rocm_jax/jax/_src/mesh.py
2024-12-17 19:18:24 -08:00

536 lines
17 KiB
Python

# Copyright 2018 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Definitions of Mesh and ResourceEnv."""
from __future__ import annotations
import collections
from collections.abc import Hashable, Sequence
import contextlib
import enum
import functools
import math
import threading
from typing import Any, NamedTuple
import numpy as np
from jax._src import config as jax_config
from jax._src import xla_bridge as xb
from jax._src import util
from jax._src.lib import xla_client as xc
MeshAxisName = Any
ResourceAxisName = Hashable
def show_axes(axes):
return ", ".join(sorted(f"`{a}`" for a in axes))
class ResourceEnv(NamedTuple):
physical_mesh: Mesh
def with_mesh(self, mesh: Mesh):
overlap = set(mesh.axis_names) & (self.resource_axes - set(self.physical_mesh.axis_names))
if overlap:
raise ValueError(f"Cannot update the mesh of the current resource "
f"environment. The new mesh shadows already defined axes "
f"{show_axes(overlap)}")
return self._replace(physical_mesh=mesh)
@property
def physical_resource_axes(self) -> set[ResourceAxisName]:
return set(self.physical_mesh.axis_names)
@property
def resource_axes(self) -> set[ResourceAxisName]:
return self.physical_resource_axes
@property
def shape(self):
return self.physical_mesh.shape
@property
def local_shape(self):
return self.physical_mesh.local_mesh.shape
def __repr__(self):
mesh_repr = ", ".join(
f"'{k}': {v}" for k, v in self.physical_mesh.shape.items())
return f"ResourceEnv(mesh=Mesh({mesh_repr}))"
@util.cache(max_size=128, trace_context_in_key=False)
def _get_local_mesh(global_mesh: Mesh, process_index: int) -> Mesh:
if global_mesh.empty:
return global_mesh
is_local_device = np.vectorize(
lambda d: d.process_index == process_index, otypes=[bool])(global_mesh.devices)
subcube_indices = []
# We take the smallest slice of each dimension that doesn't skip any local device.
for axis in range(global_mesh.devices.ndim):
other_axes = util.tuple_delete(tuple(range(global_mesh.devices.ndim)), axis)
# NOTE: This re-reduces over many axes multiple times, so we could definitely
# optimize it, but I hope it won't be a bottleneck anytime soon.
local_slices = is_local_device.any(other_axes, keepdims=False)
nonzero_indices = np.flatnonzero(local_slices)
start, end = int(np.min(nonzero_indices)), int(np.max(nonzero_indices))
subcube_indices.append(slice(start, end + 1))
subcube_indices_tuple = tuple(subcube_indices)
# We only end up with all conditions being true if the local devices formed a
# subcube of the full array. This is because we were biased towards taking a
# "hull" spanned by the devices, and in case the local devices don't form a
# subcube that hull will contain non-local devices.
if not is_local_device[subcube_indices_tuple].all():
raise ValueError(
"When passing host local inputs to pjit or xmap, devices "
"connected to a single host must form a contiguous subcube of the "
"global device mesh")
return Mesh(global_mesh.devices[subcube_indices_tuple], global_mesh.axis_names)
class AxisTypes(enum.Enum):
Auto = enum.auto()
User = enum.auto()
Collective = enum.auto()
def __repr__(self):
return self.name
def axis_names_to_types(axis_types) -> dict[str, AxisTypes]:
d = {}
for t, names in axis_types.items():
if isinstance(names, tuple):
for n in names:
d[n] = t
else:
d[names] = t
return d
_mesh_object_dict = {} # type: ignore
MeshAxisType = dict[AxisTypes, str | tuple[str, ...]]
class Mesh(contextlib.ContextDecorator):
"""Declare the hardware resources available in the scope of this manager.
In particular, all ``axis_names`` become valid resource names inside the
managed block and can be used e.g. in the ``in_axis_resources`` argument of
:py:func:`jax.experimental.pjit.pjit`. Also see JAX's multi-process programming
model (https://jax.readthedocs.io/en/latest/multi_process.html)
and the Distributed arrays and automatic parallelization tutorial
(https://jax.readthedocs.io/en/latest/notebooks/Distributed_arrays_and_automatic_parallelization.html)
If you are compiling in multiple threads, make sure that the
``with Mesh`` context manager is inside the function that the threads will
execute.
