rocm_jax/jaxlib/ducc_fft.py
Eugene Burmako f337c00ed5 Remove *_mhlo compatibility shims from jaxlib
We introduced these shims when migrating from MHLO to StableHLO, and they helped accommodate the version skew between jaxlib and JAX across different environments. Now that a sufficient amount of time has passed, these shims are no longer used anywhere and can be deleted.

PiperOrigin-RevId: 510820007
2023-02-19 09:03:14 -08:00

149 lines
4.5 KiB
Python

# Copyright 2020 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List
import jaxlib.mlir.ir as ir
import jaxlib.mlir.dialects.stablehlo as hlo
from .hlo_helpers import custom_call
from .cpu import _ducc_fft
import numpy as np
from jaxlib import xla_client
for _name, _value in _ducc_fft.registrations().items():
xla_client.register_custom_call_target(_name, _value, platform="cpu")
FftType = xla_client.FftType
_C2C = 0
_C2R = 1
_R2C = 2
def _ducc_fft_descriptor(shape: List[int], dtype, fft_type: FftType,
fft_lengths: List[int]) -> bytes:
n = len(shape)
assert len(fft_lengths) >= 1
assert len(fft_lengths) <= n, (fft_lengths, n)
forward = fft_type in (FftType.FFT, FftType.RFFT)
is_double = np.finfo(dtype).dtype == np.float64
if fft_type == FftType.RFFT:
ducc_fft_type = _R2C
assert dtype in (np.float32, np.float64), dtype
out_dtype = np.dtype(np.complex64 if dtype == np.float32 else np.complex128)
assert shape[-len(fft_lengths):] == fft_lengths, (shape, fft_lengths)
out_shape = list(shape)
out_shape[-1] = out_shape[-1] // 2 + 1
elif fft_type == FftType.IRFFT:
ducc_fft_type = _C2R
assert np.issubdtype(dtype, np.complexfloating), dtype
out_dtype = np.dtype(np.float32 if dtype == np.complex64 else np.float64)
assert shape[-len(fft_lengths):-1] == fft_lengths[:-1]
out_shape = list(shape)
out_shape[-1] = fft_lengths[-1]
assert (out_shape[-1] // 2 + 1) == shape[-1]
else:
ducc_fft_type = _C2C
assert np.issubdtype(dtype, np.complexfloating), dtype
out_dtype = dtype
assert shape[-len(fft_lengths):] == fft_lengths, (shape, fft_lengths)
out_shape = shape
# PocketFft does not allow size 0 dimensions.
if 0 in shape or 0 in out_shape:
return b"", out_dtype, out_shape
# Builds a PocketFftDescriptor flatbuffer. This descriptor is passed to the
# C++ kernel to describe the FFT to perform.
strides_in = []
stride = 1
for d in reversed(shape):
strides_in.append(stride)
stride *= d
strides_out = []
stride = 1
for d in reversed(out_shape):
strides_out.append(stride)
stride *= d
axes = [n - len(fft_lengths) + d for d in range(len(fft_lengths))]
scale = 1. if forward else (1. / np.prod(fft_lengths))
descriptor = _ducc_fft.ducc_fft_descriptor(
shape=shape if fft_type != FftType.IRFFT else out_shape,
is_double=is_double,
fft_type=ducc_fft_type,
fft_lengths=fft_lengths,
strides_in=list(reversed(strides_in)),
strides_out=list(reversed(strides_out)),
axes=axes,
forward=forward,
scale=scale)
return descriptor, out_dtype, out_shape
def ducc_fft_hlo(a, dtype, *, fft_type: FftType, fft_lengths: List[int]):
"""DUCC FFT kernel for CPU."""
a_type = ir.RankedTensorType(a.type)
n = len(a_type.shape)
fft_lengths = list(fft_lengths)
descriptor_bytes, out_dtype, out_shape = _ducc_fft_descriptor(
list(a_type.shape), dtype, fft_type, fft_lengths)
if out_dtype == np.float32:
out_type = ir.F32Type.get()
elif out_dtype == np.float64:
out_type = ir.F64Type.get()
elif out_dtype == np.complex64:
out_type = ir.ComplexType.get(ir.F32Type.get())
elif out_dtype == np.complex128:
out_type = ir.ComplexType.get(ir.F64Type.get())
else:
raise ValueError(f"Unknown output type {out_dtype}")
if 0 in a_type.shape or 0 in out_shape:
zero = hlo.ConstantOp(
ir.DenseElementsAttr.get(
np.array(0, dtype=out_dtype), type=out_type))
return hlo.BroadcastOp(
zero,
ir.DenseElementsAttr.get(np.asarray(out_shape, np.int64))).result
u8_type = ir.IntegerType.get_unsigned(8)
descriptor = hlo.ConstantOp(
ir.DenseElementsAttr.get(
np.frombuffer(descriptor_bytes, dtype=np.uint8), type=u8_type))
layout = tuple(range(n - 1, -1, -1))
return custom_call(
"ducc_fft",
[ir.RankedTensorType.get(out_shape, out_type)],
[descriptor, a],
operand_layouts=[[0], layout],
result_layouts=[layout])