mirror of
https://github.com/ROCm/jax.git
synced 2025-04-24 13:46:07 +00:00

This old implementation, which was meant to be revised but which we forgot about, caused a surprising slowdown: if x were a traced array of size 50000, evaluating len(x) would create 50000 traced temporary objects, which led to a lot of overhead! That came up in our implementation of jax.random.shuffle, which happened to call len() instead of x.shape[axis] (even though it should have been using x.size anyway, according to tjablin@'s code that it's based on).
362 lines
13 KiB
Python
362 lines
13 KiB
Python
# Copyright 2018 Google LLC
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""LAX-based pseudo-random number generators (PRNGs)."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from functools import partial
|
|
|
|
import numpy as onp
|
|
|
|
from . import lax
|
|
from . import numpy as np
|
|
from . import tree_util
|
|
from .api import jit
|
|
from jax.lib import xla_bridge
|
|
|
|
class PRNGKey(object):
|
|
"""A pseudo-random number generator (PRNG) key for use with lax.random."""
|
|
__slots__ = ["keypair"]
|
|
|
|
def __init__(self, seed):
|
|
"""Create a new PRNG key.
|
|
|
|
Args:
|
|
seed: a scalar integer value used to initialize the PRNG key.
|
|
|
|
Returns:
|
|
A new PRNGKey object.
|
|
"""
|
|
convert = lambda key: lax.convert_element_type(key, onp.uint32)
|
|
if onp.shape(seed):
|
|
raise TypeError("PRNGKey seed must be a scalar.")
|
|
if isinstance(seed, (int, onp.ndarray)):
|
|
# Special handling of raw integer values, which may have be 64bit even
|
|
# when jax_enable_x64=False and we don't want to drop the top 32 bits
|
|
k1 = convert(onp.bitwise_and(onp.right_shift(seed, 32), 0xFFFFFFFF))
|
|
else:
|
|
k1 = convert(lax.shift_right_logical(seed, 32))
|
|
k2 = convert(lax.bitwise_and(seed, 0xFFFFFFFF))
|
|
self.keypair = (k1, k2)
|
|
|
|
@classmethod
|
|
def from_keypair(cls, keypair):
|
|
"""Internal method to create a PRNGKey instance from a raw key pair."""
|
|
new = cls.__new__(cls)
|
|
new.keypair = tuple(keypair)
|
|
return new
|
|
|
|
|
|
tree_util.register_pytree_node(PRNGKey, lambda k: (k.keypair, None),
|
|
lambda _, xs: PRNGKey.from_keypair(xs))
|
|
|
|
|
|
### utilities
|
|
|
|
|
|
def _make_rotate_left(dtype):
|
|
if not onp.issubdtype(dtype, onp.integer):
|
|
raise TypeError("_rotate_left only accepts integer dtypes.")
|
|
nbits = onp.array(onp.iinfo(dtype).bits, dtype)
|
|
|
|
def _rotate_left(x, d):
|
|
if lax._dtype(d) != lax._dtype(x):
|
|
d = lax.convert_element_type(d, x.dtype)
|
|
return (x << d) | lax.shift_right_logical(x, nbits - d)
|
|
return _rotate_left
|
|
|
|
|
|
def _bit_stats(bits):
|
|
"""This is a debugging function to compute the statistics of bit fields."""
|
|
return onp.array([list(map(int, onp.binary_repr(x, 64))) for x in bits]).mean(0)
|
|
|
|
|
|
### hash function and split
|
|
|
|
|
|
@jit
|
|
def threefry_2x32(keypair, count):
|
|
"""Apply the Threefry 2x32 hash.
|
|
|
|
Args:
|
|
keypair: a pair of 32bit unsigned integers used for the key.
|
|
count: an array of dtype uint32 used for the counts.
|
|
|
|
Returns:
|
|
An array of dtype uint32 with the same shape as `count`.