Args:
devices: A NumPy ndarray object containing JAX device objects (as
obtained e.g. from :py:func:`jax.devices`).
axis_names: A sequence of resource axis names to be assigned to the
dimensions of the ``devices`` argument. Its length should match the
rank of ``devices``.
Examples:
>>> from jax.experimental.pjit import pjit
>>> from jax.sharding import Mesh
>>> from jax.sharding import PartitionSpec as P
>>> import numpy as np
...
>>> inp = np.arange(16).reshape((8, 2))
>>> devices = np.array(jax.devices()).reshape(4, 2)
...
>>> # Declare a 2D mesh with axes `x` and `y`.
>>> global_mesh = Mesh(devices, ('x', 'y'))
>>> # Use the mesh object directly as a context manager.
>>> with global_mesh:
... out = pjit(lambda x: x, in_shardings=None, out_shardings=None)(inp)
>>> # Initialize the Mesh and use the mesh as the context manager.
>>> with Mesh(devices, ('x', 'y')) as global_mesh:
... out = pjit(lambda x: x, in_shardings=None, out_shardings=None)(inp)
>>> # Also you can use it as `with ... as ...`.
>>> global_mesh = Mesh(devices, ('x', 'y'))
>>> with global_mesh as m:
... out = pjit(lambda x: x, in_shardings=None, out_shardings=None)(inp)
>>> # You can also use it as `with Mesh(...)`.
>>> with Mesh(devices, ('x', 'y')):
... out = pjit(lambda x: x, in_shardings=None, out_shardings=None)(inp)
"""
devices: np.ndarray
axis_names: tuple[MeshAxisName, ...]
axis_types: MeshAxisType
def __new__(cls, devices: np.ndarray | Sequence[xc.Device],
axis_names: str | Sequence[MeshAxisName], *,
axis_types: MeshAxisType | None = None):
if not isinstance(devices, np.ndarray):
devices = np.array(devices)
if isinstance(axis_names, str):
axis_names = (axis_names,)
axis_names = tuple(axis_names)
if any(i is None for i in axis_names):
raise ValueError(f"Mesh axis names cannot be None. Got: {axis_names}")
if devices.ndim != len(axis_names):
raise ValueError(
"Mesh requires the ndim of its first argument (`devices`) to equal "
"the length of its second argument (`axis_names`), but got "
f"devices.ndim == {devices.ndim} and "
f"len(axis_names) == {len(axis_names)}.")
axis_types = ({AxisTypes.Auto: axis_names} if axis_types is None else
axis_types)
axis_types_tuple = tuple(axis_types.items())
key = (axis_names, devices.shape, tuple(devices.flat), axis_types_tuple)
val = _mesh_object_dict.get(key, None)
if val is not None:
return val
self = super().__new__(cls)
self.devices = devices.copy()
self.devices.flags.writeable = False
self.axis_names = axis_names
self.axis_types = axis_types
self._axis_types_tuple = axis_types_tuple
_mesh_object_dict[key] = self
return self
def __reduce__(self):
return (type(self), (self.devices, self.axis_names),
{'axis_types': self.axis_types})
def __eq__(self, other):
if not isinstance(other, Mesh):
return False
# This is a performance optimization. Comparing thousands of devices
# can be expensive.
if id(self) == id(other):
return True
return (self.axis_names == other.axis_names and
self.devices.shape == other.devices.shape and
self._axis_types_tuple == other._axis_types_tuple and
self._internal_device_list == other._internal_device_list)
def __hash__(self):
if not hasattr(self, '_hash'):
self._hash = hash(
(self.axis_names, self._internal_device_list, self.devices.shape,
self._axis_types_tuple))
return self._hash
def __setattr__(self, name, value):
if hasattr(self, name):
if getattr(self, name) == value:
# This can to happen if two threads race, for example if two threads
# are trying to hash the same Mesh instance.
return
raise RuntimeError(
f"Cannot reassign attributes ({name}) of immutable mesh objects"
)
super().__setattr__(name, value)
def __enter__(self):
if jax_config.disallow_mesh_context_manager.value:
raise RuntimeError("Mesh context manager is disabled.")
