mirror of
https://github.com/ROCm/jax.git
synced 2025-04-16 03:46:06 +00:00
146 lines
5.1 KiB
Python
146 lines
5.1 KiB
Python
# Copyright 2019 Google LLC
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""Tests for Vectorize library."""
|
|
|
|
from absl.testing import absltest
|
|
from absl.testing import parameterized
|
|
|
|
from jax import numpy as jnp
|
|
from jax import test_util as jtu
|
|
from jax.experimental.vectorize import vectorize
|
|
|
|
from jax.config import config
|
|
config.parse_flags_with_absl()
|
|
|
|
matmat = vectorize('(n,m),(m,k)->(n,k)')(jnp.dot)
|
|
matvec = vectorize('(n,m),(m)->(n)')(jnp.dot)
|
|
vecmat = vectorize('(m),(m,k)->(k)')(jnp.dot)
|
|
vecvec = vectorize('(m),(m)->()')(jnp.dot)
|
|
|
|
@vectorize('(n)->()')
|
|
def magnitude(x):
|
|
return jnp.dot(x, x)
|
|
|
|
mean = vectorize('(n)->()')(jnp.mean)
|
|
|
|
@vectorize('()->(n)')
|
|
def stack_plus_minus(x):
|
|
return jnp.stack([x, -x])
|
|
|
|
@vectorize('(n)->(),(n)')
|
|
def center(array):
|
|
bias = jnp.mean(array)
|
|
debiased = array - bias
|
|
return bias, debiased
|
|
|
|
|
|
class VectorizeTest(jtu.JaxTestCase):
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_leftshape={}_rightshape={}".format(left_shape, right_shape),
|
|
"left_shape": left_shape, "right_shape": right_shape, "result_shape": result_shape}
|
|
for left_shape, right_shape, result_shape in [
|
|
((2, 3), (3, 4), (2, 4)),
|
|
((2, 3), (1, 3, 4), (1, 2, 4)),
|
|
((5, 2, 3), (1, 3, 4), (5, 2, 4)),
|
|
((6, 5, 2, 3), (3, 4), (6, 5, 2, 4)),
|
|
]))
|
|
def test_matmat(self, left_shape, right_shape, result_shape):
|
|
self.assertEqual(matmat(jnp.zeros(left_shape),
|
|
jnp.zeros(right_shape)).shape, result_shape)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_leftshape={}_rightshape={}".format(left_shape, right_shape),
|
|
"left_shape": left_shape, "right_shape": right_shape, "result_shape": result_shape}
|
|
for left_shape, right_shape, result_shape in [
|
|
((2, 3), (3,), (2,)),
|
|
((2, 3), (1, 3), (1, 2)),
|
|
((4, 2, 3), (1, 3), (4, 2)),
|
|
((5, 4, 2, 3), (1, 3), (5, 4, 2)),
|
|
]))
|
|
def test_matvec(self, left_shape, right_shape, result_shape):
|
|
self.assertEqual(matvec(jnp.zeros(left_shape),
|
|
jnp.zeros(right_shape)).shape, result_shape)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_leftshape={}_rightshape={}".format(left_shape, right_shape),
|
|
"left_shape": left_shape, "right_shape": right_shape, "result_shape": result_shape}
|
|
for left_shape, right_shape, result_shape in [
|
|
((3,), (3,), ()),
|
|
((2, 3), (3,), (2,)),
|
|
((4, 2, 3), (3,), (4, 2)),
|
|
]))
|
|
def test_vecvec(self, left_shape, right_shape, result_shape):
|
|
self.assertEqual(vecvec(jnp.zeros(left_shape),
|
|
jnp.zeros(right_shape)).shape, result_shape)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}".format(shape),
|
|
"shape": shape, "result_shape": result_shape}
|
|
for shape, result_shape in [
|
|
((3,), ()),
|
|
((2, 3,), (2,)),
|
|
((1, 2, 3,), (1, 2)),
|
|
]))
|
|
def test_magnitude(self, shape, result_shape):
|
|
size = 1
|
|
for x in shape:
|
|
size *= x
|
|
self.assertEqual(magnitude(jnp.arange(size).reshape(shape)).shape, result_shape)
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}".format(shape),
|
|
"shape": shape, "result_shape": result_shape}
|
|
for shape, result_shape in [
|
|
((3,), ()),
|
|
((2, 3), (2,)),
|
|
((1, 2, 3, 4), (1, 2, 3)),
|
|
]))
|
|
def test_mean(self, shape, result_shape):
|
|
self.assertEqual(mean(jnp.zeros(shape)).shape, result_shape)
|
|
|
|
def test_mean_axis(self):
|
|
self.assertEqual(mean(jnp.zeros((2, 3)), axis=0).shape, (3,))
|
|
|
|
@parameterized.named_parameters(jtu.cases_from_list(
|
|
{"testcase_name": "_shape={}".format(shape),
|
|
"shape": shape, "result_shape": result_shape}
|
|
for shape, result_shape in [
|
|
((), (2,)),
|
|
((3,), (3,2,)),
|
|
]))
|
|
def test_stack_plus_minus(self, shape, result_shape):
|
|
self.assertEqual(stack_plus_minus(jnp.zeros(shape)).shape, result_shape)
|
|
|
|
def test_center(self):
|
|
b, a = center(jnp.arange(3))
|
|
self.assertEqual(a.shape, (3,))
|
|
self.assertEqual(b.shape, ())
|
|
self.assertAllClose(1.0, b, check_dtypes=False)
|
|
|
|
X = jnp.arange(12).reshape((3, 4))
|
|
b, a = center(X, axis=1)
|
|
self.assertEqual(a.shape, (3, 4))
|
|
self.assertEqual(b.shape, (3,))
|
|
self.assertAllClose(jnp.mean(X, axis=1), b)
|
|
|
|
b, a = center(X, axis=0)
|
|
self.assertEqual(a.shape, (3, 4))
|
|
self.assertEqual(b.shape, (4,))
|
|
self.assertAllClose(jnp.mean(X, axis=0), b)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
absltest.main(testLoader=jtu.JaxTestLoader())
|