|
|
"""
|
|
# Based on ThreeFry2x32 by phawkins@ in //.../xla/client/lib/prng.cc
|
|
key1, key2 = keypair[0], keypair[1]
|
|
if not lax._dtype(key1) == lax._dtype(key2) == lax._dtype(count) == onp.uint32:
|
|
msg = "threefry_2x32 requires uint32 arguments, got {}"
|
|
raise TypeError(msg.format([lax._dtype(x) for x in [key1, key2, count]]))
|
|
|
|
rotate_left = _make_rotate_left(lax._dtype(count))
|
|
|
|
def apply_round(v, rot):
|
|
v = v[:]
|
|
v[0] = v[0] + v[1]
|
|
v[1] = rotate_left(v[1], rot)
|
|
v[1] = v[0] ^ v[1]
|
|
return v
|
|
|
|
odd_size = count.size % 2
|
|
if odd_size:
|
|
x = list(np.split(np.concatenate([count.ravel(), onp.uint32([0])]), 2))
|
|
else:
|
|
x = list(np.split(count.ravel(), 2))
|
|
|
|
rotations = [13, 15, 26, 6, 17, 29, 16, 24]
|
|
ks = [key1, key2, key1 ^ key2 ^ onp.uint32(0x1BD11BDA)]
|
|
|
|
x[0] = x[0] + ks[0]
|
|
x[1] = x[1] + ks[1]
|
|
|
|
for r in rotations[:4]:
|
|
x = apply_round(x, r)
|
|
x[0] = x[0] + ks[1]
|
|
x[1] = x[1] + ks[2] + onp.uint32(1)
|
|
|
|
for r in rotations[4:]:
|
|
x = apply_round(x, r)
|
|
x[0] = x[0] + ks[2]
|
|
x[1] = x[1] + ks[0] + onp.uint32(2)
|
|
|
|
for r in rotations[:4]:
|
|
x = apply_round(x, r)
|
|
x[0] = x[0] + ks[0]
|
|
x[1] = x[1] + ks[1] + onp.uint32(3)
|
|
|
|
for r in rotations[4:]:
|
|
x = apply_round(x, r)
|
|
x[0] = x[0] + ks[1]
|
|
x[1] = x[1] + ks[2] + onp.uint32(4)
|
|
|
|
for r in rotations[:4]:
|
|
x = apply_round(x, r)
|
|
x[0] = x[0] + ks[2]
|
|
x[1] = x[1] + ks[0] + onp.uint32(5)
|
|
|
|
out = np.concatenate(x)
|
|
assert out.dtype == onp.uint32
|
|
return lax.reshape(out[:-1] if odd_size else out, count.shape)
|
|
|
|
|
|
@partial(jit, static_argnums=(1,))
|
|
def split(key, num=2):
|
|
"""Splits a PRNG key pair of 32bit unsigned integers into `num` new key pairs.
|
|
|
|
Args:
|
|
key: a PRNGKey used as the random key.
|
|
num: optional, a positive integer indicating the number of keys to produce
|
|
(default 2).
|
|
|
|
Returns:
|
|
A tuple of length `num` of new PRNGKey instances.
|
|
"""
|
|
counts = onp.arange(num * 2, dtype=onp.uint32)
|
|
bits = lax.reshape(threefry_2x32(key.keypair, counts), (num, 2))
|
|
keypairs = (lax.index_in_dim(bits, i, keepdims=False) for i in range(num))
|
|
return tuple(PRNGKey.from_keypair((kp[0], kp[1])) for kp in keypairs)
|
|
|
|
|
|
def _random_bits(key, bit_width, shape):
|
|
"""Sample uniform random bits of given width and shape using PRNG key."""
|
|
if bit_width not in (32, 64):
|
|
raise TypeError("requires 32- or 64-bit field width.")
|
|
max_count = (bit_width // 32) * onp.prod(shape)
|
|
if max_count >= onp.iinfo(onp.uint32).max:
|
|
# TODO(mattjj): just split the key here
|
|
raise TypeError("requesting more random bits than a single call provides.")
|
|
|
|
bits = threefry_2x32(key.keypair, onp.arange(max_count, dtype=onp.uint32))
|
|
if bit_width == 64:
|
|
bits = [lax.convert_element_type(x, onp.uint64) for x in np.split(bits, 2)]
|
|
bits = (bits[0] << onp.uint64(32)) | bits[1]
|
|
return lax.reshape(bits, shape)
|
|
|
|
|
|
### random samplers
|
|
|
|
|
|
@partial(jit, static_argnums=(1, 2))
|
|
def uniform(key, shape, dtype=onp.float32, minval=0., maxval=1.):
|
|
"""Sample uniform random values in [minval, maxval) with given shape/dtype.