new_env = thread_resources.stack[-1].with_mesh(self)
thread_resources.stack.append(new_env)
thread_resources.env = new_env
jax_config.mesh_context_manager.set_local(
tuple(t.physical_mesh for t in thread_resources.stack
if not t.physical_mesh.empty))
return self
def __exit__(self, exc_type, exc_value, traceback):
thread_resources.stack.pop()
thread_resources.env = thread_resources.stack[-1]
jax_config.mesh_context_manager.set_local(
tuple(t.physical_mesh for t in thread_resources.stack
if not t.physical_mesh.empty))
return False
@property
def shape(self):
return collections.OrderedDict(
(name, size)
for name, size in util.safe_zip(self.axis_names, self.devices.shape))
@functools.cached_property
def shape_tuple(self):
return tuple(
(name, size)
for name, size in util.safe_zip(self.axis_names, self.devices.shape))
@property
def axis_sizes(self) -> tuple[int, ...]:
return self.devices.shape
@functools.cached_property
def _name_to_type(self):
return axis_names_to_types(self.axis_types)
@property
def size(self):
return math.prod(self.shape.values()) if self.devices.ndim else 0
@property
def empty(self):
return self.size == 0
@functools.cached_property
def is_multi_process(self):
return self.devices.size != len(self.local_devices)
@property
def local_mesh(self):
return self._local_mesh(xb.process_index())
def _local_mesh(self, process_index):
return _get_local_mesh(self, process_index)
@functools.cached_property
def device_ids(self):
assert not self.empty
return np.vectorize(lambda d: d.id, otypes=[int])(self.devices)
@functools.cached_property
def _local_devices_set(self):
return set(self.local_devices)
@functools.cached_property
def _flat_devices_tuple(self):
return tuple(self.devices.flat)
@functools.cached_property
def _internal_device_list(self):
return xc.DeviceList(self._flat_devices_tuple)
@functools.cached_property
def _flat_devices_set(self):
return set(self.devices.flat)
def __str__(self):
mesh_str = ", ".join(f"'{k}': {v}" for k, v in self.shape.items())
return f"Mesh({mesh_str})"
@functools.cached_property
def _repr(self):
if self.empty:
return "Mesh(device_ids=[], axis_names=())"
atr = f", axis_types={self.axis_types}"
return f"Mesh(device_ids={self.device_ids!r}, axis_names={self.axis_names!r}{atr})"
def __repr__(self):
return self._repr
@functools.cached_property
def local_devices(self):
return [d for d in self.devices.flat
if d.process_index == d.client.process_index()]
@functools.cached_property
def abstract_mesh(self):
return AbstractMesh(self.shape_tuple, axis_types=self.axis_types)
def with_axis_types(self, new_axis_types) -> Mesh:
return Mesh(self.devices, self.axis_names, axis_types=new_axis_types)
@functools.cached_property
def _are_all_axes_collective(self) -> bool:
return all(t == AxisTypes.Collective for t in self.axis_types.keys())
@functools.cached_property
def _are_all_axes_auto(self) -> bool:
return all(t == AxisTypes.Auto for t in self.axis_types.keys())
@functools.cached_property
def _any_axis_collective(self) -> bool:
return any(t == AxisTypes.Collective for t in self.axis_types.keys())
@functools.cached_property
def _any_axis_auto(self) -> bool:
return any(t == AxisTypes.Auto for t in self.axis_types.keys())
EMPTY_ENV = ResourceEnv(Mesh(np.empty((), dtype=object), ()))
class _ThreadResourcesLocalState(threading.local):
def __init__(self):
self.stack = [EMPTY_ENV]
self.env = self.stack[-1]
thread_resources = _ThreadResourcesLocalState()
class AbstractMesh:
"""AbstractMesh contains only axis names and axis sizes.
It does not contain concrete devices compared to `jax.sharding.Mesh`. You
should use this as an input to the sharding passed to with_sharding_constraint
and mesh passed to shard_map to avoid tracing and lowering cache misses when
your mesh shape and axis names stay the same but the devices change.
