rocm_jax/tests/lax_test.py
Benjamin Chetioui 8a4ee3d851
Fix shape checking rule for conv_general_dilated. (#4318)
* Fix shape checking rule for conv_general_dilated.

This closes google/jax#4316.

* Added test based on google/jax#4316.

* Change test name to be more accurate.
2020-09-17 10:37:40 -07:00

2121 lines
100 KiB
Python

# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
from functools import partial
import itertools
from unittest import SkipTest
from absl.testing import absltest
from absl.testing import parameterized
import numpy as np
import jax
from jax import api
from jax import core
from jax import dtypes
from jax import lax
from jax import test_util as jtu
from jax import lax_reference
from jax.test_util import check_grads
import jax.util
from jax.util import prod
from jax.config import config
config.parse_flags_with_absl()
FLAGS = config.FLAGS
### lax tests
# For standard unops and binops, we can generate a large number of tests on
# arguments of appropriate shapes and dtypes using the following table.
float_dtypes = jtu.dtypes.all_floating
complex_elem_dtypes = jtu.dtypes.floating
complex_dtypes = jtu.dtypes.complex
inexact_dtypes = jtu.dtypes.all_inexact
int_dtypes = jtu.dtypes.all_integer
uint_dtypes = jtu.dtypes.all_unsigned
bool_dtypes = jtu.dtypes.boolean
default_dtypes = float_dtypes + int_dtypes
all_dtypes = float_dtypes + complex_dtypes + int_dtypes + bool_dtypes
compatible_shapes = [[(3,)], [(3, 4), (3, 1), (1, 4)], [(2, 3, 4), (2, 1, 4)]]
OpRecord = collections.namedtuple(
"OpRecord", ["op", "nargs", "dtypes", "rng_factory", "tol"])
def op_record(op, nargs, dtypes, rng_factory, tol=None):
return OpRecord(op, nargs, dtypes, rng_factory, tol)
LAX_OPS = [
op_record("neg", 1, default_dtypes + complex_dtypes, jtu.rand_small),
op_record("sign", 1, default_dtypes + uint_dtypes, jtu.rand_small),
op_record("floor", 1, float_dtypes, jtu.rand_small),
op_record("ceil", 1, float_dtypes, jtu.rand_small),
op_record("round", 1, float_dtypes, jtu.rand_default),
op_record("nextafter", 2, [f for f in float_dtypes if f != dtypes.bfloat16],
jtu.rand_default, tol=0),
op_record("is_finite", 1, float_dtypes, jtu.rand_small),
op_record("exp", 1, float_dtypes + complex_dtypes, jtu.rand_small),
# TODO(b/142975473): on CPU, expm1 for float64 is only accurate to ~float32
# precision.
op_record("expm1", 1, float_dtypes + complex_dtypes, jtu.rand_small,
{np.float64: 1e-8}),
op_record("log", 1, float_dtypes + complex_dtypes, jtu.rand_positive),
op_record("log1p", 1, float_dtypes + complex_dtypes, jtu.rand_positive),
# TODO(b/142975473): on CPU, tanh for complex128 is only accurate to
# ~float32 precision.
# TODO(b/143135720): on GPU, tanh has only ~float32 precision.
op_record("tanh", 1, float_dtypes + complex_dtypes, jtu.rand_small,
{np.float64: 1e-9, np.complex128: 1e-7}),
op_record("sin", 1, float_dtypes + complex_dtypes, jtu.rand_default),
op_record("cos", 1, float_dtypes + complex_dtypes, jtu.rand_default),
op_record("atan2", 2, float_dtypes, jtu.rand_default),
op_record("sqrt", 1, float_dtypes + complex_dtypes, jtu.rand_positive),
op_record("rsqrt", 1, float_dtypes + complex_dtypes, jtu.rand_positive),
op_record("square", 1, float_dtypes + complex_dtypes, jtu.rand_default),
op_record("reciprocal", 1, float_dtypes + complex_dtypes, jtu.rand_positive),
op_record("tan", 1, float_dtypes + complex_dtypes, jtu.rand_default, {np.float32: 3e-5}),
op_record("asin", 1, float_dtypes + complex_dtypes, jtu.rand_small),
op_record("acos", 1, float_dtypes + complex_dtypes, jtu.rand_small),
op_record("atan", 1, float_dtypes + complex_dtypes, jtu.rand_small),
op_record("asinh", 1, float_dtypes + complex_dtypes, jtu.rand_default,
tol={np.complex64: 1E-4, np.complex128: 1E-5}),
op_record("acosh", 1, float_dtypes + complex_dtypes, jtu.rand_positive),
# TODO(b/155331781): atanh has only ~float precision
op_record("atanh", 1, float_dtypes + complex_dtypes, jtu.rand_small, {np.float64: 1e-9}),
op_record("sinh", 1, float_dtypes + complex_dtypes, jtu.rand_default),
op_record("cosh", 1, float_dtypes + complex_dtypes, jtu.rand_default),
op_record("lgamma", 1, float_dtypes, jtu.rand_positive,
{np.float32: 1e-3 if jtu.device_under_test() == "tpu" else 1e-5,
np.float64: 1e-14}),
op_record("digamma", 1, float_dtypes, jtu.rand_positive,
{np.float64: 1e-14}),
op_record("betainc", 3, float_dtypes, jtu.rand_positive,
{np.float64: 1e-14}),
op_record("igamma", 2,
[f for f in float_dtypes if f not in [dtypes.bfloat16, np.float16]],
jtu.rand_positive, {np.float64: 1e-14}),
op_record("igammac", 2,
[f for f in float_dtypes if f not in [dtypes.bfloat16, np.float16]],
jtu.rand_positive, {np.float64: 1e-14}),
op_record("erf", 1, float_dtypes, jtu.rand_small),
op_record("erfc", 1, float_dtypes, jtu.rand_small),
# TODO(b/142976030): the approximation of erfinf used by XLA is only
# accurate to float32 precision.
op_record("erf_inv", 1, float_dtypes, jtu.rand_small,
{np.float64: 1e-9}),
op_record("bessel_i0e", 1, float_dtypes, jtu.rand_default),
op_record("bessel_i1e", 1, float_dtypes, jtu.rand_default),
op_record("real", 1, complex_dtypes, jtu.rand_default),
op_record("imag", 1, complex_dtypes, jtu.rand_default),
op_record("complex", 2, complex_elem_dtypes, jtu.rand_default),
op_record("conj", 1, complex_elem_dtypes + complex_dtypes,
jtu.rand_default),
op_record("abs", 1, default_dtypes + complex_dtypes, jtu.rand_default),
op_record("pow", 2, float_dtypes + complex_dtypes, jtu.rand_positive),
op_record("bitwise_and", 2, bool_dtypes, jtu.rand_small),
op_record("bitwise_not", 1, bool_dtypes, jtu.rand_small),
op_record("bitwise_or", 2, bool_dtypes, jtu.rand_small),
op_record("bitwise_xor", 2, bool_dtypes, jtu.rand_small),
op_record("population_count", 1, int_dtypes + uint_dtypes, jtu.rand_int),
op_record("add", 2, default_dtypes + complex_dtypes, jtu.rand_small),
op_record("sub", 2, default_dtypes + complex_dtypes, jtu.rand_small),
op_record("mul", 2, default_dtypes + complex_dtypes, jtu.rand_small),
op_record("div", 2, default_dtypes + complex_dtypes, jtu.rand_nonzero),
op_record("rem", 2, default_dtypes, jtu.rand_nonzero),
op_record("max", 2, all_dtypes, jtu.rand_small),
op_record("min", 2, all_dtypes, jtu.rand_small),
op_record("eq", 2, all_dtypes, jtu.rand_some_equal),
op_record("ne", 2, all_dtypes, jtu.rand_small),
op_record("ge", 2, default_dtypes, jtu.rand_small),
op_record("gt", 2, default_dtypes, jtu.rand_small),
op_record("le", 2, default_dtypes, jtu.rand_small),
op_record("lt", 2, default_dtypes, jtu.rand_small),
]
class LaxTest(jtu.JaxTestCase):
"""Numerical tests for LAX operations."""
@parameterized.named_parameters(itertools.chain.from_iterable(
jtu.cases_from_list(
{"testcase_name": jtu.format_test_name_suffix(
rec.op, shapes, itertools.repeat(dtype)),
"op_name": rec.op, "rng_factory": rec.rng_factory, "shapes": shapes,
"dtype": dtype}
for shape_group in compatible_shapes
for shapes in itertools.combinations_with_replacement(shape_group, rec.nargs)
for dtype in rec.dtypes)
for rec in LAX_OPS))
def testOp(self, op_name, rng_factory, shapes, dtype):
rng = rng_factory(self.rng())
args_maker = lambda: [rng(shape, dtype) for shape in shapes]
op = getattr(lax, op_name)
self._CompileAndCheck(op, args_maker)
@parameterized.named_parameters(itertools.chain.from_iterable(
jtu.cases_from_list(
{"testcase_name": jtu.format_test_name_suffix(
rec.op, shapes, itertools.repeat(dtype)),
"op_name": rec.op, "rng_factory": rec.rng_factory, "shapes": shapes,
"dtype": dtype, "tol": rec.tol}
for shape_group in compatible_shapes
for shapes in itertools.combinations_with_replacement(shape_group, rec.nargs)
for dtype in rec.dtypes)
for rec in LAX_OPS))
def testOpAgainstNumpy(self, op_name, rng_factory, shapes, dtype, tol):
if (not FLAGS.jax_enable_x64 and op_name == "nextafter"
and dtype == np.float64):
raise SkipTest("64-bit mode disabled")
rng = rng_factory(self.rng())
args_maker = lambda: [rng(shape, dtype) for shape in shapes]
op = getattr(lax, op_name)
numpy_op = getattr(lax_reference, op_name)
self._CheckAgainstNumpy(numpy_op, op, args_maker, tol=tol)
# TODO test shift_left, shift_right_arithmetic, shift_right_logical
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_from_dtype={}_to_dtype={}".format(
from_dtype, to_dtype),
"from_dtype": from_dtype, "to_dtype": to_dtype, "rng_factory": rng_factory}
for from_dtype, to_dtype in itertools.product(
[np.float32, np.int32, "float32", "int32"], repeat=2)
for rng_factory in [jtu.rand_default]))
def testConvertElementType(self, from_dtype, to_dtype, rng_factory):
rng = rng_factory(self.rng())
args_maker = lambda: [rng((2, 3), from_dtype)]
op = lambda x: lax.convert_element_type(x, to_dtype)
self._CompileAndCheck(op, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_from_dtype={}_to_dtype={}"
.format(from_dtype, to_dtype),
"from_dtype": from_dtype, "to_dtype": to_dtype, "rng_factory": rng_factory}
for from_dtype, to_dtype in itertools.product(
[np.float32, np.int32, "float32", "int32"], repeat=2)
for rng_factory in [jtu.rand_default]))
def testConvertElementTypeAgainstNumpy(self, from_dtype, to_dtype, rng_factory):
rng = rng_factory(self.rng())
args_maker = lambda: [rng((2, 3), from_dtype)]
op = lambda x: lax.convert_element_type(x, to_dtype)
numpy_op = lambda x: lax_reference.convert_element_type(x, to_dtype)
self._CheckAgainstNumpy(numpy_op, op, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_from_dtype={}_to_dtype={}"
.format(from_dtype, to_dtype),
"from_dtype": from_dtype, "to_dtype": to_dtype, "rng_factory": rng_factory}
for from_dtype, to_dtype in itertools.product(
[np.float32, np.int32, "float32", "int32"], repeat=2)
for rng_factory in [jtu.rand_default]))
def testBitcastConvertType(self, from_dtype, to_dtype, rng_factory):
rng = rng_factory(self.rng())
args_maker = lambda: [rng((2, 3), from_dtype)]
op = lambda x: lax.bitcast_convert_type(x, to_dtype)
self._CompileAndCheck(op, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_from_dtype={}_to_dtype={}"
.format(from_dtype, to_dtype),
"from_dtype": from_dtype, "to_dtype": to_dtype, "rng_factory": rng_factory}
for from_dtype, to_dtype in itertools.product(
[np.float32, np.int32, "float32", "int32"], repeat=2)
for rng_factory in [jtu.rand_default]))
def testBitcastConvertTypeAgainstNumpy(self, from_dtype, to_dtype, rng_factory):
rng = rng_factory(self.rng())
args_maker = lambda: [rng((2, 3), from_dtype)]
op = lambda x: lax.bitcast_convert_type(x, to_dtype)
numpy_op = lambda x: lax_reference.bitcast_convert_type(x, to_dtype)
