mirror of
https://github.com/ROCm/jax.git
synced 2025-04-25 02:06:06 +00:00
429 lines
15 KiB
Python
429 lines
15 KiB
Python
# Copyright 2021 The JAX Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import annotations
|
|
|
|
from collections.abc import Sequence
|
|
from functools import partial
|
|
import math
|
|
|
|
from jax import lax
|
|
import jax.numpy as jnp
|
|
from jax._src.util import canonicalize_axis
|
|
from jax._src.numpy.util import promote_dtypes_complex
|
|
from jax._src.typing import Array
|
|
|
|
def _W4(N: int, k: Array) -> Array:
|
|
N_arr, k = promote_dtypes_complex(N, k)
|
|
return jnp.exp(-.5j * jnp.pi * k / N_arr)
|
|
|
|
def _dct_interleave(x: Array, axis: int) -> Array:
|
|
v0 = lax.slice_in_dim(x, None, None, 2, axis)
|
|
v1 = lax.rev(lax.slice_in_dim(x, 1, None, 2, axis), (axis,))
|
|
return lax.concatenate([v0, v1], axis)
|
|
|
|
def _dct_ortho_norm(out: Array, axis: int) -> Array:
|
|
factor = lax.concatenate([lax.full((1,), 4, out.dtype), lax.full((out.shape[axis] - 1,), 2, out.dtype)], 0)
|
|
factor = lax.expand_dims(factor, [a for a in range(out.ndim) if a != axis])
|
|
return out / lax.sqrt(factor * out.shape[axis])
|
|
|
|
# Implementation based on
|
|
# John Makhoul: A Fast Cosine Transform in One and Two Dimensions (1980)
|
|
|
|
|
|
def dct(x: Array, type: int = 2, n: int | None = None,
|
|
axis: int = -1, norm: str | None = None) -> Array:
|
|
"""Computes the discrete cosine transform of the input
|
|
|
|
JAX implementation of :func:`scipy.fft.dct`.
|
|
|
|
Args:
|
|
x: array
|
|
type: integer, default = 2. Currently only type 2 is supported.
|
|
n: integer, default = x.shape[axis]. The length of the transform.
|
|
If larger than ``x.shape[axis]``, the input will be zero-padded, if
|
|
smaller, the input will be truncated.
|
|
axis: integer, default=-1. The axis along which the dct will be performed.
|
|
norm: string. The normalization mode: one of ``[None, "backward", "ortho"]``.
|
|
The default is ``None``, which is equivalent to ``"backward"``.
|
|
|
|
Returns:
|
|
array containing the discrete cosine transform of x
|
|
|
|
See Also:
|
|
- :func:`jax.scipy.fft.dctn`: multidimensional DCT
|
|
- :func:`jax.scipy.fft.idct`: inverse DCT
|
|
- :func:`jax.scipy.fft.idctn`: multidimensional inverse DCT
|
|
|
|
Examples:
|
|
>>> x = jax.random.normal(jax.random.key(0), (3, 3))
|
|
>>> with jnp.printoptions(precision=2, suppress=True):
|
|
... print(jax.scipy.fft.dct(x))
|
|
[[-0.58 -0.33 -1.08]
|
|
[-0.88 -1.01 -1.79]
|
|
[-1.06 -2.43 1.24]]
|
|
|
|
When ``n`` smaller than ``x.shape[axis]``
|
|
|
|
>>> with jnp.printoptions(precision=2, suppress=True):
|
|
... print(jax.scipy.fft.dct(x, n=2))
|
|
[[-0.22 -0.9 ]
|
|
[-0.57 -1.68]
|
|
[-2.52 -0.11]]
|
|
|
|
When ``n`` smaller than ``x.shape[axis]`` and ``axis=0``
|
|
|
|
>>> with jnp.printoptions(precision=2, suppress=True):
|
|
... print(jax.scipy.fft.dct(x, n=2, axis=0))
|
|
[[-2.22 1.43 -0.67]
|
|
[ 0.52 -0.26 -0.04]]
|
|
|
|
When ``n`` larger than ``x.shape[axis]`` and ``axis=1``
|
|
|
|
>>> with jnp.printoptions(precision=2, suppress=True):
|
|
... print(jax.scipy.fft.dct(x, n=4, axis=1))
|
|
[[-0.58 -0.35 -0.64 -1.11]
|
|
[-0.88 -0.9 -1.46 -1.68]
|
|
[-1.06 -2.25 -1.15 1.93]]
|
|
"""
|
|
if type != 2:
|
|
raise NotImplementedError('Only DCT type 2 is implemented.')