See the description of https://github.com/jax-ml/jax/pull/23022 for more
details.
"""
def __init__(self, shape_tuple: tuple[tuple[str, int], ...], *,
axis_types: MeshAxisType | None = None):
self.shape_tuple = shape_tuple
if self.shape_tuple:
self._axis_names, self._axis_sizes = list(zip(*self.shape_tuple))
else:
self._axis_names, self._axis_sizes = (), ()
self.axis_types = ({AxisTypes.Auto: self._axis_names} if axis_types is None
else axis_types)
self._axis_types_tuple = tuple(self.axis_types.items())
def __hash__(self):
return hash((self.shape_tuple, self._axis_types_tuple))
def __eq__(self, other):
if not isinstance(other, AbstractMesh):
return False
if id(self) == id(other):
return True
return (self.shape_tuple == other.shape_tuple and
self._axis_types_tuple == other._axis_types_tuple)
def __repr__(self):
mesh_repr = ", ".join(f"'{n}': {v}" for n, v in self.shape_tuple)
atr = f", axis_types={self.axis_types}"
return f"AbstractMesh({mesh_repr}{atr})"
@property
def axis_names(self):
return self._axis_names
@property
def axis_sizes(self) -> tuple[int, ...]:
return self._axis_sizes
@functools.cached_property
def _name_to_type(self):
return axis_names_to_types(self.axis_types)
@functools.cached_property
def size(self):
return math.prod(self._axis_sizes) if self._axis_sizes else 0
@functools.cached_property
def shape(self):
return collections.OrderedDict(self.shape_tuple)
@property
def _internal_device_list(self):
return None
@property
def empty(self):
return self.size == 0
def with_axis_types(self, new_axis_types) -> AbstractMesh:
return AbstractMesh(self.shape_tuple, axis_types=new_axis_types)
@functools.cached_property
def _are_all_axes_collective(self) -> bool:
return all(t == AxisTypes.Collective for t in self.axis_types.keys())
@functools.cached_property
def _are_all_axes_auto(self) -> bool:
return all(t == AxisTypes.Auto for t in self.axis_types.keys())
@functools.cached_property
def _any_axis_collective(self) -> bool:
return any(t == AxisTypes.Collective for t in self.axis_types.keys())
@functools.cached_property
def _any_axis_auto(self) -> bool:
return any(t == AxisTypes.Auto for t in self.axis_types.keys())
@property
def devices(self):
_raise_value_error("devices")
@property
def device_ids(self):
_raise_value_error("device_ids")
@property
def is_multi_process(self):
_raise_value_error("is_multi_process")
@property
def local_devices(self):
_raise_value_error("local_devices")
@property
def local_mesh(self):
_raise_value_error("local_mesh")
def __enter__(self):
_raise_value_error("__enter__")
def __exit__(self, exc_type, exc_value, traceback):
_raise_value_error("__exit__")
@staticmethod
def _extremely_unsafe_enter_tracing_context(mesh: AbstractMesh):
jax_config.abstract_mesh_context_manager.set_local(mesh)
return
# Create this indirection because pytype fails to recognize a property if a
# property raises an exception unconditionally. Remove this once that is fixed.
def _raise_value_error(name):
raise ValueError(f"AbstractMesh does not implement {name}")
@contextlib.contextmanager
def set_abstract_mesh(mesh: AbstractMesh):
prev_val = jax_config.abstract_mesh_context_manager.swap_local(mesh)
try:
yield
finally:
jax_config.abstract_mesh_context_manager.set_local(prev_val)
def get_abstract_mesh():
return jax_config.abstract_mesh_context_manager.value
@contextlib.contextmanager
def set_concrete_mesh(mesh: Mesh):
prev_val = jax_config.device_context.swap_local(mesh)
try:
yield
finally:
jax_config.device_context.set_local(prev_val)
def get_concrete_mesh():
return jax_config.device_context.value
@contextlib.contextmanager
def set_mesh(mesh: Mesh):
with (set_abstract_mesh(mesh.abstract_mesh),
jax_config.sharding_in_types(True), set_concrete_mesh(mesh)):
yield