rocm_jax/jax/_src/sharding_impls.py
Parker Schuh 7ba811eb4a Support auto in shard_map.
- Pull mesh from NamedSharding when rewriting manual axes.
- Properly set manual axes in SPMDAxisContext in shard_map.
- Properly set dims as unspecified inside shard_map.

PiperOrigin-RevId: 627156892
2024-04-22 14:29:35 -07:00

1392 lines
50 KiB
Python

# Copyright 2021 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import collections
from collections import OrderedDict
from collections.abc import Mapping, Sequence
import dataclasses
import enum
import functools
import itertools
import math
from typing import Any, NamedTuple, Union, cast
from jax._src import mesh as mesh_lib
from jax._src.op_shardings import (
is_op_sharding_replicated, are_op_shardings_equal, get_num_ways_dim_sharded,
op_sharding_to_indices)
from jax._src import sharding
from jax._src import sharding_specs
from jax._src import tree_util
from jax._src import util
from jax._src import xla_bridge
from jax._src.util import safe_map, safe_zip, use_cpp_class, use_cpp_method
from jax._src.lib import xla_client as xc
from jax._src.lib import xla_extension_version
from jax._src.partition_spec import PartitionSpec
import numpy as np
Shape = tuple[int, ...]
Device = xc.Device
Index = tuple[slice, ...]
XLADeviceAssignment = tuple[Device, ...]
@dataclasses.dataclass(frozen=True)
class TransferToMemoryKind:
memory_kind: str
@functools.lru_cache(maxsize=4096)
def common_devices_indices_map(s, global_shape: Shape) -> Mapping[Device, Index]:
hlo_sharding = s._to_xla_hlo_sharding(len(global_shape))
gspmd_sharding = GSPMDSharding(s._device_assignment, hlo_sharding)
return gspmd_sharding.devices_indices_map(global_shape)
@functools.lru_cache(maxsize=4096)
def _common_shard_shape(self, global_shape: Shape) -> Shape:
hlo_sharding = self._to_xla_hlo_sharding(len(global_shape))
if is_op_sharding_replicated(hlo_sharding):
return global_shape
partitions, _ = get_num_ways_dim_sharded(hlo_sharding)
assert len(partitions) == len(global_shape), (len(partitions), len(global_shape))
out = []
for dim, (s, p) in enumerate(safe_zip(global_shape, partitions)):
try:
quotient, remainder = divmod(s, p)
except TypeError:
# TODO Figure out how to partition dynamic shapes
raise NotImplementedError
if remainder != 0:
raise ValueError(
f"Sharding {self} implies that array axis {dim} is partitioned "
f"{p} times, but the dimension size is {s} "
f"(full shape: {global_shape}, "
f"per-dimension tiling factors: {partitions} should evenly divide "
"the shape)")
out.append(quotient)
return tuple(out)
# Shardings that inherit from XLACompatibleSharding should implement the
# `_device_assignment` property and `_to_xla_hlo_sharding` method.
@use_cpp_class(xc.XLACompatibleSharding)
class XLACompatibleSharding(sharding.Sharding):
"""A :class:`Sharding` that describes shardings expressible to XLA.
Subclasses of :class:`XLACompatibleSharding` work with
all JAX APIs and transformations that use XLA.
"""
# Abstract methods below that subclasses should implement.
@property
def _device_assignment(self) -> XLADeviceAssignment:
raise NotImplementedError('Subclasses should implement this method.')
def _to_xla_hlo_sharding(self, num_dimensions: int) -> xc.HloSharding:
raise NotImplementedError('Subclasses should implement this method.')
#############################################################################
# Default implementations below that all subclasses will inherit.
def devices_indices_map(self, global_shape: Shape) -> Mapping[Device, Index]:
return common_devices_indices_map(self, global_shape)
@functools.cached_property
def _addressable_device_assignment(self) -> XLADeviceAssignment:
if self.is_fully_addressable:
return self._device_assignment
if hasattr(self, '_internal_device_list'):
return tuple(self._internal_device_list.addressable_device_list)
return tuple(d for d in self._device_assignment
if d.process_index == d.client.process_index())
def shard_shape(self, global_shape: Shape) -> Shape:
return _common_shard_shape(self, global_shape)
def is_equivalent_to(self: XLACompatibleSharding, # type: ignore
other: XLACompatibleSharding, ndim: int) -> bool:
try:
return (are_op_shardings_equal(self._to_xla_hlo_sharding(ndim),
other._to_xla_hlo_sharding(ndim))
and self._internal_device_list == other._internal_device_list and # type: ignore
self.memory_kind == other.memory_kind)
# NotImplementedError is raised by PmapSharding because it can't lower
# to OpSharding. So if `other` is a PmapSharding, default to a strict
# equality check.
except NotImplementedError:
return self == other
@functools.lru_cache
def _check_mesh_resource_axis(mesh, parsed_pspec, _manual_axes):
try:
for p in parsed_pspec:
if p is not None:
for r in p:
mesh.shape[r]
if r in _manual_axes:
raise ValueError(
f"Axis: {r} of {parsed_pspec.get_partition_spec()} "
f"is also found in manual_axes: {_manual_axes}.") from None
except KeyError as e:
raise ValueError(f"Resource axis: {e.args[0]} of {parsed_pspec.user_spec} is "
"undefined.") from None
def hashed_index(x) -> int:
