), _reduction_init_val(a, init_val), a),
|
|
axis=axis, keepdims=keepdims, **kwargs)
|
|
if nan_if_all_nan:
|
|
return _where(all(lax_internal._isnan(a), axis=axis, keepdims=keepdims),
|
|
_lax_const(a, np.nan), out)
|
|
else:
|
|
return out
|
|
|
|
@_wraps(np.nanmin, skip_params=['out'])
|
|
@partial(api.jit, static_argnames=('axis', 'keepdims'))
|
|
def nanmin(a, axis: Optional[Union[int, Tuple[int, ...]]] = None, out=None,
|
|
keepdims=None, initial=None, where=None):
|
|
return _nan_reduction(a, 'nanmin', min, np.inf, nan_if_all_nan=initial is None,
|
|
axis=axis, out=out, keepdims=keepdims,
|
|
initial=initial, where=where)
|
|
|
|
@_wraps(np.nanmax, skip_params=['out'])
|
|
@partial(api.jit, static_argnames=('axis', 'keepdims'))
|
|
def nanmax(a, axis: Optional[Union[int, Tuple[int, ...]]] = None, out=None,
|
|
keepdims=None, initial=None, where=None):
|
|
return _nan_reduction(a, 'nanmax', max, -np.inf, nan_if_all_nan=initial is None,
|
|
axis=axis, out=out, keepdims=keepdims,
|
|
initial=initial, where=where)
|
|
|
|
@_wraps(np.nansum, skip_params=['out'])
|
|
@partial(api.jit, static_argnames=('axis', 'dtype', 'keepdims'))
|
|
def nansum(a, axis: Optional[Union[int, Tuple[int, ...]]] = None, dtype=None,
|
|
out=None, keepdims=None, initial=None, where=None):
|
|
lax_internal._check_user_dtype_supported(dtype, "nanprod")
|
|
return _nan_reduction(a, 'nansum', sum, 0, nan_if_all_nan=False,
|
|
axis=axis, dtype=dtype, out=out, keepdims=keepdims,
|
|
initial=initial, where=where)
|
|
|
|
# Work around a sphinx documentation warning in NumPy 1.22.
|
|
if nansum.__doc__ is not None:
|
|
nansum.__doc__ = nansum.__doc__.replace("\n\n\n", "\n\n")
|
|
|
|
@_wraps(np.nanprod, skip_params=['out'])
|
|
@partial(api.jit, static_argnames=('axis', 'dtype', 'keepdims'))
|
|
def nanprod(a, axis: Optional[Union[int, Tuple[int, ...]]] = None, dtype=None,
|
|
out=None, keepdims=None, initial=None, where=None):
|
|
lax_internal._check_user_dtype_supported(dtype, "nanprod")
|
|
return _nan_reduction(a, 'nanprod', prod, 1, nan_if_all_nan=False,
|
|
axis=axis, dtype=dtype, out=out, keepdims=keepdims,
|
|
initial=initial, where=where)
|
|
|
|
@_wraps(np.nanmean, skip_params=['out'])
|
|
@partial(api.jit, static_argnames=('axis', 'dtype', 'keepdims'))
|
|
def nanmean(a, axis: Optional[Union[int, Tuple[int, ...]]] = None, dtype=None,
|
|
out=None, keepdims=False, where=None):
|
|
_check_arraylike("nanmean", a)
|
|
lax_internal._check_user_dtype_supported(dtype, "nanmean")
|
|
if out is not None:
|
|
raise NotImplementedError("The 'out' argument to jnp.nanmean is not supported.")
|
|
if dtypes.issubdtype(dtypes.dtype(a), np.bool_) or dtypes.issubdtype(dtypes.dtype(a), np.integer):
|
|
return mean(a, axis, dtype, out, keepdims, where=where)
|
|
if dtype is None:
|
|
dtype = dtypes.dtype(a)
|
|
nan_mask = lax_internal.bitwise_not(lax_internal._isnan(a))
|
|
normalizer = sum(nan_mask, axis=axis, dtype=np.int32, keepdims=keepdims, where=where)
|
|
normalizer = lax.convert_element_type(normalizer, dtype)
|
|
td = lax.div(nansum(a, axis, dtype=dtype, keepdims=keepdims, where=where), normalizer)
|
|
return td
|
|
|
|
|
|
@_wraps(np.nanvar, skip_params=['out'])
|
|
@partial(api.jit, static_argnames=('axis', 'dtype', 'keepdims'))
|
|
def nanvar(a, axis: Optional[Union[int, Tuple[int, ...]]] = None, dtype=None,
|
|
out=None, ddof=0, keepdims=False, where=None):
|
|
_check_arraylike("nanvar", a)
|
|
lax_internal._check_user_dtype_supported(dtype, "nanvar")
|
|
if out is not None:
|
|
raise NotImplementedError("The 'out' argument to jnp.nanvar is not supported.")