self._CheckAgainstNumpy(numpy_op, op, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_min_shape={}_operand_shape={}_max_shape={}".format(
jtu.format_shape_dtype_string(min_shape, dtype),
jtu.format_shape_dtype_string(operand_shape, dtype),
jtu.format_shape_dtype_string(max_shape, dtype)),
"min_shape": min_shape, "operand_shape": operand_shape,
"max_shape": max_shape, "dtype": dtype, "rng_factory": rng_factory}
for min_shape, operand_shape, max_shape in [
[(), (2, 3), ()],
[(2, 3), (2, 3), ()],
[(), (2, 3), (2, 3)],
[(2, 3), (2, 3), (2, 3)],
]
for dtype in default_dtypes
for rng_factory in [jtu.rand_default]))
def testClamp(self, min_shape, operand_shape, max_shape, dtype, rng_factory):
rng = rng_factory(self.rng())
shapes = [min_shape, operand_shape, max_shape]
args_maker = lambda: [rng(shape, dtype) for shape in shapes]
self._CompileAndCheck(lax.clamp, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_min_shape={}_operand_shape={}_max_shape={}".format(
jtu.format_shape_dtype_string(min_shape, dtype),
jtu.format_shape_dtype_string(operand_shape, dtype),
jtu.format_shape_dtype_string(max_shape, dtype)),
"min_shape": min_shape, "operand_shape": operand_shape,
"max_shape": max_shape, "dtype": dtype, "rng_factory": rng_factory}
for min_shape, operand_shape, max_shape in [
[(), (2, 3), ()],
[(2, 3), (2, 3), ()],
[(), (2, 3), (2, 3)],
[(2, 3), (2, 3), (2, 3)],
]
for dtype in default_dtypes
for rng_factory in [jtu.rand_default]))
def testClampAgainstNumpy(self, min_shape, operand_shape, max_shape, dtype,
rng_factory):
rng = rng_factory(self.rng())
shapes = [min_shape, operand_shape, max_shape]
args_maker = lambda: [rng(shape, dtype) for shape in shapes]
self._CheckAgainstNumpy(lax_reference.clamp, lax.clamp, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_dim={}_baseshape=[{}]_dtype={}_narrs={}".format(
dim, ",".join(str(d) for d in base_shape), np.dtype(dtype).name,
num_arrs),
"dim": dim, "base_shape": base_shape, "dtype": dtype,
"num_arrs": num_arrs, "rng_factory": rng_factory}
for num_arrs in [3]
for dtype in default_dtypes
for base_shape in [(4,), (3, 4), (2, 3, 4)]
for dim in range(len(base_shape))
for rng_factory in [jtu.rand_default]))
def testConcatenate(self, dim, base_shape, dtype, num_arrs, rng_factory):
rng = rng_factory(self.rng())
shapes = [base_shape[:dim] + (size,) + base_shape[dim+1:]
for size, _ in zip(itertools.cycle([3, 1, 4]), range(num_arrs))]
args_maker = lambda: [rng(shape, dtype) for shape in shapes]
op = lambda *args: lax.concatenate(args, dim)
self._CompileAndCheck(op, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_dim={}_baseshape=[{}]_dtype={}_narrs={}".format(
dim, ",".join(str(d) for d in base_shape), np.dtype(dtype).name,
num_arrs),
"dim": dim, "base_shape": base_shape, "dtype": dtype,
"num_arrs": num_arrs, "rng_factory": rng_factory}
for num_arrs in [3]
for dtype in default_dtypes
for base_shape in [(4,), (3, 4), (2, 3, 4)]
for dim in range(len(base_shape))
for rng_factory in [jtu.rand_default]))
def testConcatenateAgainstNumpy(self, dim, base_shape, dtype, num_arrs, rng_factory):
rng = rng_factory(self.rng())
shapes = [base_shape[:dim] + (size,) + base_shape[dim+1:]
for size, _ in zip(itertools.cycle([3, 1, 4]), range(num_arrs))]
args_maker = lambda: [rng(shape, dtype) for shape in shapes]
op = lambda *args: lax.concatenate(args, dim)
numpy_op = lambda *args: lax_reference.concatenate(args, dim)
self._CheckAgainstNumpy(numpy_op, op, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name":
"_lhs_shape={}_rhs_shape={}_strides={}_padding={}".format(
jtu.format_shape_dtype_string(lhs_shape, dtype),
jtu.format_shape_dtype_string(rhs_shape, dtype), strides, padding),
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
"strides": strides, "padding": padding, "rng_factory": rng_factory}
for lhs_shape, rhs_shape in [
((b, i, 9, 10), (j, i, 4, 5))
for b, i, j in itertools.product([2, 3], repeat=3)]
for dtype in float_dtypes
for strides in [(1, 1), (1, 2), (2, 1)]
for padding in ["VALID", "SAME"]
for rng_factory in [jtu.rand_small]))
def testConv(self, lhs_shape, rhs_shape, dtype, strides, padding, rng_factory):
rng = rng_factory(self.rng())
args_maker = lambda: [rng(lhs_shape, dtype), rng(rhs_shape, dtype)]
def fun(lhs, rhs):
return lax.conv(lhs, rhs, strides, padding)
self._CompileAndCheck(fun, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name":
"_lhs_shape={}_rhs_shape={}_strides={}_padding={}".format(
jtu.format_shape_dtype_string(lhs_shape, dtype),
jtu.format_shape_dtype_string(rhs_shape, dtype), strides, padding),
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
"strides": strides, "padding": padding, "rng_factory": rng_factory}
for lhs_shape, rhs_shape in [
((b, i, 9, 10), (j, i, 4, 5))
for b, i, j in itertools.product([2, 3], repeat=3)]
for dtype in float_dtypes
for strides in [(1, 1), (1, 2), (2, 1)]
for padding in ["VALID", "SAME"]
for rng_factory in [jtu.rand_small]))
def testConvAgainstNumpy(self, lhs_shape, rhs_shape, dtype, strides, padding,
rng_factory):
rng = rng_factory(self.rng())
args_maker = lambda: [rng(lhs_shape, dtype), rng(rhs_shape, dtype)]
op = lambda lhs, rhs: lax.conv(lhs, rhs, strides, padding)
numpy_op = lambda lhs, rhs: lax_reference.conv(lhs, rhs, strides, padding)
self._CheckAgainstNumpy(numpy_op, op, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_lhs_shape={}_rhs_shape={}_strides={}_padding={}"
"_lhs_dilation={}_rhs_dilation={}".format(
jtu.format_shape_dtype_string(lhs_shape, dtype),
jtu.format_shape_dtype_string(rhs_shape, dtype),
strides, padding, lhs_dilation, rhs_dilation),
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
"strides": strides, "padding": padding, "lhs_dilation": lhs_dilation,
"rhs_dilation": rhs_dilation, "rng_factory": rng_factory}
for lhs_shape, rhs_shape in [
((b, i, 9, 10), (j, i, 4, 5))
for b, i, j in itertools.product([1, 2, 3], repeat=3)]
for dtype in float_dtypes
for strides in [(1, 1), (1, 2), (2, 1)]
for padding in [((0, 0), (0, 0)), ((1, 2), (2, 0))]
for lhs_dilation, rhs_dilation in itertools.product(
[(1, 1), (1, 2), (2, 2)], repeat=2)
for rng_factory in [jtu.rand_small]))
def testConvWithGeneralPadding(self, lhs_shape, rhs_shape, dtype, strides,
padding, lhs_dilation, rhs_dilation, rng_factory):
rng = rng_factory(self.rng())
args_maker = lambda: [rng(lhs_shape, dtype), rng(rhs_shape, dtype)]
def fun(lhs, rhs):
return lax.conv_with_general_padding(
lhs, rhs, strides, padding, lhs_dilation, rhs_dilation)
self._CompileAndCheck(fun, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_lhs_shape={}_rhs_shape={}_strides={}_padding={}"
"_lhs_dilation={}_rhs_dilation={}".format(
jtu.format_shape_dtype_string(lhs_shape, dtype),
jtu.format_shape_dtype_string(rhs_shape, dtype),
strides, padding, lhs_dilation, rhs_dilation),
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
"strides": strides, "padding": padding, "lhs_dilation": lhs_dilation,
"rhs_dilation": rhs_dilation, "rng_factory": rng_factory}
for lhs_shape, rhs_shape in [
((b, i, 9, 10), (j, i, 4, 5))
for b, i, j in itertools.product([1, 2, 3], repeat=3)]
for dtype in [np.float32] for strides in [(1, 1), (1, 2), (2, 1)]
for padding in [((0, 0), (0, 0)), ((1, 2), (2, 0))]
for lhs_dilation, rhs_dilation in itertools.product(
[(1, 1), (1, 2), (2, 2)], repeat=2)
for rng_factory in [jtu.rand_small]))
def testConvWithGeneralPaddingAgainstNumpy(
self, lhs_shape, rhs_shape, dtype, strides, padding, lhs_dilation,
rhs_dilation, rng_factory):
rng = rng_factory(self.rng())
args_maker = lambda: [rng(lhs_shape, dtype), rng(rhs_shape, dtype)]
def fun(lhs, rhs):
return lax.conv_with_general_padding(
lhs, rhs, strides, padding, lhs_dilation, rhs_dilation,
precision=lax.Precision.HIGHEST)
def numpy_fun(lhs, rhs):
return lax_reference.conv_with_general_padding(
lhs, rhs, strides, padding, lhs_dilation, rhs_dilation)
self._CheckAgainstNumpy(numpy_fun, fun, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_lhs_shape={}_rhs_shape={}_strides={}_padding={}"
"_lhs_dilation={}_rhs_dilation={}"
"_dims={}".format(
jtu.format_shape_dtype_string(lhs_shape, dtype),
jtu.format_shape_dtype_string(rhs_shape, dtype),
strides, padding, lhs_dilation, rhs_dilation,
",".join(dim_nums)),
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
"strides": strides, "padding": padding, "lhs_dilation": lhs_dilation,
"rhs_dilation": rhs_dilation, "dimension_numbers": dim_nums,
"feature_group_count": feature_group_count,
"batch_group_count": batch_group_count,
"perms": perms, "rng_factory": rng_factory}
for batch_group_count, feature_group_count in [(1, 1), (2, 1), (1, 2)]
for lhs_shape, rhs_shape in [
((b * batch_group_count, i * feature_group_count, 9, w),
(j * feature_group_count * batch_group_count, i, 4, 5))
for w in [0, 10]
for b, i, j in itertools.product([2, 3], repeat=3)]
for dtype in inexact_dtypes for strides in [(1, 1), (2, 1)]
for padding in [((1, 2), (2, 0)), ((10, 8), (7, 13))]
for lhs_dilation, rhs_dilation in itertools.product(
[(1, 1), (1, 2), (1, 4)], repeat=2)
for rng_factory in [jtu.rand_small]
for dim_nums, perms in [
(("NCHW", "OIHW", "NCHW"), ([0, 1, 2, 3], [0, 1, 2, 3])),
(("NHWC", "HWIO", "NHWC"), ([0, 2, 3, 1], [2, 3, 1, 0])),
(("NCHW", "HWIO", "NHWC"), ([0, 1, 2, 3], [2, 3, 1, 0])),
]))
def testConvGeneralDilated(self, lhs_shape, rhs_shape, dtype, strides,
padding, lhs_dilation, rhs_dilation,
feature_group_count, batch_group_count,
dimension_numbers, perms, rng_factory):
rng = rng_factory(self.rng())
lhs_perm, rhs_perm = perms # permute to compatible shapes
def args_maker():
return [lax.transpose(rng(lhs_shape, dtype), lhs_perm),
lax.transpose(rng(rhs_shape, dtype), rhs_perm)]
def fun(lhs, rhs):
return lax.conv_general_dilated(
lhs, rhs, strides, padding, lhs_dilation, rhs_dilation,
dimension_numbers, feature_group_count=feature_group_count,
batch_group_count=batch_group_count)
self._CompileAndCheck(fun, args_maker)
# TODO(mattjj): test conv_general_dilated against numpy
def testConv0DIsDot(self):
rng = jtu.rand_default(self.rng())
def args_maker():
return [rng((10, 5), np.float32), rng((5, 7), np.float32)]
jnp_fun = partial(lax.conv_general_dilated, window_strides=(),
padding='VALID', dimension_numbers=('NC', 'IO', 'NC'))
self._CompileAndCheck(jnp_fun, args_maker)
self._CheckAgainstNumpy(np.dot, jnp_fun, args_maker, tol=.1)
@staticmethod
def _conv_transpose_via_grad(data, kernel, strides, padding,
rhs_dilation=None, dimension_numbers=None):
"""Helper method: calculates conv transpose via grad for testing."""
