mirror of
https://github.com/ROCm/jax.git
synced 2025-04-16 11:56:07 +00:00
148 lines
5.9 KiB
Python
148 lines
5.9 KiB
Python
# Copyright 2020 Google LLC
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import operator
|
|
|
|
from absl.testing import absltest
|
|
from absl.testing import parameterized
|
|
|
|
from jax import numpy as jnp
|
|
from jax import test_util as jtu
|
|
from jax.experimental.doubledouble import doubledouble, _DoubleDouble
|
|
|
|
from jax.config import config, flags
|
|
config.parse_flags_with_absl()
|
|
|
|
FLAGS = flags.FLAGS
|
|
|
|
class DoubleDoubleTest(jtu.JaxTestCase):
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_{}_{}".format(
|
|
op.__name__, jtu.format_shape_dtype_string(shape, dtype)),
|
|
"dtype": dtype, "shape": shape, "op": op}
|
|
for dtype in (jnp.float16, jnp.float32, jnp.float64)
|
|
for shape in ((), (5,), (2, 3), (2, 3, 4))
|
|
for op in (abs, operator.neg, operator.pos, jnp.sqrt)))
|
|
def testUnaryOp(self, dtype, shape, op):
|
|
rng = jtu.rand_default(self.rng())
|
|
op_doubled = doubledouble(op)
|
|
args = (rng(shape, dtype),)
|
|
self.assertAllClose(op(*args), op_doubled(*args))
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_{}_{}".format(
|
|
op.__name__, jtu.format_shape_dtype_string(shape, dtype)),
|
|
"dtype": dtype, "shape": shape, "op": op}
|
|
for dtype in (jnp.float16, jnp.float32, jnp.float64)
|
|
for shape in ((), (5,), (2, 3), (2, 3, 4))
|
|
for op in (operator.add, operator.sub, operator.mul, operator.truediv,
|
|
operator.gt, operator.ge, operator.lt, operator.le,
|
|
operator.eq, operator.ne)))
|
|
def testBinaryOp(self, dtype, shape, op):
|
|
rng = jtu.rand_default(self.rng())
|
|
op_doubled = doubledouble(op)
|
|
args = rng(shape, dtype), rng(shape, dtype)
|
|
self.assertAllClose(op(*args), op_doubled(*args))
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_{}_{}".format(
|
|
jtu.format_shape_dtype_string(shape, dtype), label),
|
|
"shape": shape, "dtype": dtype, "op1": op1, "op2": op2
|
|
}
|
|
for dtype in (jnp.float32, jnp.float64)
|
|
for shape in ((), (5,), (2, 3), (2, 3, 4))
|
|
for label, op1, op2 in [
|
|
('add_sub', lambda x, y: x + y - x, lambda x, y: y),
|
|
("add_neg_add", lambda x, y: -(x + y) + x, lambda x, y: -y),
|
|
("add_mul_sub", lambda x, y: 2 * (x + y) - 2 * x, lambda x, y: 2 * y),
|
|
("add_div_sub", lambda x, y: (x + y) / 2 - x / 2, lambda x, y: y / 2),
|
|
]))
|
|
def testDoubledPrecision(self, shape, dtype, op1, op2):
|
|
"""Test operations that would lose precision without doubling."""
|
|
rng = jtu.rand_default(self.rng())
|
|
double_op1 = doubledouble(op1)
|
|
args = 1E20 * rng(shape, dtype), rng(shape, dtype)
|
|
check_dtypes = not FLAGS.jax_enable_x64
|
|
|
|
self.assertAllClose(double_op1(*args), op2(*args), check_dtypes=check_dtypes)
|
|
|
|
# Correctness check: make sure test fails for regular precision.
|
|
with self.assertRaisesRegex(AssertionError, "Not equal to tolerance"):
|
|
self.assertAllClose(op1(*args), op2(*args), check_dtypes=check_dtypes)
|
|
def testTypeConversion(self):
|
|
x = jnp.arange(10, dtype='float16')
|
|
f = lambda x, y: (x + y).astype('float32')
|
|
g = doubledouble(f)
|
|
self.assertAllClose(f(1E2 * x, 1E-2 * x), 1E2 * x.astype('float32'))
|
|
self.assertAllClose(g(1E2 * x, 1E-2 * x), 100.01 * x.astype('float32'))
|
|
|
|
def testRepeatedDoubling(self):
|
|
def f(x, y, z):
|
|
return x + y + z - x - y
|
|
f2 = doubledouble(f)
|
|
f4 = doubledouble(f2)
|
|
dtype = jnp.float32
|
|
x, y, z = dtype(1E20), dtype(1.0), dtype(1E-20)
|
|
|
|
self.assertEqual(f(x, y, z), -y)
|
|
self.assertEqual(f2(x, y, z), 0)
|
|
self.assertEqual(f4(x, y, z), z)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_{}_{}".format(dtype, val), "dtype": dtype, "val": val}
|
|
for dtype in ["float16", "float32", "float64"]
|
|
for val in ["6.0221409e23", "3.14159265358", "0", 123456789]
|
|
))
|
|
def testClassInstantiation(self, dtype, val):
|
|
dtype = jnp.dtype(dtype).type
|
|
self.assertEqual(dtype(val), _DoubleDouble(val, dtype).to_array())
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_{}_{}".format(
|
|
jtu.format_shape_dtype_string(shape, dtype), op.__name__),
|
|
"shape": shape, "dtype": dtype, "op": op
|
|
}
|
|
for dtype in (jnp.float32, jnp.float64)
|
|
for shape in ((), (5,), (2, 3), (2, 3, 4))
|
|
for op in (operator.neg, operator.abs)
|
|
))
|
|
def testClassUnaryOp(self, dtype, shape, op):
|
|
rng = jtu.rand_default(self.rng())
|
|
args = (rng(shape, dtype),)
|
|
class_op = lambda x: op(_DoubleDouble(x)).to_array()
|
|
self.assertAllClose(op(*args), class_op(*args))
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_{}_{}".format(
|
|
jtu.format_shape_dtype_string(shape, dtype), op.__name__),
|
|
"shape": shape, "dtype": dtype, "op": op
|
|
}
|
|
for dtype in (jnp.float32, jnp.float64)
|
|
for shape in ((), (5,), (2, 3), (2, 3, 4))
|
|
for op in (operator.add, operator.sub, operator.mul, operator.truediv,
|
|
operator.gt, operator.ge, operator.lt, operator.le,
|
|
operator.eq, operator.ne)
|
|
))
|
|
def testClassBinaryOp(self, dtype, shape, op):
|
|
rng = jtu.rand_default(self.rng())
|
|
args = rng(shape, dtype), rng(shape, dtype)
|
|
def class_op(x, y):
|
|
result = op(_DoubleDouble(x), _DoubleDouble(y))
|
|
if isinstance(result, _DoubleDouble):
|
|
result = result.to_array()
|
|
return result
|
|
self.assertAllClose(op(*args), class_op(*args))
|
|
|
|
if __name__ == '__main__':
|
|
absltest.main(testLoader=jtu.JaxTestLoader())
|