# This works for both `pjit`/`xmap` indices and `pmap` indices (which might
# have an integer instead of a slice).
assert all(v.step is None for v in x if isinstance(v, slice))
return hash(tuple((v.start, v.stop) if isinstance(v, slice) else v for v in x))
@functools.lru_cache(maxsize=4096)
def device_replica_id_map(sharding, global_shape: Shape) -> Mapping[Device, int]:
try:
device_indices_map_fn = sharding.devices_indices_map
except AttributeError:
raise ValueError(
f'Cannot calculate replica ids from sharding: {sharding}. Please '
'create a device to index mapping for your sharding from which replica '
'ids will be calculated.') from None
index_to_replica: dict[int, int] = collections.Counter()
out = {}
for device, index in device_indices_map_fn(global_shape).items():
h_index = hashed_index(index)
replica_id = index_to_replica[h_index]
index_to_replica[h_index] += 1
out[device] = replica_id
return out
@functools.lru_cache(maxsize=4096)
def named_sharding_to_xla_hlo_sharding(
self, num_dimensions: int) -> xc.HloSharding:
mesh_shape = self.mesh.shape
array_mapping = get_array_mapping(self._parsed_pspec)
mesh_axis_pos = {name: i for i, name in enumerate(self.mesh.axis_names)}
special_axes = {}
if self._manual_axes:
axis_names = self.mesh.axis_names
for manual_axis in self._manual_axes:
special_axes[axis_names.index(manual_axis)] = xc.OpSharding.Type.MANUAL
if xla_extension_version < 259:
if manual_axis in array_mapping: # type: ignore
raise ValueError(f"manual axis {repr(manual_axis)} in {repr(self)} "
"cannot be used as a sharded axis")
replicated_mesh_axes = []
for i, (axis_name, axis_val) in enumerate(mesh_shape.items()):
if axis_name not in array_mapping: # type: ignore
replicated_mesh_axes.append((i, axis_val))
if len(replicated_mesh_axes) == len(mesh_shape) and not special_axes:
return xc.HloSharding.replicate()
mesh_permutation = []
new_mesh_shape = [1] * num_dimensions
for name, pos in sorted(array_mapping.items(), key=lambda x: x[1]): # type: ignore
new_mesh_shape[pos] *= mesh_shape[name]
mesh_permutation.append(mesh_axis_pos[name])
last_tile_dims = []
if replicated_mesh_axes:
axes_by_type = collections.defaultdict(list)
size_by_type = collections.defaultdict(lambda: 1) # type: ignore
assert {x[0] for x in replicated_mesh_axes}.issuperset(set(special_axes.keys()))
for i, size in replicated_mesh_axes:
ty = special_axes.get(i, xc.OpSharding.Type.REPLICATED)
axes_by_type[ty].append(i)
size_by_type[ty] *= size
for ty, axes in sorted(axes_by_type.items(), key=lambda x: x[0].value):
last_tile_dims.append(ty)
new_mesh_shape.append(size_by_type[ty])
mesh_permutation.extend(axes)
# Explanation of the parameters of `HloSharding.iota_tile`.
# This is the HloShardingV2 format:
# * dims: How many ways each dimension is sharded.
# Replicated/Manual dims are added added at the end
# * reshape_dims: This is the just the shape of the mesh.
# * transpose_perm: This is the order in which mesh axes in PartitionSpec
# appear relative to mesh.axis_names order.
# * subgroup_types: List of type of OpSharding. Type can be REPLICATED and MANUAL.
# Let's see an example:
# Consider input_shape=(8, 4, 2, 2), mesh={'a': 2, 'b': 2, 'c': 2, 'd': 2}
# and partition_spec=P(None, ('d', 'b'), 'c').
# Arguments to iota_tile will be:
# dims = [1, 4, 2, 1, 2] # 'a' is replicated hence `2` is at the end.
# reshape_dims = [2, 2, 2, 2]
# transpose_perm = [3, 1, 2, 0] # 'a' is replicated hence 0 is at the end
# subgroup_types = [xc.OpSharding.Type.REPLICATED]
return xc.HloSharding.iota_tile(
dims=new_mesh_shape, reshape_dims=tuple(self.mesh.shape.values()),
transpose_perm=mesh_permutation, subgroup_types=last_tile_dims)
@use_cpp_class(xc.NamedSharding)
class NamedSharding(XLACompatibleSharding):
r"""A :class:`NamedSharding` expresses sharding using named axes.
A :class:`NamedSharding` is a pair of a :class:`Mesh` of devices and
:class:`PartitionSpec` which describes how to shard an array across that
mesh.
A :class:`Mesh` is a multidimensional NumPy array of JAX devices,
where each axis of the mesh has a name, e.g. ``'x'`` or ``'y'``.
A :class:`PartitionSpec` is a tuple, whose elements can be a ``None``,
a mesh axis, or a tuple of mesh axes. Each element describes how an input
dimension is partitioned across zero or more mesh dimensions. For example,
``PartitionSpec('x', 'y')`` says that the first dimension of data
is sharded across ``x`` axis of the mesh, and the second dimension is sharded
across ``y`` axis of the mesh.
The Distributed arrays and automatic parallelization
(https://jax.readthedocs.io/en/latest/notebooks/Distributed_arrays_and_automatic_parallelization.html#namedsharding-gives-a-way-to-express-shardings-with-names)
tutorial has more details and diagrams that explain how
:class:`Mesh` and :class:`PartitionSpec` are used.
Args:
mesh: A :class:`jax.sharding.Mesh` object.
spec: A :class:`jax.sharding.PartitionSpec` object.
Example:
>>> from jax.sharding import Mesh
>>> from jax.sharding import PartitionSpec as P
>>> mesh = Mesh(np.array(jax.devices()).reshape(2, 4), ('x', 'y'))
>>> spec = P('x', 'y')
>>> named_sharding = jax.sharding.NamedSharding(mesh, spec)
"""
mesh: mesh_lib.Mesh
spec: PartitionSpec
_memory_kind: str | None
_parsed_pspec: ParsedPartitionSpec
_manual_axes: frozenset[MeshAxisName]
@use_cpp_method()
def __init__(
self, mesh: mesh_lib.Mesh, spec: PartitionSpec, *,
memory_kind: str | None = None, _parsed_pspec=None,
_manual_axes=frozenset()):
self.mesh = mesh
self.spec = spec
self._memory_kind = memory_kind
self._manual_axes = _manual_axes
self._parsed_pspec = preprocess(self.mesh, self.spec, _parsed_pspec)