assert len(data.shape) == len(kernel.shape)
nspatial = len(data.shape) - 2
one = (1,) * nspatial
rhs_dilation = rhs_dilation or one
dn = lax.conv_dimension_numbers(data.shape, kernel.shape,
dimension_numbers)
in_shape = np.take(data.shape, dn.lhs_spec)
in_sdims = in_shape[2:]
k_shape = np.take(kernel.shape, dn.rhs_spec)
k_sdims = k_shape[2:]
e_k_sdims = [(k-1) * r + 1 for k, r in zip(k_sdims, rhs_dilation)]
if padding == 'VALID':
o_sdims = [in_sdims[i]*strides[i] + max(e_k_sdims[i]-strides[i],0)
for i in range(nspatial)]
elif padding == 'SAME':
o_sdims = [in_sdims[i]*strides[i] for i in range(nspatial)]
o_shape = [in_shape[0], k_shape[1]] + o_sdims
out_spec_inv = [x[0] for x in
sorted(enumerate(dn.out_spec), key=lambda x: x[1])]
o_layout = np.take(np.array(o_shape), out_spec_inv)
placeholder = np.ones(o_layout, data.dtype)
conv = lambda x: lax.conv_general_dilated(x, kernel, strides, padding,
one, rhs_dilation, dn)
_, g = api.vjp(conv, placeholder)
return g(data)[0]
@staticmethod
def _transpose_conv_kernel(data, kernel, dimension_numbers):
dn = lax.conv_dimension_numbers(data.shape, kernel.shape,
dimension_numbers)
spatial_axes = np.array(dn.rhs_spec)[2:]
for axis in spatial_axes:
kernel = np.flip(kernel, axis)
kernel = np.swapaxes(kernel, dn.rhs_spec[0], dn.rhs_spec[1])
return kernel
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name":
"_lhs_shape={}_rhs_shape={}_strides={}_padding={}_rhs_dilation={}".format(
jtu.format_shape_dtype_string(lhs_shape, dtype),
jtu.format_shape_dtype_string(rhs_shape, dtype), strides, padding, rhs_dilation),
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
"strides": strides, "padding": padding, "rhs_dilation": rhs_dilation,
"rng_factory": rng_factory, 'dspec': dspec}
for lhs_shape, rhs_shape in [
((b, 9, 10, i), (k, k, j, i)) # NB: i,j flipped in RHS for transpose
for b, i, j, k in itertools.product([2,3],[2,3],[2,3],[3,4,5])]
for dtype in float_dtypes
for strides in [(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)]
for padding in ["VALID", "SAME"]
for dspec in [('NHWC', 'HWIO', 'NHWC'),]
for rhs_dilation in [None, (2, 2)]
for rng_factory in [jtu.rand_small]))
@jtu.skip_on_flag("jax_skip_slow_tests", True)
def testConvTranspose2DT(self, lhs_shape, rhs_shape, dtype, strides,
padding, dspec, rhs_dilation, rng_factory):
rng = rng_factory(self.rng())
args_maker = lambda: [rng(lhs_shape, dtype), rng(rhs_shape, dtype)]
# NB: this test calculates conv_transpose performing identically to the
# lhs-grad of conv.
def fun(lhs, rhs):
return lax.conv_transpose(lhs, rhs, strides, padding,
rhs_dilation=rhs_dilation,
dimension_numbers=dspec,
transpose_kernel=True)
def fun_via_grad(lhs, rhs):
return self._conv_transpose_via_grad(lhs, rhs, strides, padding,
rhs_dilation=rhs_dilation,
dimension_numbers=dspec)
# NB: below just checks for agreement, we're not calling numpy.
self._CheckAgainstNumpy(fun_via_grad, fun, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name":
"_lhs_shape={}_rhs_shape={}_strides={}_padding={}_rhs_dilation={}".format(
jtu.format_shape_dtype_string(lhs_shape, dtype),
jtu.format_shape_dtype_string(rhs_shape, dtype), strides, padding, rhs_dilation),
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
"strides": strides, "padding": padding, "rhs_dilation": rhs_dilation,
"rng_factory": rng_factory, 'dspec': dspec}
for lhs_shape, rhs_shape in [
((b, 9, 10, i), (k, k, i, j))
for b, i, j, k in itertools.product([2,3],[2,3],[2,3],[3,4,5])]
for dtype in float_dtypes
for strides in [(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)]
for padding in ["VALID", "SAME"]
for dspec in [('NHWC', 'HWIO', 'NHWC'),]
for rhs_dilation in [None, (2, 2)]
for rng_factory in [jtu.rand_small]))
@jtu.skip_on_flag("jax_skip_slow_tests", True)
def testConvTranspose2D(self, lhs_shape, rhs_shape, dtype, strides,
padding, dspec, rhs_dilation, rng_factory):
rng = rng_factory(self.rng())
args_maker = lambda: [rng(lhs_shape, dtype), rng(rhs_shape, dtype)]
def fun(lhs, rhs):
return lax.conv_transpose(lhs, rhs, strides, padding,
rhs_dilation=rhs_dilation,
dimension_numbers=dspec,
transpose_kernel=False)
def fun_via_grad(lhs, rhs):
rhs_t = self._transpose_conv_kernel(lhs, rhs, dimension_numbers=dspec)
return self._conv_transpose_via_grad(lhs, rhs_t, strides, padding,
rhs_dilation=rhs_dilation,
dimension_numbers=dspec)
# NB: below just checks for agreement, we're not calling numpy.
self._CheckAgainstNumpy(fun_via_grad, fun, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name":
"_lhs_shape={}_rhs_shape={}_strides={}_padding={}_rhs_dilation={}".format(
jtu.format_shape_dtype_string(lhs_shape, dtype),
jtu.format_shape_dtype_string(rhs_shape, dtype), strides, padding, rhs_dilation),
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
"strides": strides, "padding": padding, "rhs_dilation": rhs_dilation,
"rng_factory": rng_factory, 'dspec': dspec}
for lhs_shape, rhs_shape in [
((b, 10, i), (k, i, j))
for b, i, j, k in itertools.product([2,3],[2,3],[2,3],[3,4,5])]
for dtype in float_dtypes
for strides in [(1,), (2,), (3,)]
for padding in ["VALID", "SAME"]
for dspec in [('NHC', 'HIO', 'NHC'),]
for rhs_dilation in [None, (2,)]
for rng_factory in [jtu.rand_small]))
def testConvTranspose1D(self, lhs_shape, rhs_shape, dtype, strides,
padding, dspec, rhs_dilation, rng_factory):
rng = rng_factory(self.rng())
args_maker = lambda: [rng(lhs_shape, dtype), rng(rhs_shape, dtype)]
def fun(lhs, rhs):
return lax.conv_transpose(lhs, rhs, strides, padding,
dimension_numbers=dspec,
rhs_dilation=rhs_dilation,
transpose_kernel=False)
def fun_via_grad(lhs, rhs):
rhs_t = self._transpose_conv_kernel(lhs, rhs, dimension_numbers=dspec)
return self._conv_transpose_via_grad(lhs, rhs_t, strides, padding,
rhs_dilation=rhs_dilation,
dimension_numbers=dspec)
# NB: below just checks for agreement, we're not calling numpy.
self._CheckAgainstNumpy(fun_via_grad, fun, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name":
"_lhs_shape={}_rhs_shape={}_strides={}_padding={}_rhs_dilation={}".format(
jtu.format_shape_dtype_string(lhs_shape, dtype),
jtu.format_shape_dtype_string(rhs_shape, dtype), strides, padding, rhs_dilation),
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
"strides": strides, "padding": padding, "rhs_dilation": rhs_dilation,
"rng_factory": rng_factory, 'dspec': dspec}
for lhs_shape, rhs_shape in [
((b, i), (i, j))
for b, i, j in itertools.product([2,3],[2,3],[2,3])]
for dtype in float_dtypes
for strides in [()]
for padding in ["VALID", "SAME"]
for dspec in [('NC', 'IO', 'NC'),]
for rhs_dilation in [None, ()]
for rng_factory in [jtu.rand_small]))
def testConvTranspose0D(self, lhs_shape, rhs_shape, dtype, strides,
padding, dspec, rhs_dilation, rng_factory):
rng = rng_factory(self.rng())
args_maker = lambda: [rng(lhs_shape, dtype), rng(rhs_shape, dtype)]
def fun(lhs, rhs):
return lax.conv_transpose(lhs, rhs, strides, padding,
dimension_numbers=dspec,
rhs_dilation=rhs_dilation,
transpose_kernel=False)
def fun_via_grad(lhs, rhs):
rhs_t = self._transpose_conv_kernel(lhs, rhs, dimension_numbers=dspec)
return self._conv_transpose_via_grad(lhs, rhs_t, strides, padding,
rhs_dilation=rhs_dilation,
dimension_numbers=dspec)
# NB: below just checks for agreement, we're not calling numpy.
self._CheckAgainstNumpy(fun_via_grad, fun, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_lhs_shape={}_rhs_shape={}_precision={}".format(
jtu.format_shape_dtype_string(lhs_shape, dtype),
jtu.format_shape_dtype_string(rhs_shape, dtype),
precision),
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
"precision": precision, "rng_factory": rng_factory}
for lhs_shape in [(3,), (4, 3)] for rhs_shape in [(3,), (3, 6)]
for dtype in all_dtypes
for precision in [None, lax.Precision.DEFAULT, lax.Precision.HIGH,
lax.Precision.HIGHEST]
for rng_factory in [jtu.rand_default]))
def testDot(self, lhs_shape, rhs_shape, dtype, precision, rng_factory):
rng = rng_factory(self.rng())
args_maker = lambda: [rng(lhs_shape, dtype), rng(rhs_shape, dtype)]
self._CompileAndCheck(partial(lax.dot, precision=precision), args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_lhs_shape={}_rhs_shape={}".format(
jtu.format_shape_dtype_string(lhs_shape, dtype),
jtu.format_shape_dtype_string(rhs_shape, dtype)),
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
"rng_factory": rng_factory}
for lhs_shape in [(3,), (4, 3)] for rhs_shape in [(3,), (3, 6)]
for dtype in all_dtypes
for rng_factory in [jtu.rand_default]))
def testDotAgainstNumpy(self, lhs_shape, rhs_shape, dtype, rng_factory):
rng = rng_factory(self.rng())
args_maker = lambda: [rng(lhs_shape, dtype), rng(rhs_shape, dtype)]
tol = {
np.float16: 1e-2,
np.float64: max(jtu.default_tolerance()[np.dtype(np.float64)], 1e-14),
np.complex128: max(jtu.default_tolerance()[np.dtype(np.complex128)],
1e-14)
}
lax_op = partial(lax.dot, precision=lax.Precision.HIGHEST)
self._CheckAgainstNumpy(lax_reference.dot, lax_op, args_maker, tol=tol)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name":
"_lhs_shape={}_rhs_shape={}_lhs_contracting={}_rhs_contracting={}"
.format(jtu.format_shape_dtype_string(lhs_shape, dtype),
jtu.format_shape_dtype_string(rhs_shape, dtype),
lhs_contracting, rhs_contracting),
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
"lhs_contracting": lhs_contracting, "rhs_contracting": rhs_contracting,
"rng_factory": rng_factory}
for lhs_shape, rhs_shape, lhs_contracting, rhs_contracting in [
[(5,), (5,), [0], [0]],
[(5, 7), (5,), [0], [0]],
[(7, 5), (5,), [1], [0]],
[(3, 5), (2, 5), [1], [1]],
[(5, 3), (5, 2), [0], [0]],
[(5, 3, 2), (5, 2, 4), [0], [0]],
[(5, 3, 2), (5, 2, 4), [0,2], [0,1]],
[(5, 3, 2), (3, 5, 2, 4), [0,2], [1,2]],
[(1, 2, 2, 3), (1, 2, 3, 1), [1], [1]],
[(3, 2), (2, 4), [1], [0]],
]
for dtype in all_dtypes
for rng_factory in [jtu.rand_small]))
def testDotGeneralContractOnly(self, lhs_shape, rhs_shape, dtype,
lhs_contracting, rhs_contracting, rng_factory):
rng = rng_factory(self.rng())
args_maker = lambda: [rng(lhs_shape, dtype), rng(rhs_shape, dtype)]
dimension_numbers = ((lhs_contracting, rhs_contracting), ([], []))
def fun(lhs, rhs):
return lax.dot_general(lhs, rhs, dimension_numbers)
self._CompileAndCheck(fun, args_maker, check_dtypes=False)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name":
"_lhs_shape={}_rhs_shape={}_dimension_numbers={}"
.format(jtu.format_shape_dtype_string(lhs_shape, dtype),
jtu.format_shape_dtype_string(rhs_shape, dtype),
dimension_numbers),
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
"dimension_numbers": dimension_numbers, "rng_factory": rng_factory}
for lhs_shape, rhs_shape, dimension_numbers in [
((3, 3, 2), (3, 2, 4), (([2], [1]), ([0], [0]))),
((3, 3, 2), (2, 3, 4), (([2], [0]), ([0], [1]))),
((3, 4, 2, 4), (3, 4, 3, 2), (([2], [3]), ([0, 1], [0, 1]))),
]
for dtype in all_dtypes
for rng_factory in [jtu.rand_small]))
def testDotGeneralContractAndBatch(self, lhs_shape, rhs_shape, dtype,
dimension_numbers, rng_factory):
rng = rng_factory(self.rng())
args_maker = lambda: [rng(lhs_shape, dtype), rng(rhs_shape, dtype)]
def fun(lhs, rhs):
return lax.dot_general(lhs, rhs, dimension_numbers)
self._CompileAndCheck(fun, args_maker, check_dtypes=False)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name":
"_lhs_shape={}_rhs_shape={}_dimension_numbers={}"
.format(jtu.format_shape_dtype_string(lhs_shape, dtype),
jtu.format_shape_dtype_string(rhs_shape, dtype),
dimension_numbers),
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
"dimension_numbers": dimension_numbers, "rng_factory": rng_factory}
for lhs_shape, rhs_shape, dimension_numbers in [
((3, 3, 2), (3, 2, 4), (([2], [1]), ([0], [0]))),
((3, 3, 2), (2, 3, 4), (([2], [0]), ([0], [1]))),