|
|
|
|
Args:
|
|
key: a PRNGKey used as the random key.
|
|
shape: a tuple of nonnegative integers representing the shape.
|
|
dtype: optional, a float dtype for the returned values (default float32).
|
|
minval: optional, a minimum (inclusive) value for the range (default 0).
|
|
maxval: optional, a maximum (exclusive) value for the range (default 1).
|
|
|
|
Returns:
|
|
A random array with the specified shape and dtype.
|
|
"""
|
|
if not onp.issubdtype(dtype, onp.floating):
|
|
raise TypeError("uniform only accepts floating point dtypes.")
|
|
|
|
dtype = xla_bridge.canonicalize_dtype(dtype)
|
|
minval = lax.convert_element_type(minval, dtype)
|
|
maxval = lax.convert_element_type(maxval, dtype)
|
|
finfo = onp.finfo(dtype)
|
|
nbits, nmant = finfo.bits, finfo.nmant
|
|
|
|
if nbits not in (32, 64):
|
|
raise TypeError("uniform only accepts 32- or 64-bit dtypes.")
|
|
|
|
bits = _random_bits(key, nbits, shape)
|
|
|
|
# The strategy here is to randomize only the mantissa bits with an exponent of
|
|
# 1 (after applying the bias), then shift and scale to the desired range. The
|
|
# bit-level transformation we use relies on Numpy and XLA having bit-for-bit
|
|
# equivalent float representations, which might not be true on all platforms.
|
|
float_bits = lax.bitwise_or(
|
|
lax.shift_right_logical(bits, onp.array(nbits - nmant, lax._dtype(bits))),
|
|
onp.array(1., dtype).view(onp.uint32 if nbits == 32 else onp.uint64))
|
|
floats = lax.bitcast_convert_type(float_bits, dtype) - onp.array(1., dtype)
|
|
return lax.max(
|
|
minval,
|
|
lax.reshape(floats * (maxval - minval) + minval, shape))
|
|
|
|
|
|
@partial(jit, static_argnums=(1, 4))
|
|
def randint(key, shape, minval, maxval, dtype=onp.int32):
|
|
"""Sample uniform random values in [minval, maxval) with given shape/dtype.
|
|
|
|
Args:
|
|
key: a PRNGKey used as the random key.
|
|
shape: a tuple of nonnegative integers representing the shape.
|
|
minval: optional, a minimum (inclusive) value for the range (default 0).
|
|
maxval: optional, a maximum (exclusive) value for the range (default 1).
|
|
dtype: optional, an int dtype for the returned values (default int32).
|
|
|
|
Returns:
|
|
A random array with the specified shape and dtype.
|
|
"""
|
|
if not onp.issubdtype(dtype, onp.integer):
|
|
raise TypeError("randint only accepts integer dtypes.")
|
|
|
|
dtype = xla_bridge.canonicalize_dtype(dtype)
|
|
minval = lax.convert_element_type(minval, dtype)
|
|
maxval = lax.convert_element_type(maxval, dtype)
|
|
nbits = onp.iinfo(dtype).bits
|
|
|
|
if nbits not in (32, 64):
|
|
raise TypeError("randint only accepts 32- or 64-bit dtypes.")
|
|
|
|
# This algorithm is biased whenever (maxval - minval) is not a power of 2.
|
|
# We generate double the number of random bits required by the dtype so as to
|
|
# reduce that bias.
|
|
k1, k2 = split(key)
|
|
rbits = lambda key: _random_bits(key, nbits, shape)
|
|
higher_bits, lower_bits = rbits(k1), rbits(k2)
|
|
|
|
unsigned_dtype = onp.uint32 if nbits == 32 else onp.uint64
|
|
span = lax.convert_element_type(maxval - minval, unsigned_dtype)
|
|
|
|
# To compute a remainder operation on an integer that might have twice as many
|
|
# bits as we can represent in the native unsigned dtype, we compute a
|
|
# multiplier equal to 2**nbits % span (using that nbits is 32 or 64).
|
|
multiplier = lax.rem(onp.array(2**16, unsigned_dtype), span)
|
|
multiplier = lax.rem(lax.mul(multiplier, multiplier), span)
|
|
if nbits == 64:
|
|
multiplier = lax.rem(lax.mul(multiplier, multiplier), span)
|
|
|
|
random_offset = lax.add(lax.mul(lax.rem(higher_bits, span), multiplier),
|
|
lax.rem(lower_bits, span))
|
|
random_offset = lax.rem(random_offset, span)
|
|
return lax.add(minval, lax.convert_element_type(random_offset, dtype))
|
|
|
|
|
|
@partial(jit, static_argnums=(2,))
|
|
def shuffle(key, x, axis=0):
|
|
"""Shuffle the elements of an array uniformly at random along an axis.