|
|
if norm is not None and norm not in ['backward', 'ortho']:
|
|
raise ValueError(f"jax.scipy.fft.dct: {norm=!r} is not implemented")
|
|
|
|
axis = canonicalize_axis(axis, x.ndim)
|
|
if n is not None:
|
|
x = lax.pad(x, jnp.array(0, x.dtype),
|
|
[(0, n - x.shape[axis] if a == axis else 0, 0)
|
|
for a in range(x.ndim)])
|
|
|
|
N = x.shape[axis]
|
|
v = _dct_interleave(x, axis)
|
|
V = jnp.fft.fft(v, axis=axis)
|
|
k = lax.expand_dims(jnp.arange(N, dtype=V.real.dtype), [a for a in range(x.ndim) if a != axis])
|
|
out = V * _W4(N, k)
|
|
out = 2 * out.real
|
|
if norm == 'ortho':
|
|
out = _dct_ortho_norm(out, axis)
|
|
return out
|
|
|
|
|
|
def _dct2(x: Array, axes: Sequence[int], norm: str | None) -> Array:
|
|
axis1, axis2 = map(partial(canonicalize_axis, num_dims=x.ndim), axes)
|
|
N1, N2 = x.shape[axis1], x.shape[axis2]
|
|
v = _dct_interleave(_dct_interleave(x, axis1), axis2)
|
|
V = jnp.fft.fftn(v, axes=axes)
|
|
k1 = lax.expand_dims(jnp.arange(N1, dtype=V.dtype),
|
|
[a for a in range(x.ndim) if a != axis1])
|
|
k2 = lax.expand_dims(jnp.arange(N2, dtype=V.dtype),
|
|
[a for a in range(x.ndim) if a != axis2])
|
|
out = _W4(N1, k1) * (_W4(N2, k2) * V + _W4(N2, -k2) * jnp.roll(jnp.flip(V, axis=axis2), shift=1, axis=axis2))
|
|
out = 2 * out.real
|
|
if norm == 'ortho':
|
|
return _dct_ortho_norm(_dct_ortho_norm(out, axis1), axis2)
|
|
return out
|
|
|
|
|
|
def dctn(x: Array, type: int = 2,
|
|
s: Sequence[int] | None=None,
|
|
axes: Sequence[int] | None = None,
|
|
norm: str | None = None) -> Array:
|
|
"""Computes the multidimensional discrete cosine transform of the input
|
|
|
|
JAX implementation of :func:`scipy.fft.dctn`.
|
|
|
|
Args:
|
|
x: array
|
|
type: integer, default = 2. Currently only type 2 is supported.
|
|
s: integer or sequence of integers. Specifies the shape of the result. If not
|
|
specified, it will default to the shape of ``x`` along the specified ``axes``.
|
|
axes: integer or sequence of integers. Specifies the axes along which the
|
|
transform will be computed.
|
|
norm: string. The normalization mode: one of ``[None, "backward", "ortho"]``.
|
|
The default is ``None``, which is equivalent to ``"backward"``.
|
|
|
|
Returns:
|
|
array containing the discrete cosine transform of x
|
|
|
|
See Also:
|
|
- :func:`jax.scipy.fft.dct`: one-dimensional DCT
|
|
- :func:`jax.scipy.fft.idct`: one-dimensional inverse DCT
|
|
- :func:`jax.scipy.fft.idctn`: multidimensional inverse DCT
|
|
|
|
Examples:
|
|
|
|
``jax.scipy.fft.dctn`` computes the transform along both the axes by default
|
|
when ``axes`` argument is ``None``.
|
|
|
|
>>> x = jax.random.normal(jax.random.key(0), (3, 3))
|
|
>>> with jnp.printoptions(precision=2, suppress=True):
|
|
... print(jax.scipy.fft.dctn(x))
|
|
[[-5.04 -7.54 -3.26]
|
|
[ 0.83 3.64 -4.03]
|
|
[ 0.12 -0.73 3.74]]
|
|
|
|
When ``s=[2]``, dimension of the transform along ``axis 0`` will be ``2``
|
|
and dimension along ``axis 1`` will be same as that of input.