# TODO(phawkins): remove this method when jaxlib 0.4.26 or newer is the
# minimum. This method is called by the C++ sharding implementation in earlier
# versions.
if xla_extension_version < 243:
def _preprocess(self):
self._parsed_pspec = preprocess(self.mesh, self.spec, self._parsed_pspec)
def __repr__(self):
mesh_repr = ", ".join(f"'{k}': {v}" for k, v in self.mesh.shape.items())
mem = '' if self.memory_kind is None else f', memory_kind={self.memory_kind}'
return f'NamedSharding(mesh=Mesh({mesh_repr}), spec={self.spec}{mem})'
def __reduce__(self):
return (type(self), (self.mesh, self.spec),
{'memory_kind': self.memory_kind,
'_manual_axes': self._manual_axes})
@property
def memory_kind(self) -> str | None:
return self._memory_kind
def __hash__(self):
if not hasattr(self, '_hash'):
self._hash = hash(
(self.mesh, self.memory_kind, self._parsed_pspec, self._manual_axes))
return self._hash
def __eq__(self, other):
if not isinstance(other, NamedSharding):
return False
if self is other:
return True
if (self._parsed_pspec != other._parsed_pspec
or self.memory_kind != other.memory_kind
or self._manual_axes != other._manual_axes):
return False
return self.mesh is other.mesh or self.mesh == other.mesh
def is_compatible_aval(self, aval_shape: Shape):
assert self._parsed_pspec is not None
if len(aval_shape) < len(self._parsed_pspec):
extra_msg = (' For scalars the PartitionSpec should be P()'
if len(aval_shape) == 0 else '')
raise ValueError(
f"Sharding {self} is only valid for values of rank at least "
f"{len(self._parsed_pspec)}, but was applied to a value of rank "
f"{len(aval_shape)}.{extra_msg}")
@classmethod
def _from_parsed_pspec(
cls, mesh, parsed_pspec, *, memory_kind=None, _manual_axes=frozenset()
):
return cls(mesh, parsed_pspec.get_partition_spec(),
memory_kind=memory_kind, _parsed_pspec=parsed_pspec,
_manual_axes=_manual_axes)
@property
def device_set(self) -> set[Device]:
return self.mesh._flat_devices_set
@property
def _device_assignment(self) -> XLADeviceAssignment:
return self.mesh._flat_devices_tuple
@property
def is_fully_addressable(self) -> bool:
# Speed up `is_fully_addressable` since there is a high chance that the
# mesh across multiple NamedSharding objects will be the same.
return not self.mesh.is_multi_process
@property
def addressable_devices(self) -> set[Device]:
# Override addressable devices because there is a high chance that the mesh
# across multiple NamedSharding objects will be the same.
return self.mesh._local_devices_set
@functools.cached_property
def is_fully_replicated(self) -> bool:
if self.mesh.size == 1:
return True
array_mapping = cast(ParsedPartitionSpec, get_array_mapping(self._parsed_pspec))
mesh_shape = self.mesh.shape
num_partitions = 1
for name in array_mapping:
num_partitions *= mesh_shape[name]
return num_partitions == 1
def with_memory_kind(self, kind: str) -> NamedSharding:
return NamedSharding(self.mesh, self.spec, memory_kind=kind)
def _to_xla_hlo_sharding(self, num_dimensions: int) -> xc.HloSharding:
return named_sharding_to_xla_hlo_sharding(self, num_dimensions)
@functools.lru_cache
def get_replicated_hlo_sharding():
return xc.HloSharding.replicate()
@use_cpp_class(xc.SingleDeviceSharding)
class SingleDeviceSharding(XLACompatibleSharding):
"""A :class:`Sharding` that places its data on a single device.
Args:
device: A single :py:class:`Device`.
Example:
>>> single_device_sharding = jax.sharding.SingleDeviceSharding(
... jax.devices()[0])
"""
_device: Device
_memory_kind: str | None
@use_cpp_method()
def __init__(self, device: Device, *, memory_kind: str | None = None):
self._device = device
self._memory_kind = memory_kind
def __reduce__(self):
return type(self), (self._device,), {'memory_kind': self._memory_kind}
def __repr__(self):
mem = '' if self._memory_kind is None else f', memory_kind={self._memory_kind}'
return f"SingleDeviceSharding(device={self._device!r}{mem})"
def __hash__(self):
if not hasattr(self, '_hash'):
self._hash = hash((self._device, self.memory_kind))
return self._hash
def __eq__(self, other):
if not isinstance(other, SingleDeviceSharding):
return False
if self is other:
return True
return (self._device == other._device and
self.memory_kind == other.memory_kind)
@property
def device_set(self) -> set[Device]:
return {self._device}
@property
def memory_kind(self) -> str | None:
return self._memory_kind
def with_memory_kind(self, kind: str) -> SingleDeviceSharding:
return SingleDeviceSharding(self._device, memory_kind=kind)
def devices_indices_map(self, global_shape: Shape) -> Mapping[Device, Index]: # type: ignore
return {self._device: (slice(None),) * len(global_shape)}
@property
def _device_assignment(self) -> XLADeviceAssignment:
return (self._device,)
def _to_xla_hlo_sharding(self, num_dimensions: int) -> xc.HloSharding:
return get_replicated_hlo_sharding()
@property
def is_fully_replicated(self) -> bool:
return True
@property
def is_fully_addressable(self) -> bool:
return True
@functools.lru_cache(maxsize=4096)
def pmap_sharding_devices_indices_map(
self, global_shape: Shape) -> Mapping[Device, Index]:
self.shard_shape(global_shape) # raises a good error message
indices = sharding_specs.spec_to_indices(global_shape, self.sharding_spec)
return dict(safe_zip(self.devices.flat, indices)) # type: ignore[arg-type]
@use_cpp_class(xc.PmapSharding)
class PmapSharding(XLACompatibleSharding):
"""Describes a sharding used by :func:`jax.pmap`."""
devices: np.ndarray
sharding_spec: sharding_specs.ShardingSpec
@use_cpp_method()
def __init__(self, devices: Sequence[Device] | np.ndarray,
sharding_spec: sharding_specs.ShardingSpec):
self.devices = np.asarray(devices)
# The sharding spec should be pmap's sharding spec.
self.sharding_spec = sharding_spec
def __reduce__(self):
return (type(self), (self.devices, self.sharding_spec),
{'memory_kind': self.memory_kind})
def __eq__(self, other):
if not isinstance(other, PmapSharding):
return False
if self is other:
return True
return (self.sharding_spec == other.sharding_spec and
self.devices.shape == other.devices.shape and
self._internal_device_list == other._internal_device_list) # type: ignore
def __hash__(self):
if not hasattr(self, '_hash'):
self._hash = hash((self._internal_device_list, self.sharding_spec)) # type: ignore
return self._hash
def __str__(self):
device_ids = [d.id for d in self.devices.flat]
return (f'PmapSharding(sharding_spec={self.sharding_spec}, '
f'{device_ids=}, '
f'device_platform={self.devices.flat[0].platform.upper()}, '
f'device_shape={self.devices.shape})')
def __repr__(self):
return (f'PmapSharding(sharding_spec={self.sharding_spec}, '
f'devices={self.devices})')
def is_equivalent_to(self: PmapSharding, other: PmapSharding, # type: ignore
ndim: int) -> bool:
return self == other
# TODO(yashkatariya): Expose `sharded_dim_size` in the API if required.
@classmethod
def default(cls, shape: Shape, sharded_dim: int = 0,
devices: Sequence[xc.Device] | None = None) -> PmapSharding:
"""Creates a :class:`PmapSharding` which matches the default placement
used by :func:`jax.pmap`.