((3, 4, 2, 4), (3, 4, 3, 2), (([2], [3]), ([0, 1], [0, 1]))),
]
for dtype in all_dtypes
for rng_factory in [jtu.rand_small]))
def testDotGeneralAgainstNumpy(self, lhs_shape, rhs_shape, dtype,
dimension_numbers, rng_factory):
rng = rng_factory(self.rng())
args_maker = lambda: [rng(lhs_shape, dtype), rng(rhs_shape, dtype)]
op = lambda x, y: lax.dot_general(x, y, dimension_numbers)
numpy_op = lambda x, y: lax_reference.dot_general(x, y, dimension_numbers)
self._CheckAgainstNumpy(numpy_op, op, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_shape={}_dtype={}_broadcast_sizes={}".format(
shape, np.dtype(dtype).name, broadcast_sizes),
"shape": shape, "dtype": dtype, "broadcast_sizes": broadcast_sizes,
"rng_factory": rng_factory}
for shape in [(), (2, 3)]
for dtype in default_dtypes
for broadcast_sizes in [(), (2,), (1, 2)]
for rng_factory in [jtu.rand_default]))
def testBroadcast(self, shape, dtype, broadcast_sizes, rng_factory):
rng = rng_factory(self.rng())
args_maker = lambda: [rng(shape, dtype)]
op = lambda x: lax.broadcast(x, broadcast_sizes)
self._CompileAndCheck(op, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_shape={}_broadcast_sizes={}".format(
jtu.format_shape_dtype_string(shape, dtype), broadcast_sizes),
"shape": shape, "dtype": dtype, "broadcast_sizes": broadcast_sizes,
"rng_factory": rng_factory}
for shape in [(), (2, 3)]
for dtype in default_dtypes
for broadcast_sizes in [(), (2,), (1, 2)]
for rng_factory in [jtu.rand_default]))
def testBroadcastAgainstNumpy(self, shape, dtype, broadcast_sizes, rng_factory):
rng = rng_factory(self.rng())
args_maker = lambda: [rng(shape, dtype)]
op = lambda x: lax.broadcast(x, broadcast_sizes)
numpy_op = lambda x: lax_reference.broadcast(x, broadcast_sizes)
self._CheckAgainstNumpy(numpy_op, op, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_inshape={}_outshape={}_bcdims={}".format(
jtu.format_shape_dtype_string(inshape, dtype),
outshape, broadcast_dimensions),
"inshape": inshape, "dtype": dtype, "outshape": outshape,
"dimensions": broadcast_dimensions, "rng_factory": rng_factory}
for inshape, outshape, broadcast_dimensions in [
([2], [2, 2], [0]),
([2], [2, 2], [1]),
([2], [2, 3], [0]),
([], [2, 3], []),
([1], [2, 3], [1]),
]
for dtype in default_dtypes
for rng_factory in [jtu.rand_default]))
def testBroadcastInDim(self, inshape, dtype, outshape, dimensions, rng_factory):
rng = rng_factory(self.rng())
args_maker = lambda: [rng(inshape, dtype)]
op = lambda x: lax.broadcast_in_dim(x, outshape, dimensions)
self._CompileAndCheck(op, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_inshape={}_outshape={}_bcdims={}".format(
jtu.format_shape_dtype_string(inshape, np.float32),
outshape, broadcast_dimensions),
"inshape": inshape, "outshape": outshape,
"broadcast_dimensions": broadcast_dimensions, "err_msg": err_msg}
for inshape, outshape, broadcast_dimensions, err_msg in [
([2], [2, 2], [0, 1], ('broadcast_dimensions must have length equal to '
'operand ndim')),
([2, 2], [2], [0, 1], ('target broadcast shape must have equal or higher rank '
'to the operand shape')),
([2], [2, 3], [2], ('broadcast_in_dim broadcast_dimensions must be a subset of output '
'dimensions')),
([2], [3], [0], ('operand dimension sizes must either be 1, or be '
'equal to their corresponding dimensions in the target broadcast shape')),
([2, 2], [2, 2], [1, 0], ('broadcast_dimensions must be strictly increasing')),
]))
def testBroadcastInDimShapeCheck(self, inshape, outshape, broadcast_dimensions, err_msg):
rng = jtu.rand_default(self.rng())
x = rng(inshape, np.float32)
with self.assertRaisesRegex(TypeError, err_msg):
lax.broadcast_in_dim(x, shape=outshape, broadcast_dimensions=broadcast_dimensions)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_inshape={}_outshape={}_bcdims={}".format(
jtu.format_shape_dtype_string(inshape, dtype),
outshape, broadcast_dimensions),
"inshape": inshape, "dtype": dtype, "outshape": outshape,
"dimensions": broadcast_dimensions, "rng_factory": rng_factory}
for inshape, outshape, broadcast_dimensions in [
([2], [2, 2], [0]),
([2], [2, 2], [1]),
([2], [2, 3], [0]),
([], [2, 3], []),
([1], [2, 3], [1]),
]
for dtype in default_dtypes
for rng_factory in [jtu.rand_default]))
def testBroadcastInDimAgainstNumpy(self, inshape, dtype, outshape,
dimensions, rng_factory):
rng = rng_factory(self.rng())
args_maker = lambda: [rng(inshape, dtype)]
op = lambda x: lax.broadcast_in_dim(x, outshape, dimensions)
numpy_op = lambda x: lax_reference.broadcast_in_dim(x, outshape, dimensions)
self._CheckAgainstNumpy(numpy_op, op, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_inshape={}_dimensions={}".format(
jtu.format_shape_dtype_string(inshape, np.float32), dimensions),
"inshape": inshape, "dimensions": dimensions, "error_type": error_type,
"err_msg": err_msg}
for inshape, dimensions, error_type, err_msg in [
((1, 2, 3), (0, 0), ValueError, 'dimensions are not unique'),
((1, 2, 3), (3,), ValueError, 'axis 3 is out of bounds'),
((1, 2, 3), (-4,), ValueError, 'axis -4 is out of bounds'),
((1, 2, 3), (1,), ValueError, 'cannot select an axis to squeeze out'),
((1, 2, 3), (None,), TypeError, 'cannot be interpreted as an integer'),
]))
def testSqueezeShapeCheck(self, inshape, dimensions, error_type, err_msg):
rng = jtu.rand_default(self.rng())
x = rng(inshape, np.float32)
with self.assertRaisesRegex(error_type, err_msg):
lax.squeeze(x, dimensions=dimensions)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_inshape={}_dimensions={}".format(
jtu.format_shape_dtype_string(arg_shape, np.float32), dimensions),
"arg_shape": arg_shape, "dimensions": dimensions,
"rng_factory": rng_factory}
for arg_shape, dimensions in [
[(1,), (0,)],
[(1,), (-1,)],
[(2, 1, 4), (1,)],
[(2, 1, 3, 1), (1,)],
[(2, 1, 3, 1), (1, 3)],
[(2, 1, 3, 1), (3,)],
]
for rng_factory in [jtu.rand_default]))
def testSqueeze(self, arg_shape, dimensions, rng_factory):
rng = rng_factory(self.rng())
args_maker = lambda: [rng(arg_shape, np.float32)]
op = lambda x: lax.squeeze(x, dimensions)
numpy_op = lambda x: lax_reference.squeeze(x, dimensions)
self._CompileAndCheck(op, args_maker)
self._CheckAgainstNumpy(numpy_op, op, args_maker)
check_grads(op, args_maker(), 2, ["fwd", "rev"], eps=1.)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_inshape={}_outshape={}".format(
jtu.format_shape_dtype_string(arg_shape, dtype),
jtu.format_shape_dtype_string(out_shape, dtype)),
"arg_shape": arg_shape, "out_shape": out_shape, "dtype": dtype,
"rng_factory": rng_factory}
for dtype in default_dtypes
for arg_shape, out_shape in [
[(3, 4), (12,)], [(2, 1, 4), (8,)], [(2, 2, 4), (2, 8)]
]
for rng_factory in [jtu.rand_default]))
def testReshape(self, arg_shape, out_shape, dtype, rng_factory):
rng = rng_factory(self.rng())
args_maker = lambda: [rng(arg_shape, dtype)]
op = lambda x: lax.reshape(x, out_shape)
self._CompileAndCheck(op, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_inshape={}_outshape={}".format(
jtu.format_shape_dtype_string(arg_shape, dtype),
jtu.format_shape_dtype_string(out_shape, dtype)),
"arg_shape": arg_shape, "out_shape": out_shape, "dtype": dtype,
"rng_factory": rng_factory}
for dtype in default_dtypes
for arg_shape, out_shape in [
[(3, 4), (12,)], [(2, 1, 4), (8,)], [(2, 2, 4), (2, 8)]
]
for rng_factory in [jtu.rand_default]))
def testReshapeAgainstNumpy(self, arg_shape, out_shape, dtype, rng_factory):
rng = rng_factory(self.rng())
args_maker = lambda: [rng(arg_shape, dtype)]
op = lambda x: lax.reshape(x, out_shape)
numpy_op = lambda x: lax_reference.reshape(x, out_shape)
self._CheckAgainstNumpy(numpy_op, op, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_inshape={}_pads={}"
.format(jtu.format_shape_dtype_string(shape, dtype), pads),
"shape": shape, "dtype": dtype, "pads": pads, "rng_factory": jtu.rand_small}
for dtype in default_dtypes
for shape, pads in [
((0, 2), [(1, 2, 1), (0, 1, 0)]),
((2, 3), [(1, 2, 1), (0, 1, 0)]),
((2,), [(1, 2, 0)]),
((1, 2), [(1, 2, 0), (3, 4, 0)]),
((1, 2), [(0, 0, 0), (0, 0, 0)]),
((2,), [(1, 2, 3),]),
((3, 2), [(1, 2, 1), (3, 4, 2)]),
((2,), [(-1, 2, 0),]),
((4, 2), [(-1, -2, 0), (1, 2, 0)]),
((4, 2), [(-1, 2, 0), (1, 2, 2)]),
((5,), [(-1, -2, 2),]),
((4, 2), [(-1, -2, 1), (1, 2, 2)])
]))
def testPad(self, shape, dtype, pads, rng_factory):
rng = rng_factory(self.rng())
args_maker = lambda: [rng(shape, dtype)]
fun = lambda operand: lax.pad(operand, np.array(0, dtype), pads)
self._CompileAndCheck(fun, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_inshape={}_pads={}"
.format(jtu.format_shape_dtype_string(shape, dtype), pads),
"shape": shape, "dtype": dtype, "pads": pads, "rng_factory": jtu.rand_small}
for shape in [(2, 3)]
for dtype in default_dtypes
for pads in [
[(0, 0, 0), (0, 0, 0)], # no padding
[(1, 1, 0), (2, 2, 0)], # only positive edge padding
[(1, 2, 1), (0, 1, 0)], # edge padding and interior padding
[(0, 0, 0), (-1, -1, 0)], # negative padding
[(0, 0, 0), (-2, -2, 4)], # add big dilation then remove from edges
[(0, 0, 0), (-2, -3, 1)], # remove everything in one dimension
]))
def testPadAgainstNumpy(self, shape, dtype, pads, rng_factory):
rng = rng_factory(self.rng())
args_maker = lambda: [rng(shape, dtype)]
op = lambda x: lax.pad(x, np.array(0, dtype), pads)
numpy_op = lambda x: lax_reference.pad(x, np.array(0, dtype), pads)
self._CheckAgainstNumpy(numpy_op, op, args_maker)
def testPadErrors(self):
with self.assertRaisesRegex(ValueError, "padding_config"):
lax.pad(np.zeros(2), 0., [(0, 1, 0), (0, 1, 0)])
with self.assertRaisesRegex(ValueError, "padding_config"):
lax.pad(np.zeros(2), 0., [(0, 1, -1)])
def testReverse(self):
rev = api.jit(lambda operand: lax.rev(operand, dimensions))
dimensions = []
self.assertAllClose(np.array([0, 1, 2, 3]), rev(np.array([0, 1, 2, 3])),
check_dtypes=False)
dimensions = [0]
self.assertAllClose(np.array([3, 2, 1]), rev(np.array([1, 2, 3])),
check_dtypes=False)
dimensions = [0, 1]
self.assertAllClose(np.array([[6, 5, 4], [3, 2, 1]]),
rev(np.array([[1, 2, 3], [4, 5, 6]])),
check_dtypes=False)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_predshape={}_argshapes={}".format(
jtu.format_shape_dtype_string(pred_shape, np.bool_),
jtu.format_shape_dtype_string(arg_shape, arg_dtype)),
"pred_shape": pred_shape, "arg_shape": arg_shape, "arg_dtype": arg_dtype,
"rng_factory": rng_factory}
for arg_shape in [(), (3,), (2, 3)]
for pred_shape in ([(), arg_shape] if arg_shape else [()])
for arg_dtype in default_dtypes
for rng_factory in [jtu.rand_default]))
def testSelect(self, pred_shape, arg_shape, arg_dtype, rng_factory):
def args_maker():
return [rng(pred_shape, np.bool_), rng(arg_shape, arg_dtype),
rng(arg_shape, arg_dtype)]
rng = rng_factory(self.rng())
return self._CompileAndCheck(lax.select, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_predshape={}_argshapes={}".format(
jtu.format_shape_dtype_string(pred_shape, np.bool_),
jtu.format_shape_dtype_string(arg_shape, arg_dtype)),
"pred_shape": pred_shape, "arg_shape": arg_shape, "arg_dtype": arg_dtype,
"rng_factory": rng_factory}
for arg_shape in [(), (3,), (2, 3)]
for pred_shape in ([(), arg_shape] if arg_shape else [()])
for arg_dtype in default_dtypes
for rng_factory in [jtu.rand_default]))
def testSelectAgainstNumpy(self, pred_shape, arg_shape, arg_dtype, rng_factory):
def args_maker():
return [rng(pred_shape, np.bool_), rng(arg_shape, arg_dtype),
rng(arg_shape, arg_dtype)]
rng = rng_factory(self.rng())
return self._CheckAgainstNumpy(lax_reference.select, lax.select, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name":
"_shape={}_start_indices={}_limit_indices={}_strides={}".format(
jtu.format_shape_dtype_string(shape, dtype),
start_indices, limit_indices, strides),