|
|
|
|
computation_dtype, dtype = _var_promote_types(dtypes.dtype(a), dtype)
|
|
a = a.astype(computation_dtype)
|
|
a_mean = nanmean(a, axis, dtype=computation_dtype, keepdims=True, where=where)
|
|
|
|
centered = _where(lax_internal._isnan(a), 0, lax.sub(a, a_mean)) # double-where trick for gradients.
|
|
if dtypes.issubdtype(centered.dtype, np.complexfloating):
|
|
centered = lax.real(lax.mul(centered, lax.conj(centered)))
|
|
else:
|
|
centered = lax.square(centered)
|
|
|
|
normalizer = sum(lax_internal.bitwise_not(lax_internal._isnan(a)),
|
|
axis=axis, keepdims=keepdims, where=where)
|
|
normalizer = normalizer - ddof
|
|
normalizer_mask = lax.le(normalizer, 0)
|
|
result = sum(centered, axis, keepdims=keepdims, where=where)
|
|
result = _where(normalizer_mask, np.nan, result)
|
|
divisor = _where(normalizer_mask, 1, normalizer)
|
|
out = lax.div(result, lax.convert_element_type(divisor, result.dtype))
|
|
return lax.convert_element_type(out, dtype)
|
|
|
|
|
|
@_wraps(np.nanstd, skip_params=['out'])
|
|
@partial(api.jit, static_argnames=('axis', 'dtype', 'keepdims'))
|
|
def nanstd(a, axis: Optional[Union[int, Tuple[int, ...]]] = None, dtype=None,
|
|
out=None, ddof=0, keepdims=False, where=None):
|
|
_check_arraylike("nanstd", a)
|
|
lax_internal._check_user_dtype_supported(dtype, "nanstd")
|
|
if out is not None:
|
|
raise NotImplementedError("The 'out' argument to jnp.nanstd is not supported.")
|
|
return lax.sqrt(nanvar(a, axis=axis, dtype=dtype, ddof=ddof, keepdims=keepdims, where=where))
|
|
|
|
|
|
def _make_cumulative_reduction(np_reduction, reduction, fill_nan=False, fill_value=0):
|
|
@_wraps(np_reduction, skip_params=['out'])
|
|
def cumulative_reduction(a,
|
|
axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
|
dtype=None, out=None):
|
|
return _cumulative_reduction(a, _ensure_optional_axes(axis), dtype, out)
|
|
|
|
@partial(api.jit, static_argnames=('axis', 'dtype'))
|
|
def _cumulative_reduction(a,
|
|
axis: Optional[Union[int, Tuple[int, ...]]] = None,
|
|
dtype=None, out=None):
|
|
_check_arraylike(np_reduction.__name__, a)
|
|
if out is not None:
|
|
raise NotImplementedError(f"The 'out' argument to jnp.{np_reduction.__name__} "
|
|
f"is not supported.")
|
|
lax_internal._check_user_dtype_supported(dtype, np_reduction.__name__)
|
|
|
|
if axis is None or _isscalar(a):
|
|
a = lax.reshape(a, (np.size(a),))
|
|
axis = 0
|
|
|
|
a_shape = list(np.shape(a))
|
|
num_dims = len(a_shape)
|
|
axis = _canonicalize_axis(axis, num_dims)
|
|
|
|
if fill_nan:
|
|
a = _where(lax_internal._isnan(a), _lax_const(a, fill_value), a)
|
|
|
|
if not dtype and dtypes.dtype(a) == np.bool_:
|
|
dtype = dtypes.canonicalize_dtype(dtypes.int_)
|
|
if dtype:
|
|
a = lax.convert_element_type(a, dtype)
|
|
|
|
return reduction(a, axis)
|
|
|
|
return cumulative_reduction
|
|
|
|
|
|
cumsum = _make_cumulative_reduction(np.cumsum, lax.cumsum, fill_nan=False)
|
|
cumprod = _make_cumulative_reduction(np.cumprod, lax.cumprod, fill_nan=False)
|
|
cumproduct = cumprod
|
|
nancumsum = _make_cumulative_reduction(np.nancumsum, lax.cumsum,
|
|
fill_nan=True, fill_value=0)
|
|
nancumprod = _make_cumulative_reduction(np.nancumprod, lax.cumprod,
|
|
fill_nan=True, fill_value=1)
|