Args:
shape: The shape of the input array.
sharded_dim: Dimension the input array is sharded on. Defaults to 0.
devices: Optional sequence of devices to use. If omitted, the implicit
device order used by pmap is used, which is the order of
:func:`jax.local_devices`.
"""
# The dtype doesn't matter here. Its only used for creating the
# sharding_spec.
sharding_spec = sharding_specs.create_pmap_sharding_spec(
tuple(shape), sharded_dim)
num_ways_sharded = None
for s in sharding_spec.sharding:
if isinstance(s, sharding_specs.Unstacked):
assert num_ways_sharded is None
num_ways_sharded = s.size
elif isinstance(s, sharding_specs.Chunked):
assert num_ways_sharded is None
if len(s.chunks) == 1:
num_ways_sharded = s.chunks[0]
else:
raise NotImplementedError(
'Multiple chunks in Chunked dimension not supported.')
if num_ways_sharded is None:
raise NotImplementedError(
'`None` to sharded_dim is not supported. Please file a jax '
'issue if you need this feature.')
if devices is None:
pmap_devices: np.ndarray = np.array(
xla_bridge.local_devices()[:num_ways_sharded])
else:
pmap_devices = np.array(devices)
return cls(pmap_devices, sharding_spec)
@functools.cached_property
def device_set(self) -> set[Device]:
return set(self.devices.flat)
def devices_indices_map(self, global_shape: Shape) -> Mapping[Device, Index]:
return pmap_sharding_devices_indices_map(self, global_shape)
@functools.cached_property
def _device_assignment(self) -> XLADeviceAssignment:
return tuple(self.devices.flat)
@property
def memory_kind(self) -> str | None:
try:
return self._internal_device_list.default_memory_kind # type: ignore
except:
return None
def with_memory_kind(self, kind: str):
raise NotImplementedError("pmap does not support memories.")
def _to_xla_hlo_sharding(self, num_dimensions: int) -> xc.HloSharding:
raise NotImplementedError("pmap doesn't use OpSharding.")
@functools.cached_property
def is_fully_replicated(self) -> bool:
for s in self.sharding_spec.sharding:
if isinstance(s, (sharding_specs.Unstacked, sharding_specs.Chunked)):
return False
return True
@functools.cached_property
def is_fully_addressable(self) -> bool:
return self._internal_device_list.is_fully_addressable # type: ignore
def shard_shape(self, global_shape: Shape) -> Shape:
sharded_dim = None
sharded_dim_size = None
for i, s in enumerate(self.sharding_spec.sharding):
if isinstance(s, sharding_specs.Unstacked):
sharded_dim = i
sharded_dim_size = s.size
sharded_shape = util.tuple_delete(global_shape, sharded_dim)
break
elif isinstance(s, sharding_specs.Chunked):
sharded_dim = i
assert len(s.chunks) == 1, s.chunks
sharded_dim_size = s.chunks[0]
sharded_shape = util.tuple_update(global_shape, sharded_dim, 1)
break
if sharded_dim is None:
return global_shape
if global_shape[sharded_dim] != sharded_dim_size:
raise ValueError(
f'The sharded dimension must be equal to the number of '
f'devices passed to PmapSharding. Got sharded dimension {sharded_dim} '
f'with value {global_shape[sharded_dim]} in shape {global_shape} and '
f'the number of devices={len(self._device_assignment)}')
return sharded_shape
def _op_sharding_to_pos_sharding(
op_sharding: xc.OpSharding | xc.HloSharding,
device_assignment: Sequence[xc.Device],
memory_kind: str | None = None) -> PositionalSharding:
if isinstance(op_sharding, xc.OpSharding):
op_sharding = xc.HloSharding.from_proto(op_sharding) # type: ignore
if op_sharding.is_replicated():
return PositionalSharding(
device_assignment, memory_kind=memory_kind).replicate()
if len(op_sharding.subgroup_types()) > 1:
raise NotImplementedError(
'Unhandled HloSharding type. Please open a bug report!'
)
name = device_assignment[0].platform.upper()
ids = np.array(
[DeviceIdSet(name, i) for i in op_sharding.tile_assignment_devices()]
)
p = PositionalSharding._remake(tuple(device_assignment), ids,
memory_kind=memory_kind)
p = p.reshape(op_sharding.tile_assignment_dimensions())
if op_sharding.replicate_on_last_tile_dim():
p = p.replicate(-1, keepdims=False)
return p
@functools.lru_cache(maxsize=4096)
def _positional_sharding_to_xla_hlo_sharding(
self, num_dimensions: int) -> xc.HloSharding:
if self.shape == (1,) * self.ndim:
return get_replicated_hlo_sharding()
pbuf = xc.OpSharding()
shape = self.shape[self.ndim - num_dimensions:] # 'rank promotion' of val
set_size, = {len(device_set) for device_set in self._ids.flat}
pbuf.type = xc.OpSharding.Type.OTHER
if set_size > 1:
pbuf.last_tile_dims = [xc.OpSharding.Type.REPLICATED]
pbuf.tile_assignment_dimensions = (*shape, set_size)
else:
pbuf.tile_assignment_dimensions = shape
pbuf.tile_assignment_devices = [i for ids in self._ids.flat for i in ids]
product_of_dims = math.prod(pbuf.tile_assignment_dimensions)
num_devices = len(pbuf.tile_assignment_devices)
assert product_of_dims == num_devices, (product_of_dims, num_devices)
return xc.HloSharding.from_proto(pbuf)
class PositionalSharding(XLACompatibleSharding):
_devices: tuple[xc.Device, ...]