"shape": shape, "dtype": dtype, "starts": start_indices,
"limits": limit_indices, "strides": strides, "rng_factory": rng_factory}
for shape, start_indices, limit_indices, strides in [
[(3,), (1,), (2,), None],
[(7,), (4,), (7,), None],
[(5,), (1,), (5,), (2,)],
[(8,), (1,), (6,), (2,)],
[(5, 3), (1, 1), (3, 2), None],
[(5, 3), (1, 1), (3, 1), None],
[(7, 5, 3), (4, 0, 1), (7, 1, 3), None],
[(5, 3), (1, 1), (2, 1), (1, 1)],
[(5, 3), (1, 1), (5, 3), (2, 1)],
]
for dtype in default_dtypes
for rng_factory in [jtu.rand_default]))
def testSlice(self, shape, dtype, starts, limits, strides, rng_factory):
rng = rng_factory(self.rng())
args_maker = lambda: [rng(shape, dtype)]
op = lambda x: lax.slice(x, starts, limits, strides)
self._CompileAndCheck(op, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name":
"_shape={}_start_indices={}_limit_indices={}_strides={}".format(
jtu.format_shape_dtype_string(shape, dtype),
start_indices, limit_indices, strides),
"shape": shape, "dtype": dtype, "starts": start_indices,
"limits": limit_indices, "strides": strides, "rng_factory": rng_factory}
for shape, start_indices, limit_indices, strides in [
[(3,), (1,), (2,), None],
[(7,), (4,), (7,), None],
[(5,), (1,), (5,), (2,)],
[(8,), (1,), (6,), (2,)],
[(5, 3), (1, 1), (3, 2), None],
[(5, 3), (1, 1), (3, 1), None],
[(7, 5, 3), (4, 0, 1), (7, 1, 3), None],
[(5, 3), (1, 1), (2, 1), (1, 1)],
[(5, 3), (1, 1), (5, 3), (2, 1)],
]
for dtype in default_dtypes
for rng_factory in [jtu.rand_default]))
def testSliceAgainstNumpy(self, shape, dtype, starts, limits,
strides, rng_factory):
rng = rng_factory(self.rng())
args_maker = lambda: [rng(shape, dtype)]
op = lambda x: lax.slice(x, starts, limits, strides)
numpy_op = lambda x: lax_reference.slice(x, starts, limits, strides)
self._CheckAgainstNumpy(numpy_op, op, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_shape={}_start_indices={}_size_indices={}".format(
jtu.format_shape_dtype_string(shape, dtype),
start_indices, size_indices),
"shape": shape, "dtype": dtype, "start_indices": start_indices,
"size_indices": size_indices, "rng_factory": rng_factory}
for shape, start_indices, size_indices in [
[(3,), np.array((1,)), (1,)],
[(5, 3), (1, 1), (3, 1)],
[(5, 3), np.array((1, 1)), (3, 1)],
[(7, 5, 3), np.array((4, 1, 0)), (2, 0, 1)],
]
for dtype in default_dtypes
for rng_factory in [jtu.rand_default]))
def testDynamicSlice(self, shape, dtype, start_indices, size_indices, rng_factory):
rng = rng_factory(self.rng())
args_maker = lambda: [rng(shape, dtype), np.array(start_indices)]
op = lambda x, starts: lax.dynamic_slice(x, starts, size_indices)
self._CompileAndCheck(op, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_shape={}_start_indices={}_size_indices={}".format(
jtu.format_shape_dtype_string(shape, dtype),
start_indices, size_indices),
"shape": shape, "dtype": dtype, "start_indices": start_indices,
"size_indices": size_indices, "rng_factory": rng_factory}
for shape, start_indices, size_indices in [
[(3,), (1,), (1,)],
[(5, 3), (1, 1), (3, 1)],
[(7, 5, 3), (4, 1, 0), (2, 0, 1)],
]
for dtype in default_dtypes
for rng_factory in [jtu.rand_default]))
def testDynamicSliceAgainstNumpy(self, shape, dtype, start_indices,
size_indices, rng_factory):
rng = rng_factory(self.rng())
args_maker = lambda: [rng(shape, dtype), np.array(start_indices)]
op = lambda x, s: lax.dynamic_slice(x, s, size_indices)
numpy_op = lambda x, s: lax_reference.dynamic_slice(x, s, size_indices)
self._CheckAgainstNumpy(numpy_op, op, args_maker)
def testDynamicSliceInDim(self):
# Regression test for mixed type problem in dynamic_slice_in_dim.
rng = jtu.rand_default(self.rng())
x = rng((6, 7), np.int32)
np.testing.assert_equal(lax.dynamic_slice_in_dim(x, 2, 3), x[2:5])
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_shape={}_start_indices={}_update_shape={}".format(
jtu.format_shape_dtype_string(shape, dtype),
start_indices, update_shape),
"shape": shape, "dtype": dtype, "start_indices": start_indices,
"update_shape": update_shape, "rng_factory": rng_factory}
for shape, start_indices, update_shape in [
[(3,), (1,), (1,)],
[(5, 3), (1, 1), (3, 1)],
[(7, 5, 3), (4, 1, 0), (2, 0, 1)],
]
for dtype in default_dtypes
for rng_factory in [jtu.rand_default]))
def testDynamicUpdateSlice(self, shape, dtype, start_indices, update_shape,
rng_factory):
rng = rng_factory(self.rng())
def args_maker():
return [rng(shape, dtype), rng(update_shape, dtype),
np.array(start_indices)]
self._CompileAndCheck(lax.dynamic_update_slice, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_shape={}_start_indices={}_update_shape={}".format(
jtu.format_shape_dtype_string(shape, dtype),
start_indices, update_shape),
"shape": shape, "dtype": dtype, "start_indices": start_indices,
"update_shape": update_shape, "rng_factory": rng_factory}
for shape, start_indices, update_shape in [
[(3,), (1,), (1,)],
[(5, 3), (1, 1), (3, 1)],
[(7, 5, 3), (4, 1, 0), (2, 0, 1)],
]
for dtype in default_dtypes
for rng_factory in [jtu.rand_default]))
def testDynamicUpdateSliceAgainstNumpy(self, shape, dtype, start_indices,
update_shape, rng_factory):
rng = rng_factory(self.rng())
def args_maker():
return [rng(shape, dtype), rng(update_shape, dtype),
np.array(start_indices)]
self._CheckAgainstNumpy(lax_reference.dynamic_update_slice,
lax.dynamic_update_slice, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_shape={}_perm={}".format(
jtu.format_shape_dtype_string(shape, dtype), perm),
"shape": shape, "dtype": dtype, "perm": perm, "rng_factory": rng_factory}
for shape, perm in [
[(3, 4), (1, 0)],
[(3, 4), (0, 1)],
[(3, 4, 5), (2, 1, 0)],
[(3, 4, 5), (1, 0, 2)],
]
for dtype in default_dtypes
for rng_factory in [jtu.rand_default]))
def testTranspose(self, shape, dtype, perm, rng_factory):
rng = rng_factory(self.rng())
args_maker = lambda: [rng(shape, dtype)]
op = lambda x: lax.transpose(x, perm)
self._CompileAndCheck(op, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_shape={}_perm={}".format(
jtu.format_shape_dtype_string(shape, dtype), perm),
"shape": shape, "dtype": dtype, "perm": perm, "rng_factory": rng_factory}
for shape, perm in [
[(3, 4), (1, 0)],
[(3, 4), (0, 1)],
[(3, 4, 5), (2, 1, 0)],
[(3, 4, 5), (1, 0, 2)],
]
for dtype in default_dtypes
for rng_factory in [jtu.rand_default]))
def testTransposeAgainstNumpy(self, shape, dtype, perm, rng_factory):
rng = rng_factory(self.rng())
args_maker = lambda: [rng(shape, dtype)]
op = lambda x: lax.transpose(x, perm)
numpy_op = lambda x: lax_reference.transpose(x, perm)
self._CheckAgainstNumpy(numpy_op, op, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_op={}_inshape={}_reducedims={}_initval={}"
.format(op.__name__, jtu.format_shape_dtype_string(shape, dtype), dims,
init_val),
"op": op, "init_val": init_val, "shape": shape, "dtype": dtype,
"dims": dims, "rng_factory": rng_factory}
for init_val, op, types in [
(0, lax.add, default_dtypes),
(1, lax.mul, default_dtypes),
(0, lax.max, all_dtypes), # non-monoidal
(-np.inf, lax.max, float_dtypes),
(dtypes.iinfo(np.int32).min, lax.max, [np.int32]),
# (dtypes.iinfo(np.int64).min, lax.max, [np.int64]), # TODO fails
(dtypes.iinfo(np.uint32).min, lax.max, [np.uint32]),
(dtypes.iinfo(np.uint64).min, lax.max, [np.uint64]),
(np.inf, lax.min, float_dtypes),
(dtypes.iinfo(np.int32).max, lax.min, [np.int32]),
# (dtypes.iinfo(np.int64).max, lax.min, [np.int64]), # TODO fails
(dtypes.iinfo(np.uint32).max, lax.min, [np.uint32]),
(dtypes.iinfo(np.uint64).max, lax.min, [np.uint64]),
]
for dtype in types
for shape, dims in [
[(3, 4, 5), (0,)], [(3, 4, 5), (1, 2)],
[(3, 4, 5), (0, 2)], [(3, 4, 5), (0, 1, 2)]
]
for rng_factory in [
jtu.rand_default if dtypes.issubdtype(dtype, np.integer)
else jtu.rand_small]))
def testReduce(self, op, init_val, shape, dtype, dims, rng_factory):
rng = rng_factory(self.rng())
init_val = np.asarray(init_val, dtype=dtype)
fun = lambda operand, init_val: lax.reduce(operand, init_val, op, dims)
args_maker = lambda: [rng(shape, dtype), init_val]
self._CompileAndCheck(fun, args_maker)
# we separately test the version that uses a concrete init_val because it
# can hit different code paths
fun = lambda operand: lax.reduce(operand, init_val, op, dims)
args_maker = lambda: [rng(shape, dtype)]
self._CompileAndCheck(fun, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": ("_op={}_shape={}_dims={}_strides={}_padding={}"
"_basedilation={}_windowdilation={}")
.format(op.__name__, jtu.format_shape_dtype_string(shape, dtype),
dims, strides, padding, base_dilation, window_dilation),
"op": op, "init_val": init_val, "dtype": dtype, "shape": shape,
"dims": dims, "strides": strides, "padding": padding,
"base_dilation": base_dilation, "window_dilation": window_dilation}
for init_val, op, dtypes in [
(0, lax.add, [np.float32]),
(-np.inf, lax.max, [np.float32]),
(np.inf, lax.min, [np.float32]),
]
for shape, dims, strides, padding, base_dilation, window_dilation in (
itertools.chain(
itertools.product(
[(4, 6)],
[(2, 1), (1, 2)],
[(1, 1), (2, 1), (1, 2)],
["VALID", "SAME", [(0, 3), (1, 2)]],
[(1, 1), (2, 3)],
[(1, 1), (1, 2)]),
itertools.product(
[(3, 2, 4, 6)], [(1, 1, 2, 1), (2, 1, 2, 1)],
[(1, 2, 2, 1), (1, 1, 1, 1)],
["VALID", "SAME", [(0, 1), (1, 0), (2, 3), (0, 2)]],
[(1, 1, 1, 1), (2, 1, 3, 2)],
[(1, 1, 1, 1), (1, 2, 2, 1)])))
for dtype in dtypes))
def testReduceWindow(self, op, init_val, dtype, shape, dims, strides, padding,
base_dilation, window_dilation):
rng = jtu.rand_small(self.rng())
init_val = np.asarray(init_val, dtype=dtype)
def fun(operand, init_val):
return lax.reduce_window(operand, init_val, op, dims, strides, padding,
base_dilation, window_dilation)
def reference_fun(operand, init_val):
return lax_reference.reduce_window(operand, init_val, op, dims, strides,
padding, base_dilation)
args_maker = lambda: [rng(shape, dtype), init_val]
self._CompileAndCheck(fun, args_maker)
if all(d == 1 for d in window_dilation):
self._CheckAgainstNumpy(reference_fun, fun, args_maker)
# we separately test the version that uses a concrete init_val because it
# can hit different code paths
def fun(operand):
return lax.reduce_window(operand, init_val, op, dims, strides, padding,
base_dilation, window_dilation)
args_maker = lambda: [rng(shape, dtype)]
self._CompileAndCheck(fun, args_maker)
def testReduceWindowFailures(self):
def empty_window_test():
return lax.reduce_window(np.ones((1,)), 0., lax.add, padding='VALID',
window_dimensions=(0,), window_strides=(1,))
def zero_stride_test():
return lax.reduce_window(np.ones((1,)), 0., lax.add, padding='VALID',
window_dimensions=(1,), window_strides=(0,))
for failure_fun in [empty_window_test, zero_stride_test]:
with self.assertRaisesRegex(TypeError, "must have every element be"):
failure_fun()
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": (f"_shape={shape}_windowdimensions={window_dimensions}"
f"_basedilation={base_dilation}_windowdilation="
f"{window_dilation}"),
"shape": shape, "window_dimensions": window_dimensions,
"base_dilation": base_dilation, "window_dilation": window_dilation}
for shape, window_dimensions, base_dilation, window_dilation in (
itertools.chain(
itertools.product(
[(4, 6)],
[(1, 1), (3, 4)],
[(1, 1), (1, 2), (2, 13), (40, 60)],
[(1, 1), (1, 2), (2, 13), (40, 60)]),
itertools.product(
[(3, 2, 4, 6)],
[(1, 1, 1, 1), (2, 1, 2, 1)],
[(1, 1, 1, 1), (1, 2, 2, 1), (30, 40, 3, 2)],
[(1, 1, 1, 1), (1, 2, 2, 1), (30, 40, 3, 2)])))))
def testReduceWindowShapeDilation(self, shape, window_dimensions,
base_dilation, window_dilation):
operand, padding, strides = np.ones(shape), 'SAME', (1,) * len(shape)
result = lax.reduce_window(operand, 0., lax.add, padding=padding,
window_strides=strides,
window_dimensions=window_dimensions)