|
|
|
|
>>> with jnp.printoptions(precision=2, suppress=True):
|
|
... print(jax.scipy.fft.dctn(x, s=[2]))
|
|
[[-2.92 -2.68 -5.74]
|
|
[ 0.42 0.97 1. ]]
|
|
|
|
When ``s=[2]`` and ``axes=[1]``, dimension of the transform along ``axis 1`` will
|
|
be ``2`` and dimension along ``axis 0`` will be same as that of input.
|
|
Also when ``axes=[1]``, transform will be computed only along ``axis 1``.
|
|
|
|
>>> with jnp.printoptions(precision=2, suppress=True):
|
|
... print(jax.scipy.fft.dctn(x, s=[2], axes=[1]))
|
|
[[-0.22 -0.9 ]
|
|
[-0.57 -1.68]
|
|
[-2.52 -0.11]]
|
|
|
|
When ``s=[2, 4]``, shape of the transform will be ``(2, 4)``.
|
|
|
|
>>> with jnp.printoptions(precision=2, suppress=True):
|
|
... print(jax.scipy.fft.dctn(x, s=[2, 4]))
|
|
[[-2.92 -2.49 -4.21 -5.57]
|
|
[ 0.42 0.79 1.16 0.8 ]]
|
|
"""
|
|
if type != 2:
|
|
raise NotImplementedError('Only DCT type 2 is implemented.')
|
|
if norm is not None and norm not in ['backward', 'ortho']:
|
|
raise ValueError(f"jax.scipy.fft.dctn: {norm=!r} is not implemented")
|
|
|
|
if axes is None:
|
|
axes = range(x.ndim)
|
|
|
|
if len(axes) == 1:
|
|
return dct(x, n=s[0] if s is not None else None, axis=axes[0], norm=norm)
|
|
|
|
if s is not None:
|
|
ns = dict(zip(axes, s))
|
|
pads = [(0, ns[a] - x.shape[a] if a in ns else 0, 0) for a in range(x.ndim)]
|
|
x = lax.pad(x, jnp.array(0, x.dtype), pads)
|
|
|
|
if len(axes) == 2:
|
|
return _dct2(x, axes=axes, norm=norm)
|
|
|
|
# compose high-D DCTs from 2D and 1D DCTs:
|
|
for axes_block in [axes[i:i+2] for i in range(0, len(axes), 2)]:
|
|
x = dctn(x, axes=axes_block, norm=norm)
|
|
return x
|
|
|
|
|
|
def idct(x: Array, type: int = 2, n: int | None = None,
|
|
axis: int = -1, norm: str | None = None) -> Array:
|
|
"""Computes the inverse discrete cosine transform of the input
|
|
|
|
JAX implementation of :func:`scipy.fft.idct`.
|
|
|
|
Args:
|
|
x: array
|
|
type: integer, default = 2. Currently only type 2 is supported.
|
|
n: integer, default = x.shape[axis]. The length of the transform.
|
|
If larger than ``x.shape[axis]``, the input will be zero-padded, if
|
|
smaller, the input will be truncated.
|
|
axis: integer, default=-1. The axis along which the dct will be performed.
|
|
norm: string. The normalization mode: one of ``[None, "backward", "ortho"]``.
|
|
The default is ``None``, which is equivalent to ``"backward"``.