_memory_kind: str | None
_ids: np.ndarray # dtype DeviceIdSet
def __init__(self, devices: Sequence[xc.Device] | np.ndarray,
*, memory_kind: str | None = None):
if xla_extension_version >= 235:
super().__init__()
if not isinstance(devices, np.ndarray):
devices = np.array(devices, dtype='object')
if not devices.size:
raise ValueError(f"{self.__class__.__name__}.__init__ requires at least "
f"one device, got {devices}")
self._devices = tuple(devices.flat)
self._memory_kind = memory_kind
name = self._devices[0].platform.upper()
self._ids = np.array([DeviceIdSet(name, i) for i in range(devices.size)],
dtype='object').reshape(devices.shape)
self._internal_device_list = xc.DeviceList(self._devices)
self._memory_kind = xc.check_and_canonicalize_memory_kind(
self._memory_kind, self._internal_device_list)
@property
def shape(self):
return self._ids.shape
@property
def ndim(self):
return self._ids.ndim
def __repr__(self) -> str:
cls_name = self.__class__.__name__
ids = self._ids.copy()
platform_name = self._devices[0].platform.upper()
for idx, x in np.ndenumerate(ids):
ids[idx] = DeviceIdSet(platform_name, *(self._devices[i].id for i in x))
body = np.array2string(ids, prefix=cls_name + '(', suffix=')',
max_line_width=100)
mem = '' if self._memory_kind is None else f', memory_kind={self._memory_kind}'
return f'{cls_name}({body}{mem}, shape={self.shape})'
def reshape(self, *shape) -> PositionalSharding:
return self._remake(self._devices, self._ids.reshape(*shape))
def transpose(self, *axes) -> PositionalSharding:
return self._remake(self._devices, self._ids.transpose(*axes))
T = property(transpose)
def replicate(self, axis=None, keepdims=True) -> PositionalSharding:
new_ids = self._ids.sum(axis=axis, keepdims=keepdims) # union
return self._remake(self._devices, new_ids)
@classmethod
def _remake(
cls, devices: tuple[xc.Device, ...], ids: np.ndarray,
*, memory_kind: str | None = None) -> PositionalSharding:
self = cls.__new__(cls)
self._devices = devices
self._ids = ids
self._internal_device_list = xc.DeviceList(self._devices)
self._memory_kind = xc.check_and_canonicalize_memory_kind(
memory_kind, self._internal_device_list)
return self
# Hashable
def __hash__(self) -> int:
if not hasattr(self, '_hash'):
self._hash = hash((self._internal_device_list, self.memory_kind))
return self._hash
def __eq__(self, other) -> bool:
if not isinstance(other, PositionalSharding):
return False
if self is other:
return True
all_ids_equal = np.array_equal(self._ids,other._ids)
mem_kind_equal = self.memory_kind == other.memory_kind
if self._devices is other._devices and mem_kind_equal and all_ids_equal:
return True
return (mem_kind_equal and all_ids_equal and
self._internal_device_list == other._internal_device_list)
# Sharding interface
@functools.cached_property
def device_set(self) -> set[xc.Device]:
return set(self._devices)
@property
def memory_kind(self) -> str | None:
return self._memory_kind
def with_memory_kind(self, kind: str) -> PositionalSharding:
return PositionalSharding(self._devices, memory_kind=kind)
@functools.cached_property
def is_fully_replicated(self) -> bool:
return self.shape == (1,) * self.ndim
# XLACompatibleSharding interface
@property
def _device_assignment(self) -> XLADeviceAssignment:
return self._devices
def _to_xla_hlo_sharding(self, num_dimensions: int) -> xc.HloSharding:
return _positional_sharding_to_xla_hlo_sharding(self, num_dimensions)
@functools.cached_property
def is_fully_addressable(self) -> bool:
return self._internal_device_list.is_fully_addressable
class DeviceIdSet:
_name: str
_ids: frozenset[int]
def __init__(self, name, *ids):
self._name = name
self._ids = frozenset(ids)
def __iter__(self):
return iter(sorted(self._ids))
def __add__(self, other) -> DeviceIdSet:
assert isinstance(other, DeviceIdSet)
return DeviceIdSet(self._name, *(self._ids | other._ids))
def __len__(self) -> int:
return len(self._ids)
def __repr__(self) -> str:
ids = ', '.join(safe_map(str, sorted(self._ids)))
return f'{{{self._name} {ids}}}'
def __hash__(self) -> int:
return hash((self._name, self._ids))
def __eq__(self, other) -> bool:
return (isinstance(other, DeviceIdSet) and self._name == other._name and
self._ids == other._ids)
@functools.lru_cache(maxsize=4096)
def gspmd_sharding_devices_indices_map(
self, global_shape: Shape) -> Mapping[Device, Index]:
self.shard_shape(global_shape) # raises a good error message
indices = op_sharding_to_indices(self._hlo_sharding, global_shape,
len(self._devices))
return dict(safe_zip(self._devices, indices))
@use_cpp_class(xc.GSPMDSharding)
class GSPMDSharding(XLACompatibleSharding):
_devices: tuple[Device, ...]