# With a stride of 1 in each direction and a padding of 'SAME', the
# shape of the input should be equal to the shape of the result according
# to https://www.tensorflow.org/xla/operation_semantics#reducewindow.
self.assertEqual(shape, result.shape)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_op={}_shape={}_axis={}"
.format(op.__name__, jtu.format_shape_dtype_string(shape, dtype), axis),
"op": op, "np_op": np_op, "shape": shape, "dtype": dtype,
"axis": axis, "rng_factory": rng_factory}
for op, np_op, types in [
(lax.cumsum, np.cumsum, default_dtypes),
(lax.cumprod, np.cumprod, default_dtypes),
(lax.cummax, np.maximum.accumulate, default_dtypes),
(lax.cummin, np.minimum.accumulate, default_dtypes),
]
for dtype in types
for shape in [[10], [3, 4, 5]]
for axis in range(len(shape))
for rng_factory in [
jtu.rand_default if dtypes.issubdtype(dtype, np.integer)
else jtu.rand_small]))
def testCumulativeReduce(self, op, np_op, shape, dtype, axis, rng_factory):
rng = rng_factory(self.rng())
fun = partial(op, axis=axis)
np_fun = partial(np_op, axis=axis, dtype=dtype)
args_maker = lambda: [rng(shape, dtype)]
self._CompileAndCheck(fun, args_maker)
self._CheckAgainstNumpy(np_fun, fun, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_shape={}_axis={}_isstable={}".format(
jtu.format_shape_dtype_string(shape, dtype), axis, is_stable),
"shape": shape, "dtype": dtype, "axis": axis, "is_stable": is_stable}
for dtype in all_dtypes
for shape in [(5,), (5, 7)]
for axis in [-1, len(shape) - 1]
for is_stable in [False, True]))
def testSort(self, shape, dtype, axis, is_stable):
# TODO(b/141131288): enable complex-valued sorts on TPU.
if (np.issubdtype(dtype, np.complexfloating) and (
(jtu.device_under_test() == "cpu" and jax.lib.version <= (0, 1, 47)) or
jtu.device_under_test() == "tpu")):
raise SkipTest("Complex-valued sort not implemented")
rng = jtu.rand_default(self.rng())
args_maker = lambda: [rng(shape, dtype)]
fun = lambda x: lax.sort(x, dimension=axis, is_stable=is_stable)
self._CompileAndCheck(fun, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_shape={}_axis={}_isstable={}".format(
jtu.format_shape_dtype_string(shape, dtype), axis, is_stable),
"shape": shape, "dtype": dtype, "axis": axis, "is_stable": is_stable}
for dtype in all_dtypes
for shape in [(5,), (5, 7)]
for axis in [-1, len(shape) - 1]
for is_stable in [False, True]))
def testSortAgainstNumpy(self, shape, dtype, axis, is_stable):
# TODO(b/141131288): enable complex-valued sorts on TPU.
if (np.issubdtype(dtype, np.complexfloating) and (
(jtu.device_under_test() == "cpu" and jax.lib.version <= (0, 1, 47)) or
jtu.device_under_test() == "tpu")):
raise SkipTest("Complex-valued sort not implemented")
rng = jtu.rand_default(self.rng())
args_maker = lambda: [rng(shape, dtype)]
op = lambda x: lax.sort(x, dimension=axis, is_stable=is_stable)
def numpy_op(x):
if is_stable:
return lax_reference.sort(x, axis, kind='stable')
else:
return lax_reference.sort(x, axis)
self._CheckAgainstNumpy(numpy_op, op, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_keyshape={}_valshape={}_axis={}_isstable={}".format(
jtu.format_shape_dtype_string(shape, key_dtype),
jtu.format_shape_dtype_string(shape, val_dtype),
axis, is_stable),
"shape": shape, "key_dtype": key_dtype, "val_dtype": val_dtype,
"axis": axis, "is_stable": is_stable}
for key_dtype in float_dtypes + complex_dtypes + int_dtypes + uint_dtypes
for val_dtype in [np.float32, np.int32, np.uint32]
for shape in [(3,), (5, 3)]
for axis in [-1, len(shape) - 1]
for is_stable in [False, True]))
def testSortKeyVal(self, shape, key_dtype, val_dtype, axis, is_stable):
# TODO(b/141131288): enable complex-valued sorts on TPU.
if (np.issubdtype(key_dtype, np.complexfloating) and (
(jtu.device_under_test() == "cpu" and jax.lib.version <= (0, 1, 47)) or
jtu.device_under_test() == "tpu")):
raise SkipTest("Complex-valued sort not implemented")
rng = jtu.rand_default(self.rng())
# This test relies on the property that wherever keys are tied, values are
# too, since we don't guarantee the same ordering of values with equal keys.
# To avoid that case, we generate unique keys (globally in the key array).
def args_maker():
flat_keys = np.arange(prod(shape), dtype=key_dtype)
keys = self.rng().permutation(flat_keys).reshape(shape)
values = rng(shape, val_dtype)
return keys, values
fun = lambda keys, values: lax.sort_key_val(keys, values, axis, is_stable)
self._CompileAndCheck(fun, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_shape={}_num_keys={}".format(
jtu.format_shape_dtype_string(shape, dtype), num_keys),
"shape": shape, "dtype": dtype, "num_keys": num_keys}
for dtype in all_dtypes
for shape in [(3, 5,), (4, 3)]
for num_keys in range(1, shape[0] + 1)))
def testSortNumKeys(self, shape, dtype, num_keys):
# TODO(b/141131288): enable complex-valued sorts on TPU.
if (np.issubdtype(dtype, np.complexfloating) and (
(jtu.device_under_test() == "cpu" and jax.lib.version <= (0, 1, 47)) or
jtu.device_under_test() == "tpu")):
raise SkipTest("Complex-valued sort not implemented")
rng = jtu.rand_default(self.rng())
args_maker = lambda: [rng(shape, dtype)]
lax_fun = lambda x: lax.sort(tuple(x), num_keys=num_keys)
numpy_fun = lambda x: tuple(x[:, np.lexsort(x[:num_keys][::-1])])
# self._CompileAndCheck(lax_fun, args_maker)
self._CheckAgainstNumpy(numpy_fun, lax_fun, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_keyshape={}_valshape={}_axis={}".format(
jtu.format_shape_dtype_string(shape, key_dtype),
jtu.format_shape_dtype_string(shape, val_dtype),
axis),
"shape": shape, "key_dtype": key_dtype, "val_dtype": val_dtype,
"axis": axis}
for key_dtype in float_dtypes + complex_dtypes + int_dtypes + uint_dtypes
for val_dtype in [np.float32, np.int32, np.uint32]
for shape in [(3,), (5, 3)]
for axis in [-1, len(shape) - 1]))
def testSortKeyValAgainstNumpy(self, shape, key_dtype, val_dtype, axis):
# TODO(b/141131288): enable complex-valued sorts on TPU.
if (np.issubdtype(key_dtype, np.complexfloating) and (
(jtu.device_under_test() == "cpu" and jax.lib.version <= (0, 1, 47)) or
jtu.device_under_test() == "tpu")):
raise SkipTest("Complex-valued sort not implemented")
rng = jtu.rand_default(self.rng())
# This test relies on the property that wherever keys are tied, values are
# too, since we don't guarantee the same ordering of values with equal keys.
# To avoid that case, we generate unique keys (globally in the key array).
def args_maker():
flat_keys = np.arange(prod(shape), dtype=key_dtype)
keys = self.rng().permutation(flat_keys).reshape(shape)
values = rng(shape, val_dtype)
return keys, values
op = lambda ks, vs: lax.sort_key_val(ks, vs, axis)
numpy_op = lambda ks, vs: lax_reference.sort_key_val(ks, vs, axis)
self._CheckAgainstNumpy(numpy_op, op, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_shape={}_k={}".format(
jtu.format_shape_dtype_string(shape, dtype), k),
"rng_factory": rng_factory, "shape": shape, "dtype": dtype, "k": k}
for dtype in [np.float32, np.int32, np.uint32]
for shape in [(3,), (5, 3)]
for k in [1, 3]
for rng_factory in [jtu.rand_default]))
def testTopK(self, shape, dtype, k, rng_factory):
def args_maker():
flat_values = np.arange(prod(shape), dtype=dtype)
values = self.rng().permutation(flat_values).reshape(shape)
return [values]
def reference_top_k(x):
bcast_idxs = np.broadcast_to(np.arange(shape[-1], dtype=np.int32), shape)
sorted_vals, sorted_idxs = lax_reference.sort_key_val(x, bcast_idxs)
return sorted_vals[..., :-k-1:-1], sorted_idxs[..., :-k-1:-1]
op = lambda vs: lax.top_k(vs, k=k)
self._CheckAgainstNumpy(op, reference_top_k, args_maker)
self._CompileAndCheck(op, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_lhs_shape={}_rhs_shape={}"
.format(jtu.format_shape_dtype_string(lhs_shape, dtype),
jtu.format_shape_dtype_string(rhs_shape, dtype)),
"lhs_shape": lhs_shape, "rhs_shape": rhs_shape, "dtype": dtype,
"rng_factory": rng_factory}
for lhs_shape, rhs_shape in [((3, 2), (2, 4)),
((5, 3, 2), (5, 2, 4)),
((1, 2, 2, 3), (1, 2, 3, 1))]
for dtype in float_dtypes
for rng_factory in [jtu.rand_small]))
def testBatchMatMul(self, lhs_shape, rhs_shape, dtype, rng_factory):
rng = rng_factory(self.rng())
arg_maker = lambda: [rng(lhs_shape, dtype), rng(rhs_shape, dtype)]
self._CompileAndCheck(lax.batch_matmul, arg_maker)
def testCollapse(self):
@api.jit
def collapse_first_two(x):
return lax.collapse(x, 0, 2)
self.assertEqual((6,), collapse_first_two(np.zeros((2, 3))).shape)
self.assertEqual((6, 4), collapse_first_two(np.zeros((2, 3, 4))).shape)
self.assertEqual((2, 3, 4),
collapse_first_two(np.zeros((1, 2, 3, 4))).shape)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_shape={}_idxs={}_axes={}".format(
jtu.format_shape_dtype_string(shape, dtype), idxs, axes),
"shape": shape, "dtype": dtype, "idxs": idxs, "axes": axes, "rng_factory": rng_factory}
for dtype in all_dtypes
for shape, idxs, axes in [
[(3, 4, 5), (np.array([0, 2, 1]),), (0,)],
[(3, 4, 5), (np.array([-1, -2]),), (0,)],
[(3, 4, 5), (np.array([0, 2]), np.array([1, 3])), (0, 1)],
[(3, 4, 5), (np.array([0, 2]), np.array([1, 3])), (0, 2)],
]
for rng_factory in [jtu.rand_default]))
def testIndexTake(self, shape, dtype, idxs, axes, rng_factory):
rng = rng_factory(self.rng())
rand_idxs = lambda: tuple(rng(e.shape, e.dtype) for e in idxs)
args_maker = lambda: [rng(shape, dtype), rand_idxs()]
fun = lambda src, idxs: lax.index_take(src, idxs, axes)
self._CompileAndCheck(fun, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_shape={}_idxs={}_dnums={}_slice_sizes={}".format(
jtu.format_shape_dtype_string(shape, dtype), idxs, dnums,
slice_sizes),
"shape": shape, "dtype": dtype, "idxs": idxs, "dnums": dnums,
"slice_sizes": slice_sizes, "rng_factory": rng_factory,
"rng_idx_factory": rng_idx_factory}
for dtype in all_dtypes
for shape, idxs, dnums, slice_sizes in [
((5,), np.array([[0], [2]]), lax.GatherDimensionNumbers(
offset_dims=(), collapsed_slice_dims=(0,), start_index_map=(0,)),
(1,)),
((10,), np.array([[0], [0], [0]]), lax.GatherDimensionNumbers(
offset_dims=(1,), collapsed_slice_dims=(), start_index_map=(0,)),
(2,)),
((10, 5,), np.array([[0], [2], [1]]), lax.GatherDimensionNumbers(
offset_dims=(1,), collapsed_slice_dims=(0,), start_index_map=(0,)),
(1, 3)),
((10, 5), np.array([[0, 2], [1, 0]]), lax.GatherDimensionNumbers(
offset_dims=(1,), collapsed_slice_dims=(0,), start_index_map=(0, 1)),
(1, 3)),
]
for rng_idx_factory in [partial(jtu.rand_int, high=max(shape))]
for rng_factory in [jtu.rand_default]))
def testGather(self, shape, dtype, idxs, dnums, slice_sizes, rng_factory,
rng_idx_factory):
rng = rng_factory(self.rng())
rng_idx = rng_idx_factory(self.rng())
rand_idxs = lambda: rng_idx(idxs.shape, idxs.dtype)
args_maker = lambda: [rng(shape, dtype), rand_idxs()]
fun = partial(lax.gather, dimension_numbers=dnums, slice_sizes=slice_sizes)
self._CompileAndCheck(fun, args_maker)