|
|
|
|
Args:
|
|
key: a PRNGKey used as the random key.
|
|
x: the array to be shuffled.
|
|
axis: optional, an int axis along which to shuffle (default 0).
|
|
|
|
Returns:
|
|
A shuffled version of x.
|
|
"""
|
|
# On parallel architectures, Fisher-Yates is more expensive than doing
|
|
# multiple sorts. This algorithm is based on one developed and analyzed by
|
|
# tjablin@. We sort according to randomly-generated 32bit keys, but those keys
|
|
# may have collisions. If we repeat the process, using fresh 32bit keys for
|
|
# each sort, then whenever all pairs of elements have been assigned distinct
|
|
# keys at some iteration (or equivalently when the strings formed by
|
|
# concatenating the successive keys for each element are all distinct) then we
|
|
# are guaranteed to have a perfect sample (assuming that either the sort is
|
|
# stable or that any bias is not value-dependent). Since checking uniqueness
|
|
# at runtime may be expensive, we use a heuristic static stop criterion
|
|
# developed by tjablin@. See tensorflow/compiler/tf2xla/random_ops.cc for more
|
|
# info, and for the original implementation of this algorithm. See also
|
|
# Section 2 of http://people.csail.mit.edu/costis/6896sp11/lec5s.pdf for
|
|
# another analysis (where the keys are generated one bit at a time).
|
|
exponent = 3 # see tjablin@'s analysis for explanation of this parameter
|
|
uint32max = onp.iinfo(onp.uint32).max
|
|
num_rounds = int(onp.ceil(exponent * onp.log(x.size) / onp.log(uint32max)))
|
|
|
|
for _ in range(num_rounds):
|
|
key, subkey = split(key)
|
|
sort_keys = _random_bits(subkey, 32, x.shape)
|
|
_, x = lax.sort_key_val(sort_keys, x, axis)
|
|
|
|
return x
|
|
|
|
|
|
@partial(jit, static_argnums=(1, 2))
|
|
def normal(key, shape, dtype=onp.float32):
|
|
"""Sample standard normal random values with given shape and float dtype.
|
|
|
|
Args:
|
|
key: a PRNGKey used as the random key.
|
|
shape: a tuple of nonnegative integers representing the shape.
|
|
dtype: optional, a float dtype for the returned values (default float32).
|
|
|
|
Returns:
|
|
A random array with the specified shape and dtype.
|
|
"""
|
|
lo = onp.nextafter(onp.array(-1., dtype), 0., dtype=dtype)
|
|
hi = onp.array(1., dtype)
|
|
u = uniform(key, shape, dtype, lo, hi)
|
|
return onp.array(onp.sqrt(2), dtype) * lax.erf_inv(u)
|
|
|
|
|
|
@partial(jit, static_argnums=(2,))
|
|
def bernoulli(key, mean=onp.float32(0.5), shape=()):
|
|
"""Sample Bernoulli random values with given shape and mean.
|
|
|
|
Args:
|
|
key: a PRNGKey used as the random key.
|
|
mean: optional, an array-like broadcastable to `shape` for the mean of the
|
|
random variables (default 0.5).
|
|
shape: optional, a tuple of nonnegative integers representing the shape
|
|
(default scalar).
|
|
|
|
Returns:
|
|
A random array with the specified shape and boolean dtype.
|
|
"""
|
|
shape = shape or onp.shape(mean)
|
|
if not onp.issubdtype(lax._dtype(mean), onp.float32):
|
|
mean = lax.convert_element_type(mean, onp.float32)
|
|
if onp.shape(mean) != shape:
|
|
mean = lax.broadcast(mean, shape)
|
|
return lax.lt(uniform(key, shape), mean)
|