_hlo_sharding: xc.HloSharding
_memory_kind: str | None
_device_list: xc.DeviceList | None
@use_cpp_method()
def __init__(self, devices: Sequence[Device],
op_sharding: xc.OpSharding | xc.HloSharding,
*, memory_kind: str | None = None,
_device_list: xc.DeviceList | None = None):
self._devices = tuple(devices)
if isinstance(op_sharding, xc.OpSharding):
self._hlo_sharding = xc.HloSharding.from_proto(op_sharding)
else:
self._hlo_sharding = op_sharding
self._memory_kind = memory_kind
def __reduce__(self):
return (type(self), (self._devices, self._hlo_sharding.to_proto()),
{'memory_kind': self._memory_kind})
@functools.cached_property
def _hlo_sharding_hash(self):
if self.is_fully_replicated:
return hash(get_replicated_hlo_sharding())
return hash(self._hlo_sharding)
def __eq__(self, other):
if not isinstance(other, GSPMDSharding):
return False
if self is other:
return True
return (are_op_shardings_equal(self._hlo_sharding, other._hlo_sharding)
and self.memory_kind == other.memory_kind
and self._internal_device_list == other._internal_device_list) # type: ignore
def __hash__(self):
if not hasattr(self, '_hash'):
self._hash = hash((self._internal_device_list, self._hlo_sharding_hash, # type: ignore
self.memory_kind))
return self._hash
def __repr__(self):
mem = '' if self._memory_kind is None else f', memory_kind={self._memory_kind}'
return f'GSPMDSharding({self._hlo_sharding!r}{mem})'
def is_compatible_aval(self, aval_shape: Shape):
num_ways_dim_sharded, _ = get_num_ways_dim_sharded(self._hlo_sharding)
if len(aval_shape) < len(num_ways_dim_sharded):
raise ValueError(
f"Sharding {self} is only valid for values of rank at least "
f"{len(num_ways_dim_sharded)}, but was applied to a value of rank "
f"{len(aval_shape)}")
@functools.cached_property
def device_set(self) -> set[Device]:
return set(self._devices)
@property
def memory_kind(self) -> str | None:
return self._memory_kind
def with_memory_kind(self, kind: str) -> GSPMDSharding:
return GSPMDSharding(self._devices, self._hlo_sharding, memory_kind=kind)
def devices_indices_map(self, global_shape: Shape) -> Mapping[Device, Index]:
return gspmd_sharding_devices_indices_map(self, global_shape)
@property
def _device_assignment(self) -> XLADeviceAssignment:
return self._devices
def _to_xla_hlo_sharding(self, num_dimensions: int) -> xc.HloSharding:
return self._hlo_sharding
@functools.cached_property
def is_fully_replicated(self) -> bool:
return is_op_sharding_replicated(self._hlo_sharding)
@functools.cached_property
def is_fully_addressable(self) -> bool:
return self._internal_device_list.is_fully_addressable # type: ignore
@classmethod
def get_replicated(cls, device_assignment, *, memory_kind: str | None = None):
return cls(tuple(device_assignment), get_replicated_hlo_sharding(),
memory_kind=memory_kind)
class AUTO:
def __init__(self, mesh: mesh_lib.Mesh):
self.mesh = mesh
def is_auto(x):
return isinstance(x, AUTO)
class UnspecifiedValue:
def __repr__(self):
return "UnspecifiedValue"
UNSPECIFIED = UnspecifiedValue()
def is_unspecified(x):
return isinstance(x, UnspecifiedValue)
def is_unspecified_or_auto(x):
return is_auto(x) or is_unspecified(x)
MeshAxisName = Any
"""
ArrayMapping specifies how an ndarray should map to mesh axes.
Note that the ordering is crucial for the cases when this mapping is non-injective
(i.e. when multiple mesh axes map to the same positional axis). Then, the
order of entries of the mapping determines a major-to-minor order on mesh axes,
according to which chunks of the value along the repeated dimension will be assigned.
For example, consider a mapping {'x': 1, 'y': 1} and a mesh with shape {'x': 2, 'y': 3}.
The second dimension of the value would get chunked into 6 pieces, and assigned to the
mesh in a way that treats 'y' as the fastest changing (minor) dimension. In this case,
that would mean that a flat list of chunks would get assigned to a flattened list of
mesh devices without any modifications. If the mapping was {'y': 1, 'x': 1}, then the
mesh devices ndarray would have to be transposed before flattening and assignment.
"""
ArrayMapping = OrderedDict[MeshAxisName, int]
ArrayMappingOrAutoOrUnspecified = Union[ArrayMapping, AUTO, UnspecifiedValue]
def array_mapping_to_axis_resources(array_mapping: ArrayMapping):
if not array_mapping:
return PartitionSpec()
max_index = -1
reverse_map = collections.defaultdict(list)
for axis, index in array_mapping.items():
reverse_map[index].append(axis)
if index > max_index:
max_index = index
partitions = []
for i in range(max_index + 1):
axis = reverse_map[i]
if axis:
partitions.append(axis[0] if len(axis) == 1 else tuple(axis))
else:
partitions.append(None)
return PartitionSpec(*partitions)
def get_array_mapping(
axis_resources: ParsedPartitionSpec | AUTO | UnspecifiedValue
) -> ArrayMappingOrAutoOrUnspecified:
# TODO(yashkatariya): Use `TypeGuard` on `is_auto` when it is supported.
# Don't use `is_auto` here to satisfy pytype and mypy.
if isinstance(axis_resources, (AUTO, UnspecifiedValue)):
return axis_resources
return OrderedDict((axis, i)
for i, axes in enumerate(axis_resources)
if axes is not None for axis in axes)
get_single_pspec = lambda p: array_mapping_to_axis_resources(
cast(ArrayMapping, get_array_mapping(p)))
class SpecSync(enum.IntEnum):
"""Encodes how much out of sync the real value of partitions is compared to the user specified one.
We use this to make sure we don't show garbage modified values while claiming
that the users have specified them like that.
"""
OUT_OF_SYNC = 0 # Arbitrary changes, including new axes inserted
DIM_PERMUTE = 1 # Dimensions permuted, but no new sharding axes
IN_SYNC = 2 # Entirely in sync
class ParsedPartitionSpec:
__slots__ = ('unsafe_user_spec', 'partitions', 'sync')
def __init__(self, user_spec, partitions, sync=SpecSync.IN_SYNC):