|
|
|
|
Returns:
|
|
array containing the inverse discrete cosine transform of x
|
|
|
|
See Also:
|
|
- :func:`jax.scipy.fft.dct`: DCT
|
|
- :func:`jax.scipy.fft.dctn`: multidimensional DCT
|
|
- :func:`jax.scipy.fft.idctn`: multidimensional inverse DCT
|
|
|
|
Examples:
|
|
|
|
>>> x = jax.random.normal(jax.random.key(0), (3, 3))
|
|
>>> with jnp.printoptions(precision=2, suppress=True):
|
|
... print(jax.scipy.fft.idct(x))
|
|
[[-0.02 -0. -0.17]
|
|
[-0.02 -0.07 -0.28]
|
|
[-0.16 -0.36 0.18]]
|
|
|
|
When ``n`` smaller than ``x.shape[axis]``
|
|
|
|
>>> with jnp.printoptions(precision=2, suppress=True):
|
|
... print(jax.scipy.fft.idct(x, n=2))
|
|
[[ 0. -0.19]
|
|
[-0.03 -0.34]
|
|
[-0.38 0.04]]
|
|
|
|
When ``n`` smaller than ``x.shape[axis]`` and ``axis=0``
|
|
|
|
>>> with jnp.printoptions(precision=2, suppress=True):
|
|
... print(jax.scipy.fft.idct(x, n=2, axis=0))
|
|
[[-0.35 0.23 -0.1 ]
|
|
[ 0.17 -0.09 0.01]]
|
|
|
|
When ``n`` larger than ``x.shape[axis]`` and ``axis=0``
|
|
|
|
>>> with jnp.printoptions(precision=2, suppress=True):
|
|
... print(jax.scipy.fft.idct(x, n=4, axis=0))
|
|
[[-0.34 0.03 0.07]
|
|
[ 0. 0.18 -0.17]
|
|
[ 0.14 0.09 -0.14]
|
|
[ 0. -0.18 0.14]]
|
|
|
|
``jax.scipy.fft.idct`` can be used to reconstruct ``x`` from the result
|
|
of ``jax.scipy.fft.dct``
|
|
|
|
>>> x_dct = jax.scipy.fft.dct(x)
|
|
>>> jnp.allclose(x, jax.scipy.fft.idct(x_dct))
|
|
Array(True, dtype=bool)
|
|
"""
|
|
if type != 2:
|
|
raise NotImplementedError('Only DCT type 2 is implemented.')
|
|
if norm is not None and norm not in ['backward', 'ortho']:
|
|
raise ValueError(f"jax.scipy.fft.idct: {norm=!r} is not implemented")
|
|
|
|
axis = canonicalize_axis(axis, x.ndim)
|
|
if n is not None:
|
|
x = lax.pad(x, jnp.array(0, x.dtype),
|
|
[(0, n - x.shape[axis] if a == axis else 0, 0)
|
|
for a in range(x.ndim)])
|
|
N = x.shape[axis]
|
|
x = x.astype(jnp.float32)
|
|
if norm is None or norm == 'backward':
|
|
x = _dct_ortho_norm(x, axis)
|
|
x = _dct_ortho_norm(x, axis)
|
|
|
|
k = lax.expand_dims(jnp.arange(N, dtype=jnp.float32), [a for a in range(x.ndim) if a != axis])
|
|
# everything is complex from here...
|
|
w4 = _W4(N,k)
|
|
x = x.astype(w4.dtype)
|
|
x = x / (_W4(N, k))
|
|
x = x * 2 * N
|
|
|
|
x = jnp.fft.ifft(x, axis=axis)
|
|
# convert back to reals..
|
|
out = _dct_deinterleave(x.real, axis)
|
|
return out
|
|
|
|
|
|
def idctn(x: Array, type: int = 2,
|
|
s: Sequence[int] | None=None,
|
|
axes: Sequence[int] | None = None,
|
|
norm: str | None = None) -> Array:
|
|
"""Computes the multidimensional inverse discrete cosine transform of the input
|
|
|
|
JAX implementation of :func:`scipy.fft.idctn`.
|
|
|
|
Args:
|
|
x: array
|
|
type: integer, default = 2. Currently only type 2 is supported.
|
|
s: integer or sequence of integers. Specifies the shape of the result. If not
|
|
specified, it will default to the shape of ``x`` along the specified ``axes``.
|
|
axes: integer or sequence of integers. Specifies the axes along which the
|
|
transform will be computed.
|
|
norm: string. The normalization mode: one of ``[None, "backward", "ortho"]``.
|
|
The default is ``None``, which is equivalent to ``"backward"``.
|
|
|
|
Returns:
|
|
array containing the inverse discrete cosine transform of x
|
|
|
|
See Also:
|
|
- :func:`jax.scipy.fft.dct`: one-dimensional DCT
|
|
- :func:`jax.scipy.fft.dctn`: multidimensional DCT
|
|
- :func:`jax.scipy.fft.idct`: one-dimensional inverse DCT
|
|
|
|
Examples:
|
|
|
|
``jax.scipy.fft.idctn`` computes the transform along both the axes by default
|
|
when ``axes`` argument is ``None``.