# These tests are adapted from the corresponding tests in
# tensorflow/compiler/xla/service/shape_inference_test.cc with slight
# variations to account for the implicit setting of index_vector_dim in JAX.
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": f"_{testcase_name}", "operand_shape": operand_shape,
"start_indices_shape": start_indices_shape,
"dimension_numbers": lax.GatherDimensionNumbers(
offset_dims=offset_dims,
collapsed_slice_dims=collapsed_slice_dims,
start_index_map=start_index_map),
"slice_sizes": slice_sizes, "msg": msg}
for (testcase_name, operand_shape, start_indices_shape, offset_dims,
collapsed_slice_dims, start_index_map, slice_sizes, msg) in [
("NonAscendingWindowIndices", (10, 9, 8, 7, 6), (5, 4, 3, 2, 1),
(4, 5, 6, 8, 7), (), (0, 1, 2, 3, 4), (10, 9, 8, 7, 6),
"offset_dims in gather op must be sorted"),
("RepeatedWindowIndices", (10, 9, 8, 7, 6), (5, 4, 3, 2, 1),
(4, 5, 6, 7, 7), (), (0, 1, 2, 3, 4), (10, 9, 8, 7, 6),
"offset_dims in gather op must not repeat"),
("WindowIndexOutOfBounds", (10, 9, 8, 7, 6), (5, 4, 3, 2, 1),
(4, 5, 100, 101, 102), (), (0, 1, 2, 3, 4), (10, 9, 8, 7, 6),
"Offset dimension 2 in gather op is out of bounds"),
("WindowIndexBarelyOutOfBounds", (10, 9, 8, 7, 6), (5, 4, 3, 2, 1),
(4, 5, 6, 7, 9), (), (0, 1, 2, 3, 4), (10, 9, 8, 7, 6),
"Offset dimension 4 in gather op is out of bounds"),
("MismatchingElidedWindowDims", (10, 9, 8, 7, 6), (5, 4, 3, 2, 5),
(4, 5, 6, 7, 8), (4,), (0, 1, 2, 3, 4), (10, 9, 8, 7, 6),
"All components of the offset index in a gather op must either be a "
"offset dimension or explicitly collapsed"),
("OutOfBoundsWindowToInputMapping", (10, 9, 8, 7, 6), (5, 4, 3, 2, 5),
(4, 5, 6, 7, 8), (0, 1, 2, 3, 19), (0, 1, 2, 3, 4), (10, 9, 8, 7, 6),
"Invalid collapsed_slice_dims set in gather op; valid range is"),
("RepeatedWindowToInputMapping", (10, 9, 8, 7, 6), (5, 4, 3, 2, 5),
(4, 5, 6, 7, 8), (0, 1, 2, 3, 3), (0, 1, 2, 3, 4), (10, 9, 8, 7, 6),
"collapsed_slice_dims in gather op must not repeat"),
("MismatchingGatherToInputMapping", (10, 9, 8, 7, 6), (5, 4, 3, 2, 5),
(4, 5, 6, 7, 8), (), (0, 1, 2, 3), (10, 9, 8, 7, 6),
"Gather op has 4 elements in start_index_map and the bound of "
"dimension index_vector_dim=4 of start_indices is 5. These two "
"numbers must be equal."),
("OutOfBoundsGatherToInputMapping", (10, 9, 8, 7, 6), (5, 4, 3, 2, 5),
(4, 5, 6, 7, 8), (), (0, 1, 2, 3, 7), (10, 9, 8, 7, 6),
"Invalid start_index_map"),
("RepeatedGatherToInputMapping", (10, 9, 8, 7, 6), (5, 4, 3, 2, 5),
(4, 5, 6, 7, 8), (), (0, 1, 2, 3, 3), (10, 9, 8, 7, 6),
"start_index_map in gather op must not repeat"),
("NonAscendingElidedWindowDims", (10, 9, 8, 7, 6), (5, 4, 3, 2, 5),
(4, 5, 6, 7, 8), (2, 1), (0, 1, 2, 3, 4), (10, 9, 8, 7, 6),
"collapsed_slice_dims in gather op must be sorted"),
("WindowBoundsTooLarge", (10, 9, 8, 7, 6), (5, 4, 3, 2, 5),
(4, 5, 6, 7), (2,), (0, 1, 2, 3, 4), (10, 9, 8, 100, 6),
"Slice size at index 3 in gather op is out of range"),
("MismatchingNumberOfWindowBounds", (10, 9, 8, 7, 6), (5, 4, 3, 2, 5),
(4, 5, 6, 7), (), (0, 1, 2, 3, 4), (10, 9, 8, 7),
"Gather op must have one slice size for every input dimension"),
("WindowBoundsNot1ForElidedDim", (10, 9, 8, 7, 6), (5, 4, 3, 2, 5),
(4, 5, 6, 7), (1,), (0, 1, 2, 3, 4), (10, 9, 8, 7, 6),
"Gather op can only collapse slice dims with bound 1 or 0, but bound "
"is 9 for index 1 at position 0.")
]
))
def testGatherShapeCheckingRule(self, operand_shape, start_indices_shape,
dimension_numbers, slice_sizes, msg):
operand = np.ones(operand_shape, dtype=np.int32)
start_indices = np.ones(start_indices_shape, dtype=np.int32)
with self.assertRaisesRegex(TypeError, msg):
lax.gather(operand, start_indices, dimension_numbers, slice_sizes)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_shape={}_idxs={}_update={}_dnums={}".format(
jtu.format_shape_dtype_string(arg_shape, dtype),
idxs, update_shape, dnums),
"arg_shape": arg_shape, "dtype": dtype, "idxs": idxs,
"update_shape": update_shape, "dnums": dnums,
"rng_factory": rng_factory, "rng_idx_factory": rng_idx_factory}
for dtype in float_dtypes
for arg_shape, idxs, update_shape, dnums in [
((5,), np.array([[0], [2]]), (2,), lax.ScatterDimensionNumbers(
update_window_dims=(), inserted_window_dims=(0,),
scatter_dims_to_operand_dims=(0,))),
((10,), np.array([[0], [0], [0]]), (3, 2), lax.ScatterDimensionNumbers(
update_window_dims=(1,), inserted_window_dims=(),
scatter_dims_to_operand_dims=(0,))),
((10, 5,), np.array([[0], [2], [1]]), (3, 3), lax.ScatterDimensionNumbers(
update_window_dims=(1,), inserted_window_dims=(0,),
scatter_dims_to_operand_dims=(0,))),
]
for rng_idx_factory in [partial(jtu.rand_int, high=max(arg_shape))]
for rng_factory in [jtu.rand_default]))
def testScatterAdd(self, arg_shape, dtype, idxs, update_shape, dnums,
rng_factory, rng_idx_factory):
rng = rng_factory(self.rng())
rng_idx = rng_idx_factory(self.rng())
rand_idxs = lambda: rng_idx(idxs.shape, idxs.dtype)
args_maker = lambda: [rng(arg_shape, dtype), rand_idxs(),
rng(update_shape, dtype)]
fun = partial(lax.scatter_add, dimension_numbers=dnums)
self._CompileAndCheck(fun, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_shape={}_idxs={}_update={}_dnums={}".format(
jtu.format_shape_dtype_string(arg_shape, dtype),
idxs, update_shape, dnums),
"arg_shape": arg_shape, "dtype": dtype, "idxs": idxs,
"update_shape": update_shape, "dnums": dnums,
"rng_factory": rng_factory, "rng_idx_factory": rng_idx_factory}
for dtype in float_dtypes
for arg_shape, idxs, update_shape, dnums in [
((5,), np.array([[0], [2]]), (2,), lax.ScatterDimensionNumbers(
update_window_dims=(), inserted_window_dims=(0,),
scatter_dims_to_operand_dims=(0,))),
((10,), np.array([[0], [0], [0]]), (3, 2), lax.ScatterDimensionNumbers(
update_window_dims=(1,), inserted_window_dims=(),
scatter_dims_to_operand_dims=(0,))),
((10, 5,), np.array([[0], [2], [1]]), (3, 3), lax.ScatterDimensionNumbers(
update_window_dims=(1,), inserted_window_dims=(0,),
scatter_dims_to_operand_dims=(0,))),
]
for rng_idx_factory in [partial(jtu.rand_int, high=max(arg_shape))]
for rng_factory in [jtu.rand_default]))
def testScatterMin(self, arg_shape, dtype, idxs, update_shape, dnums,
rng_factory, rng_idx_factory):
rng = rng_factory(self.rng())
rng_idx = rng_idx_factory(self.rng())
rand_idxs = lambda: rng_idx(idxs.shape, idxs.dtype)
args_maker = lambda: [rng(arg_shape, dtype), rand_idxs(),
rng(update_shape, dtype)]
fun = partial(lax.scatter_min, dimension_numbers=dnums)
self._CompileAndCheck(fun, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_shape={}_idxs={}_update={}_dnums={}".format(
jtu.format_shape_dtype_string(arg_shape, dtype),
idxs, update_shape, dnums),
"arg_shape": arg_shape, "dtype": dtype, "idxs": idxs,
"update_shape": update_shape, "dnums": dnums,
"rng_factory": rng_factory, "rng_idx_factory": rng_idx_factory}
for dtype in float_dtypes
for arg_shape, idxs, update_shape, dnums in [
((5,), np.array([[0], [2]]), (2,), lax.ScatterDimensionNumbers(
update_window_dims=(), inserted_window_dims=(0,),
scatter_dims_to_operand_dims=(0,))),
((10,), np.array([[0], [0], [0]]), (3, 2), lax.ScatterDimensionNumbers(
update_window_dims=(1,), inserted_window_dims=(),
scatter_dims_to_operand_dims=(0,))),
((10, 5,), np.array([[0], [2], [1]]), (3, 3), lax.ScatterDimensionNumbers(
update_window_dims=(1,), inserted_window_dims=(0,),
scatter_dims_to_operand_dims=(0,))),
]
for rng_idx_factory in [partial(jtu.rand_int, high=max(arg_shape))]
for rng_factory in [jtu.rand_default]))
def testScatterMax(self, arg_shape, dtype, idxs, update_shape, dnums,
rng_factory, rng_idx_factory):
rng = rng_factory(self.rng())
rng_idx = rng_idx_factory(self.rng())
rand_idxs = lambda: rng_idx(idxs.shape, idxs.dtype)
args_maker = lambda: [rng(arg_shape, dtype), rand_idxs(),
rng(update_shape, dtype)]
fun = partial(lax.scatter_max, dimension_numbers=dnums)
self._CompileAndCheck(fun, args_maker)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_shape={}_idxs={}_update={}_dnums={}".format(
jtu.format_shape_dtype_string(arg_shape, dtype),
idxs, update_shape, dnums),
"arg_shape": arg_shape, "dtype": dtype, "idxs": idxs,
"update_shape": update_shape, "dnums": dnums,
"rng_factory": rng_factory, "rng_idx_factory": rng_idx_factory}
for dtype in float_dtypes
for arg_shape, idxs, update_shape, dnums in [
((5,), np.array([[0], [2]]), (2,), lax.ScatterDimensionNumbers(
update_window_dims=(), inserted_window_dims=(0,),
scatter_dims_to_operand_dims=(0,))),
((10,), np.array([[0], [0], [0]]), (3, 2), lax.ScatterDimensionNumbers(
update_window_dims=(1,), inserted_window_dims=(),
scatter_dims_to_operand_dims=(0,))),
((10, 5,), np.array([[0], [2], [1]]), (3, 3), lax.ScatterDimensionNumbers(
update_window_dims=(1,), inserted_window_dims=(0,),
scatter_dims_to_operand_dims=(0,))),
]
for rng_idx_factory in [partial(jtu.rand_int, high=max(arg_shape))]
for rng_factory in [jtu.rand_default]))
def testScatter(self, arg_shape, dtype, idxs, update_shape, dnums,
rng_factory, rng_idx_factory):
rng = rng_factory(self.rng())
rng_idx = rng_idx_factory(self.rng())
rand_idxs = lambda: rng_idx(idxs.shape, idxs.dtype)
args_maker = lambda: [rng(arg_shape, dtype), rand_idxs(),
rng(update_shape, dtype)]
fun = partial(lax.scatter, dimension_numbers=dnums)
self._CompileAndCheck(fun, args_maker)