self.unsafe_user_spec = user_spec
# None in partitions represents unconstrained dim.
# TODO(yashkatariya): May use a sentinel value.
self.partitions = tuple(partitions)
self.sync = sync
@property
def user_spec(self):
return self.unsynced_user_spec(SpecSync.IN_SYNC)
def get_partition_spec(self) -> PartitionSpec:
if self.sync < SpecSync.IN_SYNC:
return get_single_pspec(self)
else:
if isinstance(self.unsafe_user_spec, PartitionSpec):
return self.unsafe_user_spec
else:
return get_single_pspec(self)
def unsynced_user_spec(self, min_sync):
if self.sync < min_sync:
raise AssertionError(f"Please open a bug report! ({self.sync} >= {min_sync})")
return self.unsafe_user_spec
def insert_axis_partitions(self, dim, val):
parts = self.partitions
too_short = dim - len(parts)
if too_short > 0:
parts += ((),) * too_short
new_partitions = util.tuple_insert(parts, dim, val)
new_sync = SpecSync.DIM_PERMUTE if (val == () or val is None) else SpecSync.OUT_OF_SYNC
return ParsedPartitionSpec(self.unsafe_user_spec, new_partitions, sync=new_sync)
@classmethod
def from_user_input(cls, entry, arg_name, allow_unconstrained_dims=False):
if entry is None:
return cls(entry, ())
if not isinstance(entry, PartitionSpec):
raise TypeError(f"{arg_name} are expected to be "
f"PartitionSpec instances or None, but got {entry}")
axis_specs = []
for axis_spec in entry:
if axis_spec is None:
axis_spec = ()
elif isinstance(axis_spec, (list, tuple)):
axis_spec = tuple(axis_spec)
elif axis_spec == PartitionSpec.UNCONSTRAINED:
if not allow_unconstrained_dims:
raise ValueError(f"Unconstrained dims are not allowed: {entry}")
axis_spec = None
else:
axis_spec = (axis_spec,)
axis_specs.append(axis_spec)
return cls(entry, axis_specs)
def __hash__(self):
return hash((self.partitions, self.sync))
def __eq__(self, other):
return (self.partitions == other.partitions and
self.sync == other.sync)
def __len__(self):
return len(self.partitions)
def __getitem__(self, i):
return self.partitions[i]
def __iter__(self):
return iter(self.partitions)
def __repr__(self):
return (f"ParsedPartitionSpec(partitions={self.partitions}, "
f"unsafe_user_spec={self.unsafe_user_spec}, "
f"sync={self.sync})")
class CanonicalizedParsedPartitionSpec(ParsedPartitionSpec):
"""ParsedPartitionSpecs that are canonicalized.
ParsedPartitionSpecs may contain trailing empty tuples, that make them
semantically different in general, and yet in some situations we prefer
to regard them as equivalent. For example, partitions of () and ((),)
cannot be always considered equivalent, since the first one is a valid
spec for a scalar value, while the second is not! However, when either of
those are applied to a 2D array, they both mean that the array is fully
replicated.
So CanonicalizedParsedPartitionSpecs removes the trailing empty tuples from
partitions.
"""
def __init__(self, parsed_pspec: ParsedPartitionSpec):
partitions = list(parsed_pspec.partitions)
while partitions and partitions[-1] == ():
partitions.pop()
super().__init__(parsed_pspec.unsafe_user_spec, partitions,
parsed_pspec.sync)
def __repr__(self):
return (f"CanonicalizedParsedPartitionSpec(partitions={self.partitions}, "
f"unsafe_user_spec={self.unsafe_user_spec}, "
f"sync={self.sync})")
def preprocess(mesh, spec, parsed_pspec, _manual_axes=frozenset()):
# This split exists because you can pass `_parsed_pspec` that has been
# modified from the original. For example: Adding extra dimension to
# axis_resources for vmap handlers. In such cases you need to preserve the
# `sync` attribute of parsed pspecs.
# PartitionSpec is inferred from the parsed pspec in this case.
# TODO(yaskatariya): Remove this and replace this with a normalized
# representation of Parsed Pspec
if parsed_pspec is None:
parsed_pspec = prepare_axis_resources(
PartitionSpec() if spec is None else spec,
"NamedSharding spec", allow_unconstrained_dims=True)
_check_mesh_resource_axis(mesh, parsed_pspec, _manual_axes)
return parsed_pspec
# fallback for c++ .
preprocess_with_manual = preprocess
def prepare_axis_resources(axis_resources,
arg_name,
allow_unconstrained_dims=False):
# PyTrees don't treat None values as leaves, so we use an is_leaf function.
entries, treedef = tree_util.tree_flatten(
axis_resources, is_leaf=lambda x: x is None)
what = f"{arg_name} leaf specifications"
new_entries = []
for entry in entries:
if is_unspecified_or_auto(entry) or entry is None:
new_entries.append(entry)
elif isinstance(entry, sharding.Sharding):
if isinstance(entry, PmapSharding):
raise ValueError(f'One of {what} got sharding {entry} which is not '
'allowed.')
if not isinstance(entry, XLACompatibleSharding):
raise ValueError(f'One of {what} got sharding {entry} which is not a '
'subclass of XLACompatibleSharding.')
new_entries.append(entry)
else:
new_entries.append(ParsedPartitionSpec.from_user_input(
entry, what, allow_unconstrained_dims=allow_unconstrained_dims))
_check_unique_resources(new_entries, arg_name)
return tree_util.tree_unflatten(treedef, new_entries)
def _check_unique_resources(axis_resources, arg_name):
for arg_axis_resources in axis_resources:
if not arg_axis_resources: continue
if (is_unspecified_or_auto(arg_axis_resources) or
isinstance(arg_axis_resources, XLACompatibleSharding)):
continue
constrained_dims = [d for d in arg_axis_resources if d is not None]
resource_counts = collections.Counter(
itertools.chain.from_iterable(constrained_dims))
if not resource_counts: continue
if resource_counts.most_common(1)[0][1] > 1:
multiple_uses = [r for r, c in resource_counts.items() if c > 1]
if multiple_uses:
raise ValueError(f"A single {arg_name} specification can map every mesh axis "
f"to at most one positional dimension, but {arg_axis_resources.user_spec} "
f"has duplicate entries for {mesh_lib.show_axes(multiple_uses)}")
# Axis environments
class AxisEnv(NamedTuple):
"""Represents a pmap mesh (only along the replica axes)."""
nreps: int
names: tuple[Any, ...]
sizes: tuple[int, ...]
@dataclasses.dataclass(frozen=True)
class SPMDAxisContext:
"""A hardware axis context for parallel computations that use the GSPMD partitioner.
This includes the mesh that will later by used to execute this computation,
as well as a set of mesh axes that are currently (e.g. because the current lowering
is invoked inside an xmap) lowered in the MANUAL sharding mode.
"""
mesh: mesh_lib.Mesh
manual_axes: frozenset[MeshAxisName] = frozenset()
@property
def axis_env(self):
# All collectives that touch axis_env should remember to set use_global_device_ids
# when this context is enabled!
if self.manual_axes != frozenset(self.mesh.axis_names):
raise NotImplementedError(
"Collectives in manually partitioned computations are only supported "
"when all mesh axes are partitioned manually (no partial automatic sharding). "
"Make sure that you mention all mesh axes in axis_resources!")
return self.unsafe_axis_env
@property
def unsafe_axis_env(self):
return AxisEnv(
nreps=self.mesh.size,
names=self.mesh.axis_names,
sizes=tuple(self.mesh.shape.values()))
def extend_manual(self, axes: frozenset[MeshAxisName]) -> SPMDAxisContext:
return SPMDAxisContext(self.mesh, self.manual_axes | axes)
@dataclasses.dataclass(frozen=True)
class ReplicaAxisContext:
"""A hardware axis context for parallel computations that are partitioned by JAX.