|
|
|
|
>>> x = jax.random.normal(jax.random.key(0), (3, 3))
|
|
>>> with jnp.printoptions(precision=2, suppress=True):
|
|
... print(jax.scipy.fft.idctn(x))
|
|
[[-0.03 -0.08 -0.08]
|
|
[ 0.05 0.12 -0.09]
|
|
[-0.02 -0.04 0.08]]
|
|
|
|
When ``s=[2]``, dimension of the transform along ``axis 0`` will be ``2``
|
|
and dimension along ``axis 1`` will be the same as that of input.
|
|
|
|
>>> with jnp.printoptions(precision=2, suppress=True):
|
|
... print(jax.scipy.fft.idctn(x, s=[2]))
|
|
[[-0.01 -0.03 -0.14]
|
|
[ 0. 0.03 0.06]]
|
|
|
|
When ``s=[2]`` and ``axes=[1]``, dimension of the transform along ``axis 1`` will
|
|
be ``2`` and dimension along ``axis 0`` will be same as that of input.
|
|
Also when ``axes=[1]``, transform will be computed only along ``axis 1``.
|
|
|
|
>>> with jnp.printoptions(precision=2, suppress=True):
|
|
... print(jax.scipy.fft.idctn(x, s=[2], axes=[1]))
|
|
[[ 0. -0.19]
|
|
[-0.03 -0.34]
|
|
[-0.38 0.04]]
|
|
|
|
When ``s=[2, 4]``, shape of the transform will be ``(2, 4)``
|
|
|
|
>>> with jnp.printoptions(precision=2, suppress=True):
|
|
... print(jax.scipy.fft.idctn(x, s=[2, 4]))
|
|
[[-0.01 -0.01 -0.05 -0.11]
|
|
[ 0. 0.01 0.03 0.04]]
|
|
|
|
``jax.scipy.fft.idctn`` can be used to reconstruct ``x`` from the result
|
|
of ``jax.scipy.fft.dctn``
|
|
|
|
>>> x_dctn = jax.scipy.fft.dctn(x)
|
|
>>> jnp.allclose(x, jax.scipy.fft.idctn(x_dctn))
|
|
Array(True, dtype=bool)
|
|
"""
|
|
if type != 2:
|
|
raise NotImplementedError('Only DCT type 2 is implemented.')
|
|
if norm is not None and norm not in ['backward', 'ortho']:
|
|
raise ValueError(f"jax.scipy.fft.idctn: {norm=!r} is not implemented")
|
|
|
|
if axes is None:
|
|
axes = range(x.ndim)
|
|
|
|
if len(axes) == 1:
|
|
return idct(x, n=s[0] if s is not None else None, axis=axes[0], norm=norm)
|
|
|
|
if s is not None:
|
|
ns = dict(zip(axes, s))
|
|
pads = [(0, ns[a] - x.shape[a] if a in ns else 0, 0) for a in range(x.ndim)]
|
|
x = lax.pad(x, jnp.array(0, x.dtype), pads)
|
|
|
|
# compose high-D DCTs from 1D DCTs:
|
|
for axis in axes:
|
|
x = idct(x, axis=axis, norm=norm)
|
|
return x
|
|
|
|
|
|
def _dct_deinterleave(x: Array, axis: int) -> Array:
|
|
empty_slice = slice(None, None, None)
|
|
ix0 = tuple(
|
|
slice(None, math.ceil(x.shape[axis]/2), 1) if i == axis else empty_slice
|
|
for i in range(len(x.shape)))
|
|
ix1 = tuple(
|
|
slice(math.ceil(x.shape[axis]/2), None, 1) if i == axis else empty_slice
|
|
for i in range(len(x.shape)))
|
|
v0 = x[ix0]
|
|
v1 = lax.rev(x[ix1], (axis,))
|
|
out = jnp.zeros(x.shape, dtype=x.dtype)
|
|
evens = tuple(
|
|
slice(None, None, 2) if i == axis else empty_slice for i in range(len(x.shape)))
|
|
odds = tuple(
|
|
slice(1, None, 2) if i == axis else empty_slice for i in range(len(x.shape)))
|
|
out = out.at[evens].set(v0)
|
|
out = out.at[odds].set(v1)
|
|
return out
|