# These tests are adapted from the corresponding tests in
# tensorflow/compiler/xla/service/shape_inference_test.cc with slight
# variations to account for the implicit setting of index_vector_dim in JAX.
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": f"_{testcase_name}", "operand_shape": operand_shape,
"scatter_indices": scatter_indices, "update_shape": update_shape,
"dimension_numbers": lax.ScatterDimensionNumbers(
update_window_dims=update_window_dims,
inserted_window_dims=inserted_window_dims,
scatter_dims_to_operand_dims=scatter_dims_to_operand_dims),
"msg": msg}
for (testcase_name, operand_shape, scatter_indices, update_shape,
update_window_dims, inserted_window_dims,
scatter_dims_to_operand_dims, msg) in [
("ScatterWithUpdatesBiggerThanInput", (64, 48), np.zeros((32, 1)),
(65, 32), (0,), (1,), (1,), "Bounds of the window dimensions"),
("ScatterWithUpdatesBiggerThanInputV2", (64, 48),
np.zeros((32, 1)), (32, 49), (1,), (0,), (1,),
"Bounds of the window dimensions"),
("ScatterWithUpdatesNotMatchingIndices", (64, 48),
np.zeros((32, 1)), (64, 31), (0,), (1,), (1,),
"Bounds of the scatter dimensions"),
("ScatterWithUpdatesNotMatchingIndicesV2", (64, 48),
np.zeros((32, 1)), (31, 48), (1,), (0,), (1,),
"Bounds of the scatter dimensions"),
("ScatterNdWithUpdatesBiggerThanInput", (64, 48),
np.zeros((10, 9, 8, 7, 1)), (10, 9, 8, 7, 65), (4,), (1,),
(0,), "Bounds of the window dimensions"),
("ScatterNdWithUpdatesNotMatchingIndices", (64, 48),
np.zeros((10, 9, 8, 7, 1)), (9, 9, 8, 7, 64), (4,), (1,), (0,),
"Bounds of the scatter dimensions"),
("InvalidUpdates", (50, 49, 48, 47, 46),
np.zeros((10, 9, 8, 7, 5)), (10, 9, 8, 7, 3, 2, 4, 1),
(4, 5, 6), (1, 2), (0, 1, 2, 3, 4),
"Updates tensor must be of rank 7; got 8."),
("NonAscendingUpdateWindowDims", (6, 5, 4, 3, 2),
np.zeros((5, 4, 3, 2, 1)), (10, 9, 8, 7, 6, 5, 4, 3, 2),
(4, 5, 6, 8, 7), (), (0, 1, 2, 3, 4),
"update_window_dims in scatter op must be sorted"),
("RepeatedUpdateWindowDims", (6, 5, 4, 3, 2),
np.zeros((5, 4, 3, 2, 1)), (10, 9, 8, 7, 6, 5, 4, 3, 2),
(4, 5, 6, 7, 7), (), (0, 1, 2, 3, 4),
"update_window_dims in scatter op must not repeat"),
("OutOfBoundsUpdateWindowDims", (6, 5, 4, 3, 2),
np.zeros((5, 4, 3, 2, 1)), (10, 9, 8, 7, 6, 5, 4, 3, 2),
(4, 5, 6, 7, 9), (), (0, 1, 2, 3, 4),
"Invalid update_window_dims set in scatter op"),
("NonAscendingInsertedWindowDims", (50, 49, 48, 47, 46),
np.zeros((10, 9, 8, 7, 5)), (10, 9, 8, 7, 3, 2, 4),
(4, 5, 6), (2, 1), (0, 1, 2, 3, 4),
"inserted_window_dims in scatter op must be sorted"),
("RepeatedInsertedWindowDims", (50, 49, 48, 47, 46),
np.zeros((10, 9, 8, 7, 5)), (10, 9, 8, 7, 3, 2, 4),
(4, 5, 6), (1, 1), (0, 1, 2, 3, 4),
"inserted_window_dims in scatter op must not repeat"),
("OutOfBoundsInsertedWindowDims", (50, 49, 48, 47, 46),
np.zeros((10, 9, 8, 7, 5)), (10, 9, 8, 7, 3, 2, 4),
(4, 5, 6), (1, 5), (0, 1, 2, 3, 4),
"Invalid inserted_window_dims set in scatter op"),
("MismatchingScatterDimsToOperandDims", (50, 49, 48, 47, 46),
np.zeros((10, 9, 8, 7, 5)), (10, 9, 8, 7, 3, 2, 4),
(4, 5, 6), (1, 2), (0, 1, 2, 3),
"Scatter op has 4 elements in scatter_dims_to_operand_dims and "
"the bound of dimension index_vector_dim=4 of scatter_indices "
"is 5. These two numbers must be equal"),
("OutOfBoundsScatterDimsToOperandDims", (50, 49, 48, 47, 46),
np.zeros((10, 9, 8, 7, 5)), (10, 9, 8, 7, 3, 2, 4),
(4, 5, 6), (1, 2), (0, 1, 2, 3, 10),
"Invalid scatter_dims_to_operand_dims mapping"),
("RepeatedValuesInScatterDimsToOperandDims", (50, 49, 48, 47, 46),
np.zeros((10, 9, 8, 7, 5)), (10, 9, 8, 7, 3, 2, 4),
(4, 5, 6), (1, 2), (0, 1, 2, 2, 3),
"scatter_dims_to_operand_dims in scatter op must not repeat"),
("InsufficientWindowDims", (50, 49, 48, 47, 46),
np.zeros((10, 9, 8, 7, 5)), (10, 9, 8, 7, 3, 2, 4),
(4, 5, 6), (1,), (0, 1, 2, 3),
"Scatter op has window of size 4; doesn't match operand of "
"rank 5.")
]
))
def testScatterShapeCheckingRule(self, operand_shape, scatter_indices,
update_shape, dimension_numbers, msg):
operand = np.ones(operand_shape, dtype=np.int32)
updates = np.ones(update_shape, dtype=np.int32)
with self.assertRaisesRegex(TypeError, msg):
lax.scatter(operand, scatter_indices, updates, dimension_numbers)
def testIssue831(self):
# Tests the DeviceTuple constant handler
def f(x):
g = lambda *args: args[1]
return api.jit(lax.fori_loop, static_argnums=(2,))( 0, 10, g, x)
api.jit(f)(1.) # doesn't crash
def testReshapeWithUnusualShapes(self):
ans = lax.reshape(np.ones((3,), np.float32), (lax.add(1, 2), 1))
self.assertAllClose(ans, np.ones((3, 1), np.float32))
self.assertRaisesRegex(
TypeError,
"Shapes must be 1D sequences of concrete values of integer type.*",
lambda: lax.reshape(np.ones(3,), (np.array([3, 1]),)))
self.assertRaisesRegex(
TypeError,
"Shapes must be 1D sequences of concrete values of integer type.*",
lambda: lax.reshape(np.ones(3,), (1.5, 2.0)))
def testDynamicSliceTypeErrors(self):
self.assertRaisesRegex(
TypeError,
"index arguments to dynamic_slice must be integers of the same type",
lambda: lax.dynamic_slice(np.ones((3, 4), dtype=np.float32),
(np.int32(1), np.int16(2)), (2, 2)))
def testDynamicUpdateSliceTypeErrors(self):
self.assertRaisesRegex(
TypeError,
"index arguments to dynamic_update_slice must be integers of the same "
"type",
lambda: lax.dynamic_update_slice(np.ones((3, 4), dtype=np.float32),
np.zeros((2, 2), dtype=np.float32),
(np.int32(1), np.int16(2))))
def test_tie_in_error(self):
raise SkipTest("test no longer needed after trivializing tie_in")
# with core.skipping_checks():
# with self.assertRaisesRegex(
# TypeError, ".* of type .*tuple.* is not a valid JAX type"):
# api.make_jaxpr(lambda x: lax.tie_in((x, x), 1))(1.)
def test_primitive_jaxtype_error(self):
with core.skipping_checks():
with self.assertRaisesRegex(
TypeError, "Argument .* of type .* is not a valid JAX type"):
lax.add(1, 'hi')
def test_reduction_with_repeated_axes_error(self):
with self.assertRaisesRegex(ValueError, "duplicate value in 'axes' .*"):
lax.reduce(np.arange(3), 0, lax.add, (0, 0))
def test_population_count_booleans_not_supported(self):
# https://github.com/google/jax/issues/3886
msg = "population_count does not accept dtype bool"
with self.assertRaisesRegex(TypeError, msg):
lax.population_count(True)
def test_conv_general_dilated_different_input_ranks_error(self):
# https://github.com/google/jax/issues/4316
msg = ("conv_general_dilated lhs and rhs must have the same number of "
"dimensions")
dimension_numbers = lax.ConvDimensionNumbers(lhs_spec=(0, 1, 2),
rhs_spec=(0, 1, 2),
out_spec=(0, 1, 2))
kwargs = { 'window_strides': (1,)
, 'padding': ((0, 0),)
, 'lhs_dilation': (1,)
, 'rhs_dilation': (1,)
, 'dimension_numbers': dimension_numbers
, 'feature_group_count': 1
, 'batch_group_count': 1
, 'precision': None
}
lhs, rhs = np.ones((1, 1, 1)), np.ones((1, 1, 1, 1))
with self.assertRaisesRegex(ValueError, msg):
lax.conv_general_dilated(lhs, rhs, **kwargs)
class LazyConstantTest(jtu.JaxTestCase):
def _Check(self, make_const, expected):
# check casting to ndarray works
asarray_result = np.asarray(make_const())
# check passing as an argument works (should hit constant handler)
zero = np.array(0, expected.dtype)
argument_result = lax.add(zero, make_const())
# check looping into a compiled computation works
jit_result = api.jit(lambda x: lax.add(x, make_const()))(zero)
# ensure they're all the same
self.assertAllClose(asarray_result, expected)
self.assertAllClose(argument_result, expected)
self.assertAllClose(jit_result, expected)
# ensure repr doesn't crash
repr(make_const())
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_{}_fill={}".format(
jtu.format_shape_dtype_string(shape, dtype) if dtype else shape,
fill_value),
"shape": shape, "dtype": dtype, "fill_value": fill_value}
for dtype in itertools.chain(default_dtypes, [None])
for shape in [(), (3,), (2, 3), (2, 3, 4), (1001, 1001)]
for fill_value in [0, 1, np.pi]))
def testFilledConstant(self, shape, fill_value, dtype):
make_const = lambda: lax.full(shape, fill_value, dtype)
expected = np.full(shape, fill_value,
dtype or dtypes.result_type(fill_value))
self._Check(make_const, expected)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_{}_dim={}".format(
jtu.format_shape_dtype_string(shape, dtype), dimension),
"shape": shape, "dtype": dtype, "dimension": dimension}
for dtype in default_dtypes
for shape in [(), (3,), (2, 3), (2, 3, 4),
# TODO(mattjj): re-enable
# (1001, 1001), (101, 101, 101),
]
for dimension in range(len(shape))))
def testIotaConstant(self, dtype, shape, dimension):
make_const = lambda: lax.broadcasted_iota(dtype, shape, dimension)
arr = np.arange(shape[dimension], dtype=dtypes.canonicalize_dtype(dtype))
singleton_shape = [1] * len(shape)
singleton_shape[dimension] = shape[dimension]
expected = np.broadcast_to(arr.reshape(singleton_shape), shape)
self._Check(make_const, expected)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_{}_axes={}".format(
jtu.format_shape_dtype_string(shape, dtype), axes),
"shape": shape, "dtype": dtype, "axes": axes}
for dtype in default_dtypes
for shape, axes in [
[(2, 3), (0, 1)],
[(2, 3, 4), (0, 1)],
[(2, 3, 4), (0, 2)],
[(2, 3, 4), (1, 2)],
[(2, 3, 4), (0, 1, 2)],
[(2, 3, 4, 2), (0, 1, 2)],
[(2, 3, 4, 2), (0, 2, 3)],
[(1001, 1001), (0, 1)],
]))
@jtu.skip_on_devices("tpu") # TODO(mattjj): investigate failure
def testDeltaConstant(self, dtype, shape, axes):
make_const = lambda: lax._delta(dtype, shape, axes)
# don't check the asarray case, just assume it's right
expected = np.asarray(make_const())
self._Check(make_const, expected)
def testBroadcastInDim(self):
arr = lax.full((2, 1), 1.) + 1.
arr_np = np.full((2, 1), 1.) + 1.
expected = lax_reference.broadcast_in_dim(arr_np, (2, 1, 3), (0, 2))
make_const = lambda: lax.broadcast_in_dim(arr, (2, 1, 3), (0, 2))
self._Check(make_const, expected)
if __name__ == '__main__':
absltest.main(testLoader=jtu.JaxTestLoader())