Unlike in the SPMDAxisContext, this means that JAX might need to emit calls to
explicit collectives.
"""
axis_env: AxisEnv
@dataclasses.dataclass(frozen=True)
class ShardingContext:
"""A hardware axis context for parallel computations that use the sharding
interface.
This context also uses the GSPMD partitioner.
"""
num_devices: int
device_assignment: tuple[xc.Device, ...] | None = None
def __post_init__(self):
if self.device_assignment is not None:
assert isinstance(self.device_assignment, tuple)
assert self.num_devices == len(self.device_assignment)
# Similar to SPMDContext as ShardingContext also uses the GSPMD partitioner.
@property
def axis_env(self):
return AxisEnv(nreps=1, names=(), sizes=())
# -------------------- XLA OpSharding to PartitionSpec --------------------
# Note that OpSharding is more expressive than PartitionSpecs, so it's not
# always possible to convert them, but the code below should at least
# support handle all cases when this is possible.
def strides_for_sizes(sizes):
"""Returns an array of strides for major-to-minor sizes."""
return np.cumprod(sizes[::-1])[::-1] // np.asarray(sizes)
def unflatten_array(named_sizes, assignment):
"""Recovers the ordering of axis names based on a device assignment.
The device assignments that this function can convert into axis orders
are of the form::
np.arange(np.prod(named_sizes.values())).transpose(...).flatten()
for some transposition ``...``. This is satisfied by all OpSharding assignments
generated from partition specs.
Arguments:
named_sizes: A dictionary mapping axis names to their sizes.
assignment: A permutation of integers between 0 and the product of all
named sizes.
Returns:
A major-to-minor list of axis names that corresponds to the given assignment.
"""
named_sizes = {name: size for name, size in named_sizes.items() if size != 1}
sizes = np.fromiter(named_sizes.values(), dtype=np.int64)
strides = strides_for_sizes(sizes)
dims = explode_superdims(sizes, unflatten_superdims(assignment))
dim_to_name = {(size, stride): name for size, stride, name in zip(sizes, strides, named_sizes)}
return [dim_to_name[d] for d in dims]
def unflatten_superdims(assignment):
"""Unflatten a list of dimension sizes and their strides that generates assignment.
If this function succeeds for a given ``assignment``, then the following property
should be satisfied::
dims_with_strides = unflatten_superdims(assignment)
base_array = np.arange(map(fst, sorted(dims_with_strides, key=snd, reverse=True)))
assignment == base_array.transpose(argsort(dims_with_strides, key=snd, reverse=True)).flatten()
That is, the returned dimensions list all sizes of the base array (with strides
indicating their initial order). The order of dimensions in the list corresponds
to the permutation that applied to the base array generates the assignment.
"""
def check(cond):
if cond: return
raise NotImplementedError("Failed to convert OpSharding into a ShardingSpec. "
"Please open a bug report!")
flat_assignment = np.asarray(assignment, dtype=np.int64)
check(flat_assignment[0] == 0)
dims = []
while flat_assignment.size > 1:
stride = flat_assignment[1]
for i in range(len(flat_assignment)):
if flat_assignment[i] != i * stride: break
else:
# After this loop i should point to an "element after the sequence", so
# we have to increment it if the whole array is a strided sequence.
i += 1
size = i
dims.append((size, stride))
assert size > 1 # Ensure progress
flat_assignment = flat_assignment[::size]
return dims
def explode_superdims(sizes, dims):
"""Explode superdims to fit a known shape.
The unflattening process might mistakenly generate too few too large dimensions.
For example, ``unflatten_superdims(np.arange(n))`` always returns ``[(n, 1)]``.
This function takes a list of such contiguous super-dimensions and splits them
into smaller dimensions such that::
set(map(fst, explode_superdims(sizes, dims))) == set(sizes)
"""
strides_to_sizes = {stride: size for size, stride in zip(sizes, strides_for_sizes(sizes))}
dims = list(reversed(dims))
final_dims = []
for size, stride in dims:
target_size = strides_to_sizes[stride]
new_dims = []
while size > target_size:
assert target_size > 1 # Ensure progress
assert size % target_size == 0
new_dims.append((target_size, stride))
size //= target_size
stride *= target_size
target_size = strides_to_sizes[stride]
assert size == target_size
new_dims.append((size, stride))
final_dims += reversed(new_dims)
return final_dims
def parse_flatten_op_sharding(hlo_sharding: xc.OpSharding | xc.HloSharding,
mesh: mesh_lib.Mesh) -> Sequence[ParsedPartitionSpec]:
if isinstance(hlo_sharding, xc.OpSharding):
hlo_sharding = xc.HloSharding.from_proto(hlo_sharding) # type: ignore
if hlo_sharding.tuple_elements():
out: list[ParsedPartitionSpec] = []
for s in hlo_sharding.tuple_elements():
out.extend(parse_flatten_op_sharding(s, mesh))
return out
elif hlo_sharding.is_replicated():
return [CanonicalizedParsedPartitionSpec(
ParsedPartitionSpec(PartitionSpec(), ()))]
elif hlo_sharding.is_tiled():
mesh_shape = mesh.shape
mesh_axis_order = unflatten_array(
mesh.shape, hlo_sharding.tile_assignment_devices()
)
mesh_axis = iter(mesh_axis_order)
shape = hlo_sharding.tile_assignment_dimensions()
partitions = []
for dim_size in shape:
dim_partitions = []
while dim_size > 1:
axis = next(mesh_axis)
axis_size = mesh_shape[axis]
assert dim_size % axis_size == 0
dim_size //= axis_size
dim_partitions.append(axis)
partitions.append(tuple(dim_partitions))
if len(hlo_sharding.subgroup_types()) > 1:
raise NotImplementedError(
'Unhandled HloSharding type. Please open a bug report!'
)
if hlo_sharding.replicate_on_last_tile_dim():
partitions = partitions[:-1]
return [CanonicalizedParsedPartitionSpec(
ParsedPartitionSpec('<internally generated spec>', partitions))]
else:
raise AssertionError("Unhandled OpSharding type. Please open a bug report!")